organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N′-(Furan-2-ylmethyl­ene)-2-hy­droxy­benzohydrazide

aDepartment of Materials Science and Chemical Engineering, Taishan University, 271021 Taian, Shandong, People's Republic of China
*Correspondence e-mail: zhangyanxia@mail.sdu.edu.cn

(Received 20 October 2008; accepted 23 October 2008; online 25 October 2008)

In the title mol­ecule, C12H10N2O3, the aromatic and furan rings form a dihedral angle of 8.89 (1)° and an intra­molecular N—H⋯O hydrogen bond occurs. In the crystal structure, inter­molecular O—H⋯O hydrogen bonds link the mol­ecules into zigzag chains running along the c axis.

Related literature

For background on Schiff bases, see: Garnovskii et al. (1993[Garnovskii, A. D., Nivorozhkin, A. L. & Minki, V. I. (1993). Coord. Chem. Rev. 126, 1-69.]); Anderson et al. (1997[Anderson, O. P., Cour, A. L., Findeisen, M., Hennig, L., Simonsen, O., Taylor, L. & Toflund, H. (1997). J. Chem. Soc. Dalton Trans. pp. 111-120.]); Musie et al., (2001[Musie, G. T., Wei, M., Subramaniam, B. & Busch, D. H. (2001). Inorg. Chem. 40, 3336-3341.]); Paul et al. (2002[Paul, S., Barik, A. K., Peng, S. M. & Kar, S. K. (2002). Inorg. Chem. 41, 5803-5809.]); Yang, (2006[Yang, D.-S. (2006). Acta Cryst. E62, o1591-o1592.]). For reference bond distances, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C12H10N2O3

  • Mr = 230.22

  • Monoclinic, P 21 /n

  • a = 4.9898 (5) Å

  • b = 20.662 (2) Å

  • c = 10.6994 (11) Å

  • β = 101.421 (2)°

  • V = 1081.24 (19) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 295 (2) K

  • 0.12 × 0.10 × 0.06 mm

Data collection
  • Bruker SMART APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.98, Tmax = 0.99

  • 5631 measured reflections

  • 1904 independent reflections

  • 1451 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.097

  • S = 1.02

  • 1904 reflections

  • 156 parameters

  • H-atom parameters constrained

  • Δρmax = 0.12 e Å−3

  • Δρmin = −0.13 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2i 0.82 2.14 2.804 (2) 139
N1—H1A⋯O1 0.86 1.99 2.650 (2) 133
Symmetry code: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Recently, a number of Schiff-bases have been investigated because of their coordination chemistry (Garnovskii et al., 1993; Musie et al., 2001; Paul et al., 2002; Yang, 2006;) and biological systems (Anderson et al., 1997). In order to search for new Schiff-bases with higher bioactivity, the title compound, (I), was synthesized and its crystal structure determined. In (I) (Fig. 1), the bond lengths and angles are in good agreement with the expected values (Allen et al., 1987). In the crystal structure (Fig. 2), the molecules are linked into infinite chains by O—H···O hydrogen bonds. There is also an intramolecular N—H···O hydrogen bond.

Related literature top

For Schiff bases, see: Garnovskii et al. (1993); Anderson et al. (1997); Musie et al., (2001); Paul et al. (2002); Yang, (2006). For reference bond distances, see: Allen et al. (1987).

Experimental top

The title compound was synthesized by the reaction of 2-hydroxy-benzoic acid hydrazide(1 mmol, 152.2 mg) with furan-2-carbaldehyde(1 mmol, 96.2 mg) in ethanol(20 ml) under reflux conditions (348 K) for 5 h. The solvent was removed and the solid product recrystallized from tetrahydrofuran. After six days orange crystals suitable for the X-ray diffraction study were obtained.

Refinement top

All H atoms were placed in idealized positions (C—H = 0.93— 0.97 Å, N—H = 0.86 Å) and refined as riding atoms. For those bound to C, Uiso(H) = 1.2 or 1.5Ueq(C). while for those bound to N, Uiso(H) = 1.2 Ueq(N).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2 (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. The structure of the infinite chains formed via hydrogen bonds, H atoms have been omitted for clarity. Dashed lines indicate hydrogen bonds.
N'-(Furan-2-ylmethylene)-2-hydroxybenzohydrazide top
Crystal data top
C12H10N2O3F(000) = 480
Mr = 230.22Dx = 1.414 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1748 reflections
a = 4.9898 (5) Åθ = 2.2–25.0°
b = 20.662 (2) ŵ = 0.10 mm1
c = 10.6994 (11) ÅT = 295 K
β = 101.421 (2)°Block, orange
V = 1081.24 (19) Å30.12 × 0.10 × 0.06 mm
Z = 4
Data collection top
Bruker SMART APEXII area-detector
diffractometer
1904 independent reflections
Radiation source: fine-focus sealed tube1451 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ϕ and ω scansθmax = 25.1°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 55
Tmin = 0.98, Tmax = 0.99k = 2421
5631 measured reflectionsl = 1112
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034H-atom parameters constrained
wR(F2) = 0.097 w = 1/[σ2(Fo2) + (0.0472P)2 + 0.1418P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
1904 reflectionsΔρmax = 0.12 e Å3
156 parametersΔρmin = 0.13 e Å3
0 restraintsExtinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0107 (19)
Crystal data top
C12H10N2O3V = 1081.24 (19) Å3
Mr = 230.22Z = 4
Monoclinic, P21/nMo Kα radiation
a = 4.9898 (5) ŵ = 0.10 mm1
b = 20.662 (2) ÅT = 295 K
c = 10.6994 (11) Å0.12 × 0.10 × 0.06 mm
β = 101.421 (2)°
Data collection top
Bruker SMART APEXII area-detector
diffractometer
1904 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1451 reflections with I > 2σ(I)
Tmin = 0.98, Tmax = 0.99Rint = 0.023
5631 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.097H-atom parameters constrained
S = 1.02Δρmax = 0.12 e Å3
1904 reflectionsΔρmin = 0.13 e Å3
156 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.2921 (2)0.22463 (6)0.59528 (10)0.0611 (4)
H10.36150.22610.53200.092*
O20.2021 (2)0.22907 (5)0.97330 (9)0.0541 (3)
O30.6276 (3)0.42331 (7)0.68440 (12)0.0815 (4)
N10.0370 (2)0.26559 (6)0.77544 (11)0.0435 (3)
H1A0.03650.26380.69510.052*
N20.1342 (2)0.30720 (6)0.82213 (11)0.0422 (3)
C10.4351 (3)0.18305 (7)0.68139 (14)0.0415 (4)
C20.3961 (3)0.18397 (7)0.80733 (13)0.0385 (3)
C30.5525 (3)0.14165 (7)0.89334 (15)0.0493 (4)
H30.53120.14170.97780.059*
C40.7373 (3)0.09972 (8)0.85745 (16)0.0560 (4)
H40.84090.07230.91710.067*
C50.7674 (3)0.09876 (8)0.73201 (16)0.0549 (4)
H50.88920.06990.70650.066*
C60.6191 (3)0.14000 (8)0.64527 (15)0.0508 (4)
H60.64170.13920.56110.061*
C70.2058 (3)0.22765 (7)0.85884 (13)0.0397 (4)
C80.2876 (3)0.34231 (7)0.74000 (15)0.0483 (4)
H80.28340.33780.65390.058*
C90.4676 (3)0.38898 (7)0.77975 (14)0.0460 (4)
C100.5197 (3)0.40836 (8)0.89143 (17)0.0582 (5)
H100.43750.39280.97140.070*
C110.7221 (4)0.45682 (9)0.8659 (2)0.0668 (5)
H110.79910.47930.92540.080*
C120.7803 (4)0.46390 (9)0.7418 (2)0.0767 (6)
H120.90900.49280.69880.092*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0660 (8)0.0871 (9)0.0369 (6)0.0281 (6)0.0263 (5)0.0161 (6)
O20.0647 (7)0.0696 (8)0.0325 (6)0.0026 (6)0.0206 (5)0.0006 (5)
O30.0984 (10)0.0848 (9)0.0550 (8)0.0339 (8)0.0000 (7)0.0057 (7)
N10.0502 (7)0.0512 (7)0.0328 (7)0.0022 (6)0.0171 (6)0.0049 (6)
N20.0457 (7)0.0457 (7)0.0386 (7)0.0034 (6)0.0167 (6)0.0075 (6)
C10.0397 (8)0.0502 (9)0.0365 (8)0.0013 (7)0.0120 (6)0.0019 (7)
C20.0386 (8)0.0434 (8)0.0350 (7)0.0083 (6)0.0107 (6)0.0015 (6)
C30.0566 (9)0.0529 (9)0.0388 (8)0.0027 (8)0.0103 (7)0.0013 (7)
C40.0582 (10)0.0533 (10)0.0538 (10)0.0060 (8)0.0046 (8)0.0067 (8)
C50.0525 (10)0.0530 (10)0.0612 (11)0.0058 (8)0.0162 (8)0.0053 (8)
C60.0512 (9)0.0611 (10)0.0439 (9)0.0048 (8)0.0185 (7)0.0016 (8)
C70.0427 (8)0.0450 (8)0.0343 (8)0.0099 (7)0.0146 (6)0.0019 (7)
C80.0584 (10)0.0526 (9)0.0362 (8)0.0008 (8)0.0147 (8)0.0076 (7)
C90.0475 (9)0.0461 (9)0.0439 (9)0.0030 (7)0.0080 (7)0.0032 (7)
C100.0629 (11)0.0656 (11)0.0506 (10)0.0079 (9)0.0220 (8)0.0004 (8)
C110.0634 (12)0.0592 (11)0.0856 (15)0.0003 (9)0.0337 (11)0.0125 (10)
C120.0694 (13)0.0596 (12)0.0966 (17)0.0202 (10)0.0055 (12)0.0088 (11)
Geometric parameters (Å, º) top
O1—C11.3549 (17)C3—H30.9300
O1—H10.8200C4—C51.380 (2)
O2—C71.2288 (16)C4—H40.9300
O3—C121.359 (2)C5—C61.365 (2)
O3—C91.3633 (19)C5—H50.9300
N1—C71.3503 (18)C6—H60.9300
N1—N21.3737 (16)C8—C91.438 (2)
N1—H1A0.8600C8—H80.9300
N2—C81.2720 (19)C9—C101.334 (2)
C1—C61.387 (2)C10—C111.410 (2)
C1—C21.3991 (19)C10—H100.9300
C2—C31.391 (2)C11—C121.310 (3)
C2—C71.492 (2)C11—H110.9300
C3—C41.374 (2)C12—H120.9300
C1—O1—H1109.5C5—C6—C1120.69 (15)
C12—O3—C9106.28 (15)C5—C6—H6119.7
C7—N1—N2118.33 (11)C1—C6—H6119.7
C7—N1—H1A120.8O2—C7—N1120.95 (13)
N2—N1—H1A120.8O2—C7—C2121.25 (13)
C8—N2—N1115.98 (12)N1—C7—C2117.81 (12)
O1—C1—C6120.38 (13)N2—C8—C9120.25 (13)
O1—C1—C2119.43 (13)N2—C8—H8119.9
C6—C1—C2120.19 (14)C9—C8—H8119.9
C3—C2—C1117.51 (14)C10—C9—O3108.97 (14)
C3—C2—C7116.76 (12)C10—C9—C8135.24 (16)
C1—C2—C7125.71 (13)O3—C9—C8115.78 (14)
C4—C3—C2122.05 (14)C9—C10—C11107.40 (17)
C4—C3—H3119.0C9—C10—H10126.3
C2—C3—H3119.0C11—C10—H10126.3
C3—C4—C5119.29 (15)C12—C11—C10106.37 (17)
C3—C4—H4120.4C12—C11—H11126.8
C5—C4—H4120.4C10—C11—H11126.8
C6—C5—C4120.24 (15)C11—C12—O3110.96 (17)
C6—C5—H5119.9C11—C12—H12124.5
C4—C5—H5119.9O3—C12—H12124.5
C7—N1—N2—C8179.41 (13)C3—C2—C7—O24.9 (2)
O1—C1—C2—C3178.33 (13)C1—C2—C7—O2173.54 (14)
C6—C1—C2—C31.5 (2)C3—C2—C7—N1175.00 (13)
O1—C1—C2—C70.1 (2)C1—C2—C7—N16.6 (2)
C6—C1—C2—C7179.90 (13)N1—N2—C8—C9177.93 (12)
C1—C2—C3—C40.6 (2)C12—O3—C9—C100.45 (19)
C7—C2—C3—C4179.16 (13)C12—O3—C9—C8179.81 (14)
C2—C3—C4—C50.8 (2)N2—C8—C9—C101.6 (3)
C3—C4—C5—C61.4 (3)N2—C8—C9—O3178.74 (14)
C4—C5—C6—C10.5 (2)O3—C9—C10—C110.28 (19)
O1—C1—C6—C5178.84 (14)C8—C9—C10—C11179.95 (17)
C2—C1—C6—C51.0 (2)C9—C10—C11—C120.0 (2)
N2—N1—C7—O21.8 (2)C10—C11—C12—O30.3 (2)
N2—N1—C7—C2178.36 (11)C9—O3—C12—C110.5 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.822.142.804 (2)139
N1—H1A···O10.861.992.650 (2)133
Symmetry code: (i) x+1/2, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC12H10N2O3
Mr230.22
Crystal system, space groupMonoclinic, P21/n
Temperature (K)295
a, b, c (Å)4.9898 (5), 20.662 (2), 10.6994 (11)
β (°) 101.421 (2)
V3)1081.24 (19)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.12 × 0.10 × 0.06
Data collection
DiffractometerBruker SMART APEXII area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.98, 0.99
No. of measured, independent and
observed [I > 2σ(I)] reflections
5631, 1904, 1451
Rint0.023
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.097, 1.02
No. of reflections1904
No. of parameters156
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.12, 0.13

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.822.142.804 (2)138.6
N1—H1A···O10.861.992.650 (2)132.8
Symmetry code: (i) x+1/2, y+1/2, z1/2.
 

Acknowledgements

This project was supported by the Postgraduate Foundation of Taishan University (No. Y07–2–16).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationAnderson, O. P., Cour, A. L., Findeisen, M., Hennig, L., Simonsen, O., Taylor, L. & Toflund, H. (1997). J. Chem. Soc. Dalton Trans. pp. 111–120.  CSD CrossRef Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGarnovskii, A. D., Nivorozhkin, A. L. & Minki, V. I. (1993). Coord. Chem. Rev. 126, 1–69.  CrossRef CAS Web of Science Google Scholar
First citationMusie, G. T., Wei, M., Subramaniam, B. & Busch, D. H. (2001). Inorg. Chem. 40, 3336–3341.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPaul, S., Barik, A. K., Peng, S. M. & Kar, S. K. (2002). Inorg. Chem. 41, 5803–5809.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, D.-S. (2006). Acta Cryst. E62, o1591–o1592.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds