organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Amino-5-(1H-tetra­zol-5-yl)pyridinium chloride

aOrdered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: fudavid88@yahoo.com.cn

(Received 11 September 2008; accepted 26 September 2008; online 31 October 2008)

In the title salt, C6H7N6+·Cl, there are two organic cations with similar conformations and two chloride anions in the asymmetric unit. The pyridine and tetra­zole rings are essentially coplanar in each cation, with dihedral angles of 4.94 (15) and 5.41 (14)°. The pyridine N atoms are protonated. The crystal packing is stabilized by N—H⋯N and N—H⋯Cl hydrogen bonds, forming an infinite sheets parallel to the (101).

Related literature

For uses of tetra­zole derivatives, see: Dai & Fu (2008[Dai, W. & Fu, D.-W. (2008). Acta Cryst. E64, o1444.]); Wang et al. (2005[Wang, X.-S., Tang, Y.-Z., Huang, X.-F., Qu, Z.-R., Che, C.-M., Chan, P. W. H. & Xiong, R.-G. (2005). Inorg. Chem. 44, 5278-5285.]); Wen (2008[Wen, X.-C. (2008). Acta Cryst. E64, m1033.]); Xiong et al. (2002[Xiong, R.-G., Xue, X., Zhao, H., You, X.-Z., Abrahams, B. F. & Xue, Z. (2002). Angew. Chem. Int. Ed. 41, 3800-3803.]).

[Scheme 1]

Experimental

Crystal data
  • C6H7N6+·Cl

  • Mr = 198.63

  • Monoclinic, P 21 /c

  • a = 14.043 (3) Å

  • b = 13.238 (3) Å

  • c = 9.5766 (19) Å

  • β = 109.35 (3)°

  • V = 1679.7 (6) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.41 mm−1

  • T = 298 (2) K

  • 0.45 × 0.25 × 0.20 mm

Data collection
  • Rigaku Mercury2 diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.859, Tmax = 0.920

  • 16820 measured reflections

  • 3855 independent reflections

  • 3123 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.125

  • S = 1.11

  • 3855 reflections

  • 235 parameters

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯N5i 0.86 2.59 3.317 (2) 143
N1—H1⋯N6i 0.86 2.04 2.894 (2) 171
N2—H2A⋯N5i 0.86 2.15 2.972 (3) 160
N7—H7⋯N11ii 0.86 2.57 3.304 (2) 144
N7—H7⋯N12ii 0.86 2.06 2.913 (2) 169
N8—H8A⋯N11ii 0.86 2.20 3.024 (3) 160
N2—H2B⋯Cl1iii 0.86 2.36 3.2187 (18) 177
N3—H3A⋯Cl2i 0.86 2.17 3.0047 (19) 165
N8—H8B⋯Cl2iv 0.86 2.39 3.2432 (18) 172
N9—H9A⋯Cl1v 0.86 2.18 3.0031 (18) 160
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+2, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iv) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (v) [-x+2, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Tetrazole derivatives have found a wide range of applications in coordination chemistry because of their multiple coordination modes as ligands to metal ions, and for the construction of novel metal-organic frameworks (Wang et al., 2005; Xiong et al., 2002; Wen, 2008; Dai & Fu, 2008). We report here the crystal structure of the title salt (Fig. 1).

The title compound contains two organic cations with similar conformation and two Cl- ions in the asymmetric unit. The pyridine N atoms are protonated. The pyridine rings and tetrazole rings are nearly coplanar and are twisted from each other by a dihedral angle of only 4.94 (15) and 5.41 (14)°. The packing of ions is stabilized by N—H···N and N—H···Cl hydrogen bonds, to form an infinite two-dimensional layers parallel to the (1 0 1) plane in the crystal (Table 1 and Fig. 2).

Related literature top

For uses of tetrazole derivatives, see: Dai & Fu (2008); Wang et al. (2005); Wen (2008); Xiong et al. (2002).

Experimental top

2-Amino-5-cyanopyridine (30 mmol), NaN 3 (45 mmol), NH4Cl (33 mmol) and DMF (50 ml) were mixed in a flask under nitrogen atmosphere, and the mixture stirred at 383 K for 20 h. The resulting solution was then poured into ice-water (100 ml), and a white solid was obtained after adding hydrochloric acid (6 M) until pH=6. The precipitate was filtered and washed with distilled water. Colourless block-shaped crystals suitable for X-ray analysis were obtained from the crude product by slow evaporation of an ethanol/hydrochloric acid (50:1 v/v) solution.

Refinement top

All H atoms were fixed geometrically and treated as riding to their carrier atoms, with C—H = 0.93 Å (aromatic) and N—H = 0.86 Å, and with Uiso(H) = 1.2Ueq(carrier atom).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the title compound with the atomic numbering scheme. Displacement ellipsoids were drawn at the 30% probability level.
[Figure 2] Fig. 2. The crystal packing of the title compound viewed along the c axis, showing the two-dimensional hydrogen bonds network. H atoms not involved in hydrogen bonding (dashed lines) have been omitted for clarity.
2-Amino-5-(1H-tetrazol-5-yl)pyridinium chloride top
Crystal data top
C6H7N6+·ClF(000) = 816
Mr = 198.63Dx = 1.571 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3690 reflections
a = 14.043 (3) Åθ = 2.3–27.5°
b = 13.238 (3) ŵ = 0.41 mm1
c = 9.5766 (19) ÅT = 298 K
β = 109.35 (3)°Block, colorless
V = 1679.7 (6) Å30.45 × 0.25 × 0.20 mm
Z = 8
Data collection top
Rigaku Mercury2
diffractometer
3855 independent reflections
Radiation source: fine-focus sealed tube3123 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 2.7°
ω scansh = 1818
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 1717
Tmin = 0.859, Tmax = 0.920l = 1212
16820 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.125H-atom parameters constrained
S = 1.12 w = 1/[σ2(Fo2) + (0.0556P)2 + 0.4684P]
where P = (Fo2 + 2Fc2)/3
3855 reflections(Δ/σ)max < 0.001
235 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C6H7N6+·ClV = 1679.7 (6) Å3
Mr = 198.63Z = 8
Monoclinic, P21/cMo Kα radiation
a = 14.043 (3) ŵ = 0.41 mm1
b = 13.238 (3) ÅT = 298 K
c = 9.5766 (19) Å0.45 × 0.25 × 0.20 mm
β = 109.35 (3)°
Data collection top
Rigaku Mercury2
diffractometer
3855 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
3123 reflections with I > 2σ(I)
Tmin = 0.859, Tmax = 0.920Rint = 0.034
16820 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.125H-atom parameters constrained
S = 1.12Δρmax = 0.28 e Å3
3855 reflectionsΔρmin = 0.23 e Å3
235 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.56207 (12)0.65987 (12)0.17350 (18)0.0344 (4)
H10.56390.72450.16620.041*
N30.36346 (13)0.52444 (13)0.37792 (19)0.0368 (4)
H3A0.36000.58920.38180.044*
C10.62505 (14)0.60404 (14)0.1236 (2)0.0313 (4)
N20.68458 (13)0.64965 (13)0.0611 (2)0.0413 (4)
H2A0.68310.71430.05230.050*
H2B0.72470.61460.02920.050*
N60.40734 (13)0.37577 (12)0.33322 (19)0.0382 (4)
N40.31050 (14)0.45963 (13)0.4305 (2)0.0428 (4)
C60.42266 (14)0.47298 (14)0.3184 (2)0.0310 (4)
N50.33724 (14)0.37053 (13)0.4030 (2)0.0430 (4)
C40.49237 (14)0.51714 (13)0.2516 (2)0.0304 (4)
C20.62316 (14)0.49827 (14)0.1406 (2)0.0333 (4)
H20.66570.45740.10860.040*
C30.55896 (15)0.45611 (14)0.2039 (2)0.0336 (4)
H30.55870.38640.21600.040*
C50.49636 (15)0.61909 (14)0.2344 (2)0.0337 (4)
H50.45370.66100.26460.040*
N70.92034 (13)0.39582 (12)0.30105 (18)0.0364 (4)
H70.91310.46040.29980.044*
N91.13591 (12)0.26242 (13)0.12521 (19)0.0367 (4)
H9A1.14090.32720.12460.044*
N80.80738 (13)0.38416 (13)0.4302 (2)0.0422 (4)
H8A0.80430.44900.43190.051*
H8B0.77260.34850.47080.051*
C70.86565 (14)0.33931 (15)0.3650 (2)0.0329 (4)
N101.19013 (14)0.19768 (13)0.0747 (2)0.0425 (4)
N121.08698 (13)0.11357 (12)0.15986 (19)0.0374 (4)
C121.07262 (14)0.21051 (14)0.1769 (2)0.0311 (4)
N111.16049 (14)0.10833 (13)0.0959 (2)0.0429 (4)
C101.00037 (14)0.25408 (14)0.2397 (2)0.0304 (4)
C90.94263 (15)0.19202 (14)0.3023 (2)0.0339 (4)
H90.95040.12220.30250.041*
C110.98593 (16)0.35597 (14)0.2389 (2)0.0363 (4)
H111.02110.39830.19570.044*
C80.87624 (15)0.23312 (15)0.3618 (2)0.0337 (4)
H80.83780.19150.40040.040*
Cl10.84188 (4)0.97883 (4)0.45292 (7)0.04632 (17)
Cl20.65611 (4)0.24380 (4)0.05567 (6)0.04478 (17)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0407 (9)0.0214 (8)0.0500 (10)0.0034 (7)0.0270 (8)0.0030 (7)
N30.0440 (10)0.0261 (8)0.0491 (10)0.0020 (7)0.0273 (8)0.0008 (7)
C10.0332 (10)0.0274 (9)0.0362 (10)0.0024 (7)0.0157 (8)0.0009 (7)
N20.0483 (11)0.0305 (9)0.0589 (11)0.0027 (7)0.0363 (9)0.0028 (8)
N60.0456 (10)0.0267 (8)0.0507 (10)0.0021 (7)0.0270 (8)0.0009 (7)
N40.0518 (11)0.0327 (9)0.0561 (11)0.0061 (8)0.0343 (9)0.0012 (8)
C60.0334 (10)0.0265 (9)0.0358 (10)0.0001 (7)0.0152 (8)0.0004 (7)
N50.0529 (11)0.0299 (9)0.0581 (11)0.0034 (8)0.0346 (9)0.0008 (8)
C40.0313 (9)0.0259 (9)0.0368 (10)0.0001 (7)0.0149 (8)0.0011 (7)
C20.0341 (10)0.0284 (9)0.0419 (11)0.0044 (8)0.0186 (8)0.0002 (8)
C30.0368 (10)0.0238 (9)0.0422 (11)0.0017 (7)0.0158 (8)0.0001 (8)
C50.0358 (10)0.0281 (9)0.0437 (11)0.0035 (8)0.0218 (8)0.0018 (8)
N70.0468 (10)0.0227 (8)0.0486 (10)0.0051 (7)0.0279 (8)0.0046 (7)
N90.0410 (10)0.0264 (8)0.0510 (10)0.0036 (7)0.0265 (8)0.0027 (7)
N80.0473 (11)0.0334 (9)0.0586 (11)0.0043 (8)0.0345 (9)0.0034 (8)
C70.0328 (10)0.0327 (10)0.0353 (10)0.0024 (8)0.0143 (8)0.0018 (8)
N100.0473 (11)0.0343 (9)0.0569 (11)0.0066 (8)0.0320 (9)0.0036 (8)
N120.0431 (10)0.0293 (8)0.0477 (10)0.0038 (7)0.0256 (8)0.0015 (7)
C120.0348 (10)0.0266 (9)0.0339 (9)0.0021 (7)0.0142 (8)0.0033 (7)
N110.0489 (11)0.0344 (10)0.0560 (11)0.0059 (8)0.0316 (9)0.0010 (8)
C100.0328 (10)0.0282 (9)0.0325 (9)0.0027 (7)0.0139 (8)0.0015 (7)
C90.0375 (10)0.0236 (9)0.0431 (11)0.0009 (7)0.0168 (9)0.0031 (8)
C110.0427 (11)0.0296 (10)0.0446 (11)0.0017 (8)0.0253 (9)0.0037 (8)
C80.0344 (10)0.0298 (10)0.0409 (10)0.0010 (8)0.0178 (8)0.0040 (8)
Cl10.0567 (3)0.0300 (3)0.0626 (4)0.0067 (2)0.0336 (3)0.0052 (2)
Cl20.0502 (3)0.0282 (3)0.0624 (4)0.0046 (2)0.0273 (3)0.0040 (2)
Geometric parameters (Å, º) top
N1—C11.355 (2)N7—C71.355 (2)
N1—C51.356 (2)N7—C111.358 (2)
N1—H10.8600N7—H70.8600
N3—N41.338 (2)N9—N101.339 (2)
N3—C61.340 (2)N9—C121.341 (2)
N3—H3A0.8600N9—H9A0.8600
C1—N21.325 (2)N8—C71.323 (2)
C1—C21.411 (3)N8—H8A0.8600
N2—H2A0.8600N8—H8B0.8600
N2—H2B0.8600C7—C81.415 (3)
N6—C61.320 (2)N10—N111.292 (2)
N6—N51.362 (2)N12—C121.318 (2)
N4—N51.291 (2)N12—N111.365 (2)
C6—C41.457 (2)C12—C101.459 (2)
C4—C51.363 (3)C10—C111.364 (3)
C4—C31.421 (3)C10—C91.419 (3)
C2—C31.361 (3)C9—C81.357 (3)
C2—H20.9300C9—H90.9300
C3—H30.9300C11—H110.9300
C5—H50.9300C8—H80.9300
C1—N1—C5123.42 (16)C7—N7—C11123.49 (17)
C1—N1—H1118.3C7—N7—H7118.3
C5—N1—H1118.3C11—N7—H7118.3
N4—N3—C6109.55 (16)N10—N9—C12109.34 (16)
N4—N3—H3A125.2N10—N9—H9A125.3
C6—N3—H3A125.2C12—N9—H9A125.3
N2—C1—N1119.62 (17)C7—N8—H8A120.0
N2—C1—C2122.91 (17)C7—N8—H8B120.0
N1—C1—C2117.47 (16)H8A—N8—H8B120.0
C1—N2—H2A120.0N8—C7—N7119.82 (18)
C1—N2—H2B120.0N8—C7—C8122.80 (18)
H2A—N2—H2B120.0N7—C7—C8117.36 (17)
C6—N6—N5105.81 (16)N11—N10—N9106.13 (15)
N5—N4—N3105.89 (15)C12—N12—N11105.95 (16)
N6—C6—N3107.67 (16)N12—C12—N9107.80 (16)
N6—C6—C4126.56 (17)N12—C12—C10126.32 (17)
N3—C6—C4125.76 (17)N9—C12—C10125.87 (17)
N4—N5—N6111.08 (16)N10—N11—N12110.78 (16)
C5—C4—C3117.77 (17)C11—C10—C9118.05 (17)
C5—C4—C6120.74 (17)C11—C10—C12120.76 (17)
C3—C4—C6121.49 (16)C9—C10—C12121.19 (17)
C3—C2—C1119.91 (17)C8—C9—C10120.89 (17)
C3—C2—H2120.0C8—C9—H9119.6
C1—C2—H2120.0C10—C9—H9119.6
C2—C3—C4120.90 (17)N7—C11—C10120.20 (17)
C2—C3—H3119.5N7—C11—H11119.9
C4—C3—H3119.5C10—C11—H11119.9
N1—C5—C4120.49 (17)C9—C8—C7119.93 (17)
N1—C5—H5119.8C9—C8—H8120.0
C4—C5—H5119.8C7—C8—H8120.0
C5—N1—C1—N2177.74 (19)C11—N7—C7—N8176.37 (19)
C5—N1—C1—C21.8 (3)C11—N7—C7—C81.9 (3)
C6—N3—N4—N50.0 (2)C12—N9—N10—N110.2 (2)
N5—N6—C6—N30.1 (2)N11—N12—C12—N90.2 (2)
N5—N6—C6—C4179.20 (18)N11—N12—C12—C10179.35 (18)
N4—N3—C6—N60.0 (2)N10—N9—C12—N120.3 (2)
N4—N3—C6—C4179.15 (19)N10—N9—C12—C10179.30 (18)
N3—N4—N5—N60.1 (2)N9—N10—N11—N120.1 (2)
C6—N6—N5—N40.1 (2)C12—N12—N11—N100.1 (2)
N6—C6—C4—C5175.7 (2)N12—C12—C10—C11173.8 (2)
N3—C6—C4—C55.4 (3)N9—C12—C10—C115.6 (3)
N6—C6—C4—C34.9 (3)N12—C12—C10—C95.7 (3)
N3—C6—C4—C3173.99 (19)N9—C12—C10—C9174.82 (19)
N2—C1—C2—C3178.97 (19)C11—C10—C9—C81.1 (3)
N1—C1—C2—C30.6 (3)C12—C10—C9—C8179.35 (18)
C1—C2—C3—C40.9 (3)C7—N7—C11—C100.6 (3)
C5—C4—C3—C21.2 (3)C9—C10—C11—N72.1 (3)
C6—C4—C3—C2179.48 (19)C12—C10—C11—N7178.31 (18)
C1—N1—C5—C41.6 (3)C10—C9—C8—C71.4 (3)
C3—C4—C5—N10.0 (3)N8—C7—C8—C9175.3 (2)
C6—C4—C5—N1179.36 (18)N7—C7—C8—C92.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···N5i0.862.593.317 (2)143
N1—H1···N6i0.862.042.894 (2)171
N2—H2A···N5i0.862.152.972 (3)160
N7—H7···N11ii0.862.573.304 (2)144
N7—H7···N12ii0.862.062.913 (2)169
N8—H8A···N11ii0.862.203.024 (3)160
N2—H2B···Cl1iii0.862.363.2187 (18)177
N3—H3A···Cl2i0.862.173.0047 (19)165
N8—H8B···Cl2iv0.862.393.2432 (18)172
N9—H9A···Cl1v0.862.183.0031 (18)160
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+2, y+1/2, z+1/2; (iii) x, y+3/2, z1/2; (iv) x, y+1/2, z+1/2; (v) x+2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC6H7N6+·Cl
Mr198.63
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)14.043 (3), 13.238 (3), 9.5766 (19)
β (°) 109.35 (3)
V3)1679.7 (6)
Z8
Radiation typeMo Kα
µ (mm1)0.41
Crystal size (mm)0.45 × 0.25 × 0.20
Data collection
DiffractometerRigaku Mercury2
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.859, 0.920
No. of measured, independent and
observed [I > 2σ(I)] reflections
16820, 3855, 3123
Rint0.034
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.125, 1.12
No. of reflections3855
No. of parameters235
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.28, 0.23

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···N5i0.862.593.317 (2)142.8
N1—H1···N6i0.862.042.894 (2)170.7
N2—H2A···N5i0.862.152.972 (3)159.8
N7—H7···N11ii0.862.573.304 (2)144.4
N7—H7···N12ii0.862.062.913 (2)168.7
N8—H8A···N11ii0.862.203.024 (3)159.8
N2—H2B···Cl1iii0.862.363.2187 (18)177.0
N3—H3A···Cl2i0.862.173.0047 (19)165.1
N8—H8B···Cl2iv0.862.393.2432 (18)172.1
N9—H9A···Cl1v0.862.183.0031 (18)159.7
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+2, y+1/2, z+1/2; (iii) x, y+3/2, z1/2; (iv) x, y+1/2, z+1/2; (v) x+2, y1/2, z+1/2.
 

Acknowledgements

This work was supported by a start-up grant from Southeast University to Professor Ren-Gen Xiong.

References

First citationDai, W. & Fu, D.-W. (2008). Acta Cryst. E64, o1444.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, X.-S., Tang, Y.-Z., Huang, X.-F., Qu, Z.-R., Che, C.-M., Chan, P. W. H. & Xiong, R.-G. (2005). Inorg. Chem. 44, 5278–5285.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationWen, X.-C. (2008). Acta Cryst. E64, m1033.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationXiong, R.-G., Xue, X., Zhao, H., You, X.-Z., Abrahams, B. F. & Xue, Z. (2002). Angew. Chem. Int. Ed. 41, 3800–3803.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds