metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 11| November 2008| Pages m1476-m1477

Sodium 2-mercapto­ethane­sulfonate monohydrate (coenzyme M sodium salt monohydrate)

aLaboratory of Organic Chemistry, ETH Zurich, Wolfgang-Pauli-Strasse 10, 8093 Zurich, Switzerland, and bLaboratory of Inorganic Chemistry, ETH Zurich, Wolfgang-Pauli-Strasse 10, 8093 Zurich, Switzerland
*Correspondence e-mail: schweizer@org.chem.ethz.ch

(Received 19 August 2008; accepted 2 October 2008; online 31 October 2008)

The 2-thio­ethanesulfonate anion is the smallest known coenzyme in nature (HS–CoM) and plays a key role in methano­genesis by anaerobic archaea, as well as in the oxidation of alkenes by Gram-negative and Gram-positive eubacteria. The title compound, Na+·C2H5O3S2·H2O, is the Na+ salt of HS–CoM crystallized as the monohydrate. Six O atoms form a distorted octa­hedral coordination geometry around the Na atom, at distances in the range 2.312 (4)–2.517 (3) Å. Two O atoms of the sulfonate group, one O atom of each of three other symmetry-related sulfonate groups plus the water O atom form the coordination environment of the Na+ ion. This arrangement forms Na–O–Na layers in the crystal structure, parallel to (100).

Related literature

For related literature about HS–CoM, see: Allen et al. (1999[Allen, J. R., Clark, D. D., Krum, J. G. & Ensign, S. A. (1999). Proc. Natl Acad. Sci. USA, 96, 8432-8437.]); Bruchhausen et al. (1993[Bruchhausen, F. V., Dannhardt, G. & Ebelet, S. (1993). Editors. Hagers Handbuch der Pharmazeutischen Praxis, Vol. 8, p. 890. Berlin, Heidelberg, New York, London, Paris, Tokyo, Hong Kong, Barcelona, Budapest: Springer.]); Günther & Hattendorf (2005[Günther, D. & Hattendorf, B. (2005). TrAC Trends Anal. Chem. 24, 255-265.]); Graham et al. (2002[Graham, D. E., Xu, H. & White, R. H. (2002). J. Biol. Chem. 277, 13421-13429.]); Latkoczy & Günther (2002[Latkoczy, C. & Günther, D. (2002). J. Anal. At. Spectrom. 17, 1264-1270.]); Mackay et al. (1999[Mackay, S., Gilmore, C. J., Edwards, C., Stewart, N. & Shankland, K. (1999). maXus. Nonius BV, Delft, The Netherlands, MacScience Co. Ltd, Japan, and University of Glasgow, Scotland.]); Schramm et al. (1955[Schramm, C. H., Lemaire, H. & Karlson, R. H. (1955). J. Am. Chem. Soc. 77, 6231-6233.]); Thauer (1998[Thauer, R. K. (1998). Microbiology, 144, 2377-2406.]). For the structure of the unhydrated Na HS–CoM salt, see: Bambagiotti-Alberti et al. (2007[Bambagiotti-Alberti, M., Bruni, B., Di Vaira, M. & Giannellini, V. (2007). Acta Cryst. E63, o1796.]).

[Scheme 1]

Experimental

Crystal data
  • Na+·C2H5O3S2·H2O

  • Mr = 182.19

  • Orthorhombic, P n a 21

  • a = 23.4301 (8) Å

  • b = 5.0324 (2) Å

  • c = 6.1254 (2) Å

  • V = 722.24 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.74 mm−1

  • T = 223 K

  • 0.26 × 0.20 × 0.01 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: none

  • 1647 measured reflections

  • 1534 independent reflections

  • 1263 reflections with I > 2σ(I)

  • Rint = 0.065

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.131

  • S = 0.95

  • 1534 reflections

  • 88 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.37 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 627 Friedel pairs

  • Flack parameter: 0.13 (18)

Table 1
Selected bond lengths (Å)

Na9—O5i 2.312 (4)
Na9—O8ii 2.322 (4)
Na9—O7 2.404 (3)
Na9—O6iii 2.416 (2)
Na9—O5 2.456 (3)
Na9—O8 2.517 (3)
Symmetry codes: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) x, y-1, z.

Data collection: KappaCCD Server Software (Nonius, 1997[Nonius (1997). KappaCCD Server Software. Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and SCALEPACK; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: maXus (Mackay et al., 1999[Mackay, S., Gilmore, C. J., Edwards, C., Stewart, N. & Shankland, K. (1999). maXus. Nonius BV, Delft, The Netherlands, MacScience Co. Ltd, Japan, and University of Glasgow, Scotland.]).

Supporting information


Comment top

The title compound includes 2-thioethanesulfonate ion, the smallest known coenzyme in nature, coenzyme M, which plays a key role in methanogenesis by anaerobic archaea (Thauer, 1998) and in the oxidation of alkenes by gram-negative and gram-positive eubacteria (Allen et al., 1999). Furthermore its sodium salt (mesna) is medically used as mucolytics and to prevent urotoxic side effects of certain anticancer drugs (Bruchhausen et al., 1993). Whereas the biosynthesis of coenzyme M starts by sulfitation of phosphoenolpyruvate (Graham et al., 2002), the chemical synthesis begins from sodium 2-bromoethanesulfonate and thiourea in ammoniacal solution (Bruchhausen et al., 1993). Since 2-thioethanesulfonic acid represents a highly viscous oil decomposing under release of hydrogen sulfide at room temperature, it is usually stored and sold as stable sodium or ammonium salt (Schramm et al., 1955). The title compound is the monohydrate of the sodium salt.

Six O atoms show a distorted octahedral coordination geometry around the Na atom at distances in the range of 2.312 (4)–2.517 (3) Å (Fig. 1). Two O atoms of a SO3 group and one O of three other SO3 groups plus the water O atom form the coordination sphere of the Na+ ion. This forms Na–O–Na layers parallel to (100) in the crystal (Fig. 2).

The crystal structure of the unhydrated form (Bambagiotti-Alberti et al., 2007; CSD refcode UDUVUL) shows a similar six-fold coordination of the Na atom where the water O atom is replaced by an O-atom of a SO3 group. The conformation of the S atoms is antiperiplanar in our compound and gauche in the unhydrated form.

Related literature top

For related literature about HS–CoM, see: Allen et al. (1999); Bruchhausen et al. (1993); Günther & Hattendorf (2005); Graham et al. (2002); Latkoczy & Günther (2002); Mackay et al. (1999); Schramm et al. (1955); Thauer (1998). For the structure of the unhydrated Na HS–CoM salt, see: Bambagiotti-Alberti et al. (2007).

Experimental top

When adding pure ethanol to a concentrated solution of 2-thioethanesulfonic acid in water, we noticed a precipitating white crystalline mass never described before in the literature. Micro elementary analysis based on the empirical formula (C2H8O4S2) of the hydrated acid (HS–CoM-H3O+) showed significantly low values for C and H. At the same time 1H and 13C NMR analysis of the precipitate in D2O ruled out any organic impurities. Investigations into the crystals by laser ablation inductively coupled plasma sector field mass spectrometry (LA-ICP-SF MS), however, clearly revealed the presence of sodium in hyperstoichiometric amounts: molar ratio (Na-23)/(S-32) = 1.34 (RSD: 8,5%, n = 9) (Günther & Hattendorf, 2005; Latkoczy & Günther, 2002). The white precipitate consisted of two different types of crystals, needles and thin plates. The needles were used for structure analysis by X-ray diffraction.

Refinement top

H-positions for the methylene CH2 groups have been calculated with fixed distance of 1.08 Å. H atoms for the water molecule and the thiol group have been taken from a difference map and were included in the refinement in their as-found positions.

Computing details top

Data collection: KappaCCD Server Software (Nonius, 1997); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek 2003); software used to prepare material for publication: maXus (Mackay et al., 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of sodium 2-thioethanesulfonate hydrate with 50% probability displacement ellipsoids. H atoms are omitted for clarity. The complete coordination of the Na atom is shown. Symmetry codes: (a) x, -1+y, z; (b) x, 1+y, z; (c) 1/2-x, -1/2+y, -1/2+z; (d) 1/2-x, -1/2+y, 1/2+z; (e) 1/2-x, 1/2+y, -1/2+z; (f) 1/2-x, 1/2+y, 1/2+z.
[Figure 2] Fig. 2. Crystal structure viewed down the diagonal of the a–b axis, showing the layer structure of Na—O clusters.
sodium 2-mercaptoethanesulfonate monohydrate top
Crystal data top
Na+·C2H5O3S2·H2ODx = 1.676 Mg m3
Mr = 182.19Melting point: 473 K
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 5975 reflections
a = 23.4301 (8) Åθ = 2.3–27.5°
b = 5.0324 (2) ŵ = 0.74 mm1
c = 6.1254 (2) ÅT = 223 K
V = 722.24 (4) Å3Plate, colourless
Z = 40.26 × 0.20 × 0.01 mm
F(000) = 376.0
Data collection top
Nonius KappaCCD
diffractometer
Rint = 0.065
Radiation source: fine-focus sealed tubeθmax = 27.5°, θmin = 3.4°
CCD scansh = 2930
1647 measured reflectionsk = 66
1534 independent reflectionsl = 77
1263 reflections with I > 2σ(I)
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.131 w = 1/[σ2(Fo2) + (0.1P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.95(Δ/σ)max < 0.001
1534 reflectionsΔρmax = 0.25 e Å3
88 parametersΔρmin = 0.37 e Å3
1 restraintAbsolute structure: Flack (1983), 627 Friedel pairs
0 constraintsAbsolute structure parameter: 0.13 (18)
Crystal data top
Na+·C2H5O3S2·H2OV = 722.24 (4) Å3
Mr = 182.19Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 23.4301 (8) ŵ = 0.74 mm1
b = 5.0324 (2) ÅT = 223 K
c = 6.1254 (2) Å0.26 × 0.20 × 0.01 mm
Data collection top
Nonius KappaCCD
diffractometer
1263 reflections with I > 2σ(I)
1647 measured reflectionsRint = 0.065
1534 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.131Δρmax = 0.25 e Å3
S = 0.95Δρmin = 0.37 e Å3
1534 reflectionsAbsolute structure: Flack (1983), 627 Friedel pairs
88 parametersAbsolute structure parameter: 0.13 (18)
1 restraint
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S30.00830 (4)0.7465 (2)0.8298 (4)0.0483 (4)
H30.01540.85420.68130.058*
S40.17410 (3)0.75424 (11)0.66676 (19)0.0185 (2)
Na90.26442 (4)0.3309 (2)0.6658 (4)0.0238 (3)
O50.19813 (10)0.6264 (6)0.4720 (5)0.0239 (7)
O60.18238 (8)1.0402 (4)0.6710 (8)0.0286 (5)
O70.33586 (10)0.6737 (5)0.6717 (8)0.0338 (5)
H10.32590.80980.75950.023 (11)*
H20.33740.74650.53320.047 (16)*
O80.19475 (10)0.6245 (6)0.8649 (5)0.0257 (7)
C10.06798 (17)0.8051 (9)0.8424 (9)0.0464 (11)
H1A0.07561.01660.85090.056*
H1B0.08460.71690.99000.056*
C20.09943 (14)0.6946 (6)0.6517 (10)0.0279 (8)
H2A0.08290.78270.50390.033*
H2B0.09200.48300.64310.033*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S30.0235 (5)0.0688 (8)0.0526 (8)0.0031 (4)0.0074 (6)0.0024 (6)
S40.0182 (4)0.0178 (4)0.0194 (4)0.00146 (19)0.0008 (4)0.0002 (7)
Na90.0267 (6)0.0228 (6)0.0219 (6)0.0034 (4)0.0009 (9)0.0004 (10)
O50.0302 (16)0.0223 (15)0.0191 (18)0.0013 (11)0.0050 (14)0.0031 (12)
O60.0325 (10)0.0188 (10)0.0344 (12)0.0029 (8)0.0011 (17)0.003 (2)
O70.0398 (13)0.0345 (11)0.0271 (13)0.0012 (10)0.004 (2)0.005 (2)
O80.0301 (16)0.0271 (17)0.0197 (18)0.0020 (12)0.0011 (13)0.0027 (14)
C10.0228 (17)0.063 (3)0.053 (3)0.0050 (17)0.010 (2)0.013 (3)
C20.0182 (14)0.0364 (16)0.029 (2)0.0033 (12)0.001 (2)0.008 (2)
Geometric parameters (Å, º) top
S3—C11.813 (4)Na9—Na9i4.0207 (5)
S3—H31.0714Na9—Na9ii4.0207 (5)
S4—O61.4522 (19)Na9—Na9v4.0207 (5)
S4—O81.460 (4)O5—Na9v2.312 (4)
S4—O51.468 (3)O6—Na9vi2.416 (2)
S4—C21.778 (3)O7—H10.9012
S4—Na93.0028 (13)O7—H20.9247
Na9—O5i2.312 (4)O8—Na9iv2.322 (4)
Na9—O8ii2.322 (4)C1—C21.489 (6)
Na9—O72.404 (3)C1—H1A1.0800
Na9—O6iii2.416 (2)C1—H1B1.0800
Na9—O52.456 (3)C2—H2A1.0800
Na9—O82.517 (3)C2—H2B1.0800
Na9—Na9iv4.0207 (5)
C1—S3—H396.1O8—Na9—Na9i83.64 (8)
O6—S4—O8112.6 (2)S4—Na9—Na9i108.91 (6)
O6—S4—O5113.4 (2)Na9iv—Na9—Na9i77.477 (11)
O8—S4—O5110.64 (11)O5i—Na9—Na9ii113.78 (8)
O6—S4—C2107.43 (13)O8ii—Na9—Na9ii35.38 (7)
O8—S4—C2107.1 (2)O7—Na9—Na9ii125.28 (13)
O5—S4—C2105.2 (2)O6iii—Na9—Na9ii59.83 (11)
O6—S4—Na9127.52 (9)O5—Na9—Na9ii84.52 (8)
O8—S4—Na956.70 (12)O8—Na9—Na9ii128.86 (8)
O5—S4—Na954.35 (12)S4—Na9—Na9ii109.09 (5)
C2—S4—Na9125.01 (11)Na9iv—Na9—Na9ii160.65 (6)
O5i—Na9—O8ii106.77 (8)Na9i—Na9—Na9ii99.226 (14)
O5i—Na9—O792.45 (14)O5i—Na9—Na9v163.76 (8)
O8ii—Na9—O792.65 (14)O8ii—Na9—Na9v75.20 (9)
O5i—Na9—O6iii91.25 (13)O7—Na9—Na9v71.31 (12)
O8ii—Na9—O6iii93.87 (12)O6iii—Na9—Na9v104.78 (10)
O7—Na9—O6iii171.25 (9)O5—Na9—Na9v31.43 (7)
O5i—Na9—O5154.34 (14)O8—Na9—Na9v83.84 (8)
O8ii—Na9—O598.49 (14)S4—Na9—Na9v55.88 (5)
O7—Na9—O590.75 (11)Na9iv—Na9—Na9v99.226 (14)
O6iii—Na9—O582.52 (10)Na9i—Na9—Na9v160.65 (6)
O5i—Na9—O896.56 (14)Na9ii—Na9—Na9v77.476 (11)
O8ii—Na9—O8156.12 (14)S4—O5—Na9v127.60 (18)
O7—Na9—O891.32 (12)S4—O5—Na996.60 (16)
O6iii—Na9—O880.38 (10)Na9v—O5—Na9114.93 (10)
O5—Na9—O857.90 (7)S4—O6—Na9vi134.91 (12)
O5i—Na9—S4125.55 (10)Na9—O7—H1112.0
O8ii—Na9—S4127.54 (10)Na9—O7—H2107.3
O7—Na9—S488.94 (7)H1—O7—H2104.9
O6iii—Na9—S482.46 (6)S4—O8—Na9iv126.59 (19)
O5—Na9—S429.05 (8)S4—O8—Na994.29 (16)
O8—Na9—S429.01 (8)Na9iv—O8—Na9112.33 (10)
O5i—Na9—Na9iv74.00 (8)C2—C1—S3113.2 (3)
O8ii—Na9—Na9iv162.52 (8)C2—C1—H1A108.9
O7—Na9—Na9iv69.91 (11)S3—C1—H1A108.9
O6iii—Na9—Na9iv103.59 (10)C2—C1—H1B108.9
O5—Na9—Na9iv83.28 (8)S3—C1—H1B108.9
O8—Na9—Na9iv32.29 (7)H1A—C1—H1B107.8
S4—Na9—Na9iv55.67 (5)C1—C2—S4112.5 (3)
O5i—Na9—Na9i33.64 (7)C1—C2—H2A109.1
O8ii—Na9—Na9i113.20 (9)S4—C2—H2A109.1
O7—Na9—Na9i123.68 (13)C1—C2—H2B109.1
O6iii—Na9—Na9i58.49 (11)S4—C2—H2B109.1
O5—Na9—Na9i129.85 (9)H2A—C2—H2B107.8
O6—S4—Na9—O5i91.9 (3)O8—Na9—O5—S44.61 (8)
O8—S4—Na9—O5i2.37 (19)Na9iv—Na9—O5—S416.81 (12)
O5—S4—Na9—O5i174.30 (19)Na9i—Na9—O5—S450.69 (17)
C2—S4—Na9—O5i90.6 (3)Na9ii—Na9—O5—S4148.14 (13)
O6—S4—Na9—O8ii92.9 (3)Na9v—Na9—O5—S4137.0 (2)
O8—S4—Na9—O8ii172.8 (2)O5i—Na9—O5—Na9v147.7 (2)
O5—S4—Na9—O8ii0.92 (18)O8ii—Na9—O5—Na9v42.28 (14)
C2—S4—Na9—O8ii84.6 (3)O7—Na9—O5—Na9v50.50 (18)
O6—S4—Na9—O70.3 (3)O6iii—Na9—O5—Na9v135.11 (15)
O8—S4—Na9—O794.6 (2)O8—Na9—O5—Na9v141.6 (2)
O5—S4—Na9—O793.4 (2)S4—Na9—O5—Na9v137.0 (2)
C2—S4—Na9—O7177.2 (2)Na9iv—Na9—O5—Na9v120.17 (13)
O6—S4—Na9—O6iii178.0 (4)Na9i—Na9—O5—Na9v172.34 (6)
O8—S4—Na9—O6iii83.75 (18)Na9ii—Na9—O5—Na9v74.88 (13)
O5—S4—Na9—O6iii88.17 (17)O8—S4—O6—Na9vi67.2 (4)
C2—S4—Na9—O6iii4.5 (3)O5—S4—O6—Na9vi59.3 (4)
O6—S4—Na9—O593.8 (3)C2—S4—O6—Na9vi175.1 (4)
O8—S4—Na9—O5171.92 (14)Na9—S4—O6—Na9vi2.7 (5)
C2—S4—Na9—O583.7 (3)O6—S4—O8—Na9iv1.0 (3)
O6—S4—Na9—O894.3 (3)O5—S4—O8—Na9iv129.03 (19)
O5—S4—Na9—O8171.92 (14)C2—S4—O8—Na9iv116.9 (2)
C2—S4—Na9—O888.2 (3)Na9—S4—O8—Na9iv122.0 (2)
O6—S4—Na9—Na9iv65.9 (3)O6—S4—O8—Na9121.06 (16)
O8—S4—Na9—Na9iv28.43 (14)O5—S4—O8—Na97.01 (12)
O5—S4—Na9—Na9iv159.65 (14)C2—S4—O8—Na9121.08 (15)
C2—S4—Na9—Na9iv116.6 (2)O5i—Na9—O8—S4178.06 (16)
O6—S4—Na9—Na9i125.1 (3)O8ii—Na9—O8—S414.1 (4)
O8—S4—Na9—Na9i30.82 (14)O7—Na9—O8—S485.44 (17)
O5—S4—Na9—Na9i141.11 (14)O6iii—Na9—O8—S491.78 (16)
C2—S4—Na9—Na9i57.4 (2)O5—Na9—O8—S44.62 (8)
O6—S4—Na9—Na9ii127.6 (3)Na9iv—Na9—O8—S4132.6 (2)
O8—S4—Na9—Na9ii138.14 (14)Na9i—Na9—O8—S4150.81 (13)
O5—S4—Na9—Na9ii33.78 (14)Na9ii—Na9—O8—S454.07 (17)
C2—S4—Na9—Na9ii49.9 (2)Na9v—Na9—O8—S414.40 (12)
O6—S4—Na9—Na9v68.3 (3)O5i—Na9—O8—Na9iv45.45 (13)
O8—S4—Na9—Na9v162.63 (14)O8ii—Na9—O8—Na9iv146.7 (2)
O5—S4—Na9—Na9v25.45 (14)O7—Na9—O8—Na9iv47.17 (17)
C2—S4—Na9—Na9v109.2 (2)O6iii—Na9—O8—Na9iv135.61 (15)
O6—S4—O5—Na9v8.3 (3)O5—Na9—O8—Na9iv137.2 (2)
O8—S4—O5—Na9v135.9 (2)S4—Na9—O8—Na9iv132.6 (2)
C2—S4—O5—Na9v108.8 (2)Na9i—Na9—O8—Na9iv76.58 (13)
Na9—S4—O5—Na9v128.7 (2)Na9ii—Na9—O8—Na9iv173.32 (6)
O6—S4—O5—Na9120.40 (17)Na9v—Na9—O8—Na9iv118.21 (13)
O8—S4—O5—Na97.21 (12)S3—C1—C2—S4179.9 (2)
C2—S4—O5—Na9122.50 (16)O6—S4—C2—C160.6 (4)
O5i—Na9—O5—S410.8 (4)O8—S4—C2—C160.6 (4)
O8ii—Na9—O5—S4179.26 (15)O5—S4—C2—C1178.3 (3)
O7—Na9—O5—S486.47 (18)Na9—S4—C2—C1121.5 (3)
O6iii—Na9—O5—S487.92 (15)
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x+1/2, y1/2, z1/2; (iii) x, y1, z; (iv) x+1/2, y+1/2, z+1/2; (v) x+1/2, y+1/2, z1/2; (vi) x, y+1, z.

Experimental details

Crystal data
Chemical formulaNa+·C2H5O3S2·H2O
Mr182.19
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)223
a, b, c (Å)23.4301 (8), 5.0324 (2), 6.1254 (2)
V3)722.24 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.74
Crystal size (mm)0.26 × 0.20 × 0.01
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
1647, 1534, 1263
Rint0.065
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.131, 0.95
No. of reflections1534
No. of parameters88
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.37
Absolute structureFlack (1983), 627 Friedel pairs
Absolute structure parameter0.13 (18)

Computer programs: KappaCCD Server Software (Nonius, 1997), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), PLATON (Spek 2003), maXus (Mackay et al., 1999).

Selected bond lengths (Å) top
Na9—O5i2.312 (4)Na9—O6iii2.416 (2)
Na9—O8ii2.322 (4)Na9—O52.456 (3)
Na9—O72.404 (3)Na9—O82.517 (3)
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x+1/2, y1/2, z1/2; (iii) x, y1, z.
 

References

First citationAllen, J. R., Clark, D. D., Krum, J. G. & Ensign, S. A. (1999). Proc. Natl Acad. Sci. USA, 96, 8432–8437.  Web of Science CrossRef PubMed CAS Google Scholar
First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBambagiotti-Alberti, M., Bruni, B., Di Vaira, M. & Giannellini, V. (2007). Acta Cryst. E63, o1796.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruchhausen, F. V., Dannhardt, G. & Ebelet, S. (1993). Editors. Hagers Handbuch der Pharmazeutischen Praxis, Vol. 8, p. 890. Berlin, Heidelberg, New York, London, Paris, Tokyo, Hong Kong, Barcelona, Budapest: Springer.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGraham, D. E., Xu, H. & White, R. H. (2002). J. Biol. Chem. 277, 13421–13429.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGünther, D. & Hattendorf, B. (2005). TrAC Trends Anal. Chem. 24, 255–265.  Google Scholar
First citationLatkoczy, C. & Günther, D. (2002). J. Anal. At. Spectrom. 17, 1264–1270.  Web of Science CrossRef CAS Google Scholar
First citationMackay, S., Gilmore, C. J., Edwards, C., Stewart, N. & Shankland, K. (1999). maXus. Nonius BV, Delft, The Netherlands, MacScience Co. Ltd, Japan, and University of Glasgow, Scotland.  Google Scholar
First citationNonius (1997). KappaCCD Server Software. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSchramm, C. H., Lemaire, H. & Karlson, R. H. (1955). J. Am. Chem. Soc. 77, 6231–6233.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationThauer, R. K. (1998). Microbiology, 144, 2377–2406.  CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 11| November 2008| Pages m1476-m1477
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds