organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(Anthracen-9-yl)(piperidin-1-yl)­methanone

aDepartment of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, People's Republic of China, and bSchool of Chemistry and Chemical Engineering, Key Laboratory of Analytical Chemistry for Life Science, Ministry of Education, Nanjing University, Nanjing 210093, People's Republic of China
*Correspondence e-mail: huayouhu@seu.edu.cn

(Received 5 September 2008; accepted 13 October 2008; online 15 October 2008)

The title compound, C20H19NO, is a substructure of CP-640186, a potent inhibitor of mammalian acetyl-coenzyme A carboxyl­ases. In the crystal structure, the amide group forms a dihedral angle of 87.0 (1)° with the plane of the anthracene unit and the piperidine ring adopts a chair conformation. Mol­ecules are arranged into layers parallel to (100) and adjacent anthracene units within layers form dihedral angles of 13.2 (1)°. C—H⋯O inter­actions from the piperidine rings to the C=O group of the amide are observed between layers.

Related literature

For further information regarding CP-640186, see: Harwood et al. (2003[Harwood, H. J., Petras, S. F., Shelly, L. D., Zaccaro, L. M., Perry, D. A., Makowski, M. R., Hargrove, D. M., Martin, K. A., Tracey, W. R., Chapman, J. G., Magee, W. P., Dalvie, D. K., Soliman, V. F., Martin, W. H., Mularski, C. J. & Eisenbeis, S. A. (2003). J. Biol. Chem. 278, 37099-37111.]); Zhang et al. (2004[Zhang, H.-L., Tweel, B., Li, J. & Tong, L. (2004). Structure, 12, 1683-1691.]).

[Scheme 1]

Experimental

Crystal data
  • C20H19NO

  • Mr = 289.36

  • Monoclinic, C 2/c

  • a = 26.393 (5) Å

  • b = 7.3950 (15) Å

  • c = 18.213 (4) Å

  • β = 120.29 (3)°

  • V = 3069.5 (14) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 (2) K

  • 0.30 × 0.10 × 0.10 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.977, Tmax = 0.992

  • 2828 measured reflections

  • 2762 independent reflections

  • 1678 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.081

  • wR(F2) = 0.278

  • S = 1.09

  • 2762 reflections

  • 199 parameters

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C17—H17B⋯O1i 0.97 2.41 3.342 (5) 162
C20—H20A⋯O1ii 0.97 2.71 3.557 (5) 146
Symmetry codes: (i) x, y+1, z; (ii) -x+1, -y, -z+1.

Data collection: SMART (Bruker, 2000[Bruker (2000). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Inhibition of acetyl-CoA carboxylase (ACC), with its resultant inhibition of fatty acid synthesis and stimulation of fatty acid oxidation, has the potential to affect favourably the multitude of cardiovascular risk factors associated with the metabolic syndrome. Recent findings reported by Pfizer researchers show that the isozyme-nonselective ACC inhibitor CP-640186 inhibits both the lipogenic tissue isozyme (ACC1) and the oxidative tissue isozyme (ACC2) (Harwood et al., 2003). The title compound is a sub-structure of CP-640186 (see Zhang et al., 2004).

Related literature top

For further information regarding CP-640186, see: Harwood et al. (2003); Zhang et al. (2004).

Experimental top

A mixture of 9-carbonyl anthracene (1 mmol) and piperidine (1.2 mmol) with 1.5 mmol DCC (DCC = N,N'-dicyclohexyl-carbodiimide) was stirred in 5 ml CH2Cl2 at room temperature for 1 h to yield the title compound. Crystals were obtained from acetone/petroleum ether.

Refinement top

H atoms were positioned geometrically and refined using a riding model with C—H = 0.93–0.97 Å and with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids shown at 30% probability for non-H atoms.
(Anthracen-9-yl)(piperidin-1-yl)methanone top
Crystal data top
C20H19NOF(000) = 1232
Mr = 289.36Dx = 1.252 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 781 reflections
a = 26.393 (5) Åθ = 2.4–28.0°
b = 7.3950 (15) ŵ = 0.08 mm1
c = 18.213 (4) ÅT = 293 K
β = 120.29 (3)°Block, yellow
V = 3069.5 (14) Å30.30 × 0.10 × 0.10 mm
Z = 8
Data collection top
Bruker SMART APEX CCD
diffractometer
2762 independent reflections
Radiation source: fine-focus sealed tube1678 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
ϕ and ω scansθmax = 25.2°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 3127
Tmin = 0.977, Tmax = 0.992k = 08
2828 measured reflectionsl = 021
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.081Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.278H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.1523P)2 + 2.2222P]
where P = (Fo2 + 2Fc2)/3
2762 reflections(Δ/σ)max < 0.001
199 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
C20H19NOV = 3069.5 (14) Å3
Mr = 289.36Z = 8
Monoclinic, C2/cMo Kα radiation
a = 26.393 (5) ŵ = 0.08 mm1
b = 7.3950 (15) ÅT = 293 K
c = 18.213 (4) Å0.30 × 0.10 × 0.10 mm
β = 120.29 (3)°
Data collection top
Bruker SMART APEX CCD
diffractometer
2762 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
1678 reflections with I > 2σ(I)
Tmin = 0.977, Tmax = 0.992Rint = 0.025
2828 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0810 restraints
wR(F2) = 0.278H-atom parameters constrained
S = 1.09Δρmax = 0.32 e Å3
2762 reflectionsΔρmin = 0.29 e Å3
199 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.83354 (17)0.1537 (5)0.6866 (3)0.0733 (11)
H1A0.87090.15890.69360.088*
C20.78453 (17)0.1309 (5)0.6048 (3)0.0680 (10)
H2A0.78960.12540.55790.082*
C30.72989 (15)0.1169 (5)0.5938 (2)0.0577 (9)
H3A0.69800.09930.53940.069*
C40.72079 (13)0.1286 (4)0.66384 (19)0.0472 (8)
C50.77079 (14)0.1544 (4)0.7464 (2)0.0504 (8)
C60.82684 (15)0.1679 (5)0.7541 (2)0.0611 (9)
H6A0.85960.18710.80740.073*
C70.66500 (13)0.1159 (4)0.65502 (19)0.0480 (8)
C80.65705 (14)0.1315 (4)0.7257 (2)0.0478 (8)
C90.70746 (15)0.1503 (4)0.8081 (2)0.0534 (8)
C100.76293 (14)0.1644 (4)0.8162 (2)0.0538 (9)
H10A0.79560.18090.86990.065*
C110.60162 (16)0.1229 (5)0.7191 (3)0.0626 (10)
H11A0.56820.10980.66580.075*
C120.59630 (19)0.1335 (5)0.7889 (3)0.0751 (12)
H12A0.55910.13080.78260.090*
C130.6455 (2)0.1485 (5)0.8706 (3)0.0718 (11)
H13A0.64090.15350.91800.086*
C140.69916 (19)0.1556 (5)0.8799 (2)0.0677 (10)
H14A0.73170.16420.93430.081*
C150.61267 (14)0.0678 (5)0.5689 (2)0.0524 (8)
C160.59033 (17)0.3956 (5)0.5392 (2)0.0693 (11)
H16A0.62710.41080.59220.083*
H16B0.55930.44630.54650.083*
C170.5933 (2)0.4948 (6)0.4705 (3)0.0870 (13)
H17A0.62740.45490.46800.104*
H17B0.59750.62320.48310.104*
C180.5372 (2)0.4617 (6)0.3833 (3)0.0848 (13)
H18A0.50360.51640.38280.102*
H18B0.54160.51660.33840.102*
C190.52736 (19)0.2577 (7)0.3679 (2)0.0861 (13)
H19A0.49050.23720.31560.103*
H19B0.55850.20720.36070.103*
C200.52607 (17)0.1630 (6)0.4382 (2)0.0798 (12)
H20A0.49170.20080.44060.096*
H20B0.52330.03370.42810.096*
N10.57930 (13)0.2033 (4)0.51987 (17)0.0652 (9)
O10.60244 (11)0.0901 (3)0.54889 (16)0.0754 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.058 (2)0.078 (3)0.090 (3)0.0004 (18)0.042 (2)0.008 (2)
C20.076 (3)0.071 (2)0.071 (2)0.0052 (19)0.048 (2)0.0061 (19)
C30.059 (2)0.063 (2)0.0532 (19)0.0000 (16)0.0293 (17)0.0003 (15)
C40.0487 (18)0.0408 (16)0.0483 (18)0.0024 (13)0.0216 (15)0.0022 (13)
C50.0448 (17)0.0440 (17)0.0513 (18)0.0004 (13)0.0160 (15)0.0049 (14)
C60.0438 (19)0.060 (2)0.068 (2)0.0006 (15)0.0189 (17)0.0010 (17)
C70.0475 (18)0.0449 (18)0.0438 (17)0.0006 (13)0.0173 (14)0.0000 (13)
C80.0527 (19)0.0420 (17)0.0519 (18)0.0014 (13)0.0286 (16)0.0008 (13)
C90.059 (2)0.0469 (18)0.0481 (18)0.0035 (15)0.0229 (16)0.0049 (14)
C100.0507 (19)0.0506 (19)0.0459 (18)0.0015 (14)0.0139 (15)0.0006 (14)
C110.059 (2)0.062 (2)0.071 (2)0.0058 (16)0.0350 (19)0.0031 (17)
C120.078 (3)0.077 (3)0.093 (3)0.001 (2)0.060 (3)0.002 (2)
C130.099 (3)0.070 (2)0.068 (2)0.011 (2)0.058 (2)0.0023 (19)
C140.084 (3)0.068 (2)0.054 (2)0.0005 (19)0.036 (2)0.0040 (17)
C150.0497 (18)0.057 (2)0.0485 (18)0.0007 (15)0.0238 (15)0.0044 (16)
C160.070 (2)0.066 (2)0.057 (2)0.0051 (18)0.0207 (19)0.0063 (18)
C170.112 (4)0.063 (3)0.085 (3)0.003 (2)0.049 (3)0.003 (2)
C180.110 (3)0.076 (3)0.064 (2)0.013 (2)0.040 (2)0.016 (2)
C190.086 (3)0.103 (4)0.050 (2)0.007 (2)0.020 (2)0.003 (2)
C200.060 (2)0.092 (3)0.058 (2)0.012 (2)0.0075 (19)0.003 (2)
N10.0575 (18)0.0608 (19)0.0531 (17)0.0090 (14)0.0100 (14)0.0008 (14)
O10.0812 (19)0.0499 (15)0.0646 (16)0.0093 (12)0.0144 (14)0.0150 (12)
Geometric parameters (Å, º) top
C1—C61.333 (5)C12—H12A0.930
C1—C21.406 (5)C13—C141.339 (6)
C1—H1A0.930C13—H13A0.930
C2—C31.356 (5)C14—H14A0.930
C2—H2A0.930C15—O11.213 (4)
C3—C41.415 (4)C15—N11.336 (4)
C3—H3A0.930C16—N11.458 (5)
C4—C71.401 (4)C16—C171.486 (6)
C4—C51.427 (4)C16—H16A0.970
C5—C101.389 (5)C16—H16B0.970
C5—C61.417 (5)C17—C181.549 (6)
C6—H6A0.930C17—H17A0.970
C7—C81.409 (4)C17—H17B0.970
C7—C151.519 (4)C18—C191.532 (6)
C8—C111.407 (5)C18—H18A0.970
C8—C91.424 (5)C18—H18B0.970
C9—C101.399 (5)C19—C201.476 (6)
C9—C141.433 (5)C19—H19A0.970
C10—H10A0.930C19—H19B0.970
C11—C121.351 (5)C20—N11.472 (4)
C11—H11A0.930C20—H20A0.970
C12—C131.401 (6)C20—H20B0.970
C6—C1—C2120.5 (3)C13—C14—C9121.5 (4)
C6—C1—H1A119.7C13—C14—H14A119.3
C2—C1—H1A119.7C9—C14—H14A119.3
C3—C2—C1120.5 (4)O1—C15—N1123.3 (3)
C3—C2—H2A119.8O1—C15—C7119.0 (3)
C1—C2—H2A119.8N1—C15—C7117.7 (3)
C2—C3—C4120.9 (3)N1—C16—C17111.5 (3)
C2—C3—H3A119.5N1—C16—H16A109.3
C4—C3—H3A119.5C17—C16—H16A109.3
C7—C4—C3122.6 (3)N1—C16—H16B109.3
C7—C4—C5119.3 (3)C17—C16—H16B109.3
C3—C4—C5118.1 (3)H16A—C16—H16B108.0
C10—C5—C6122.4 (3)C16—C17—C18110.9 (4)
C10—C5—C4119.0 (3)C16—C17—H17A109.5
C6—C5—C4118.6 (3)C18—C17—H17A109.5
C1—C6—C5121.4 (3)C16—C17—H17B109.5
C1—C6—H6A119.3C18—C17—H17B109.5
C5—C6—H6A119.3H17A—C17—H17B108.0
C4—C7—C8121.4 (3)C19—C18—C17109.2 (3)
C4—C7—C15119.3 (3)C19—C18—H18A109.8
C8—C7—C15119.0 (3)C17—C18—H18A109.8
C11—C8—C7123.0 (3)C19—C18—H18B109.8
C11—C8—C9118.2 (3)C17—C18—H18B109.8
C7—C8—C9118.7 (3)H18A—C18—H18B108.3
C10—C9—C8119.4 (3)C20—C19—C18112.6 (4)
C10—C9—C14122.4 (3)C20—C19—H19A109.1
C8—C9—C14118.2 (3)C18—C19—H19A109.1
C5—C10—C9122.0 (3)C20—C19—H19B109.1
C5—C10—H10A119.0C18—C19—H19B109.1
C9—C10—H10A119.0H19A—C19—H19B107.8
C12—C11—C8120.9 (4)N1—C20—C19110.7 (3)
C12—C11—H11A119.5N1—C20—H20A109.5
C8—C11—H11A119.5C19—C20—H20A109.5
C11—C12—C13121.6 (4)N1—C20—H20B109.5
C11—C12—H12A119.2C19—C20—H20B109.5
C13—C12—H12A119.2H20A—C20—H20B108.1
C14—C13—C12119.5 (4)C15—N1—C16125.9 (3)
C14—C13—H13A120.3C15—N1—C20119.7 (3)
C12—C13—H13A120.3C16—N1—C20114.4 (3)
C6—C1—C2—C32.2 (6)C8—C9—C10—C52.3 (5)
C1—C2—C3—C41.3 (5)C14—C9—C10—C5178.3 (3)
C2—C3—C4—C7179.6 (3)C7—C8—C11—C12178.1 (3)
C2—C3—C4—C50.4 (5)C9—C8—C11—C120.5 (5)
C7—C4—C5—C100.7 (4)C8—C11—C12—C131.7 (6)
C3—C4—C5—C10179.3 (3)C11—C12—C13—C141.1 (6)
C7—C4—C5—C6179.7 (3)C12—C13—C14—C90.7 (6)
C3—C4—C5—C60.3 (4)C10—C9—C14—C13177.5 (3)
C2—C1—C6—C52.2 (6)C8—C9—C14—C131.9 (5)
C10—C5—C6—C1178.4 (3)C4—C7—C15—O184.2 (4)
C4—C5—C6—C11.2 (5)C8—C7—C15—O190.4 (4)
C3—C4—C7—C8178.8 (3)C4—C7—C15—N197.4 (4)
C5—C4—C7—C81.2 (4)C8—C7—C15—N188.0 (4)
C3—C4—C7—C156.7 (5)N1—C16—C17—C1854.6 (5)
C5—C4—C7—C15173.3 (3)C16—C17—C18—C1953.5 (5)
C4—C7—C8—C11178.8 (3)C17—C18—C19—C2053.9 (5)
C15—C7—C8—C116.7 (5)C18—C19—C20—N154.1 (5)
C4—C7—C8—C93.6 (4)O1—C15—N1—C16177.9 (4)
C15—C7—C8—C9170.9 (3)C7—C15—N1—C163.7 (5)
C11—C8—C9—C10178.2 (3)O1—C15—N1—C202.1 (5)
C7—C8—C9—C104.1 (4)C7—C15—N1—C20176.3 (3)
C11—C8—C9—C141.3 (4)C17—C16—N1—C15124.0 (4)
C7—C8—C9—C14176.5 (3)C17—C16—N1—C2056.0 (5)
C6—C5—C10—C9179.8 (3)C19—C20—N1—C15125.0 (4)
C4—C5—C10—C90.1 (5)C19—C20—N1—C1655.1 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C17—H17B···O1i0.972.413.342 (5)162
C20—H20A···O1ii0.972.713.557 (5)146
Symmetry codes: (i) x, y+1, z; (ii) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC20H19NO
Mr289.36
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)26.393 (5), 7.3950 (15), 18.213 (4)
β (°) 120.29 (3)
V3)3069.5 (14)
Z8
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.30 × 0.10 × 0.10
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.977, 0.992
No. of measured, independent and
observed [I > 2σ(I)] reflections
2828, 2762, 1678
Rint0.025
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.081, 0.278, 1.09
No. of reflections2762
No. of parameters199
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.32, 0.29

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SAINT (Bruker, 2000, SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C17—H17B···O1i0.972.413.342 (5)162.0
C20—H20A···O1ii0.972.713.557 (5)145.7
Symmetry codes: (i) x, y+1, z; (ii) x+1, y, z+1.
 

Acknowledgements

The authors acknowledge financial support from the Natural Science Foundation of Jiangsu Province (grant No. BK2007132).

References

First citationBruker (2000). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHarwood, H. J., Petras, S. F., Shelly, L. D., Zaccaro, L. M., Perry, D. A., Makowski, M. R., Hargrove, D. M., Martin, K. A., Tracey, W. R., Chapman, J. G., Magee, W. P., Dalvie, D. K., Soliman, V. F., Martin, W. H., Mularski, C. J. & Eisenbeis, S. A. (2003). J. Biol. Chem. 278, 37099–37111.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, H.-L., Tweel, B., Li, J. & Tong, L. (2004). Structure, 12, 1683–1691.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds