metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 11| November 2008| Pages m1438-m1439

Tris(ethane-1,2-di­amine-κ2N,N′)cobalt(II) cis-aqua-2κO-μ-cyanido-1:2κ2C:N-hepta­cyanido-1κ7C-bis­­(ethane-1,2-di­amine-2κ2N,N′)cobalt(II)molybdenum(IV) dihydrate

aDepartment of Chemistry, University of the Free State, PO Box 339, Bloemfontein 9300, South Africa
*Correspondence e-mail: visserhg.sci@ufs.ac.za

(Received 10 September 2008; accepted 15 October 2008; online 18 October 2008)

The title compound, [Co(C2H8N2)3][CoMo(CN)8(C2H8N2)2(H2O)]·2H2O, is isostructural with the NiII analogue. The MoIV atom is coordinated by eight cyanide ligands, one of which forms a bridge to a CoII atom that is itself coordinated by two bidentate ethane-1,2-diamine (en) ligands and one water mol­ecule. Another CoII complex, coordinated to three bidentate en ligands, acts as the counter-ion. The crystal structure contains O—H⋯N/O, N—H⋯N/O and C—H⋯N/O hydrogen bonds, which form a three-dimensional network.

Related literature

For the isostructural NiII compound, see: Withers et al. (2005[Withers, J. R., Ruschmann, C., Bojang, P., Parkin, S. & Holmes, S. M. (2005). Inorg. Chem. 44, 352-358.]); Chang et al. (2002[Chang, F., Sun, H.-L., Kou, H. Z. & Gao, S. (2002). Inorg. Chem. Commun. 5, 660-663.]). For other similar complexes and syntheses, see: Przychodzen et al. (2006[Przychodzen, P., Korzeniak, T., Podgajny, R. & Sieklucka, B. (2006). Coord. Chem. Rev. 250, 2234-2260.]); Holmes et al. (2002[Holmes, S. M., McKinley, S. G., Girolami, G. S., Szalay, P. S. & Dunbar, K. R. (2002). Inorg. Synth. 33, 91-103.]); Beauvais & Long (2001[Beauvais, L. G. & Long, J. R. (2001). J. Am. Chem. Soc. 124, 2110-2111.]); Leipoldt et al. (1974[Leipoldt, J. G., Bok, L. D. & Cilliers, P. J. Z. (1974). Z. Anorg. Allg. Chem. 409, 343-344.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(C2H8N2)3][CoMo(CN)8(C2H8N2)2(H2O)]·2H2O

  • Mr = 776.53

  • Orthorhombic, P 21 21 21

  • a = 11.5377 (3) Å

  • b = 14.8830 (3) Å

  • c = 18.7376 (4) Å

  • V = 3217.54 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.45 mm−1

  • T = 100 (2) K

  • 0.35 × 0.26 × 0.20 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). SADABS, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.640, Tmax = 0.750

  • 41911 measured reflections

  • 8019 independent reflections

  • 6732 reflections with I > 2σ(I)

  • Rint = 0.077

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.093

  • S = 1.06

  • 8019 reflections

  • 397 parameters

  • 7 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.46 e Å−3

  • Δρmin = −1.64 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 3559 Friedel pairs

  • Flack parameter: −0.063 (15)

Table 1
Selected bond lengths (Å)

Mo1—C7 2.149 (4)
Mo1—C1 2.149 (4)
Mo1—C2 2.150 (4)
Mo1—C6 2.156 (4)
Mo1—C3 2.161 (4)
Mo1—C5 2.164 (4)
Mo1—C8 2.168 (4)
Mo1—C4 2.169 (4)
Co2—N27 2.065 (3)
Co2—N36 2.099 (3)
Co2—N37 2.109 (3)
Co2—N35 2.109 (3)
Co2—N38 2.113 (3)
Co2—O41 2.118 (3)
Co1—N32 2.106 (4)
Co1—N30 2.122 (3)
Co1—N34 2.126 (3)
Co1—N33 2.130 (3)
Co1—N29 2.131 (3)
Co1—N31 2.132 (3)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N29—H29A⋯N22i 0.90 2.59 3.313 (5) 138
N29—H29B⋯N24ii 0.90 2.45 3.243 (5) 147
N30—H30A⋯N26iii 0.90 2.39 3.121 (5) 139
N31—H31B⋯N24ii 0.90 2.22 3.079 (4) 160
N32—H32A⋯N22i 0.90 2.4 3.163 (5) 143
N32—H32B⋯N26iv 0.90 2.16 3.037 (5) 164
N33—H33B⋯O41v 0.90 2.51 3.233 (4) 138
N34—H34A⋯N28iv 0.90 2.53 3.213 (5) 133
N34—H34B⋯N26iii 0.90 2.53 3.408 (5) 164
N36—H36A⋯N22vi 0.90 2.31 3.195 (4) 166
N36—H36B⋯N23vi 0.90 2.56 3.151 (5) 124
N37—H37A⋯N22vi 0.90 2.22 3.103 (5) 167
N37—H37B⋯N21vii 0.90 2.17 3.035 (5) 162
N38—H38A⋯N25viii 0.90 2.49 3.282 (5) 148
N38—H38B⋯O42vi 0.90 2.47 3.350 (5) 164
O41—H41A⋯N25viii 0.84 (2) 1.94 (2) 2.764 (4) 170 (4)
O41—H41B⋯O43vi 0.85 (2) 1.89 (2) 2.724 (4) 168 (4)
O42—H42A⋯N28v 0.82 (4) 2.10 (4) 2.924 (4) 173 (4)
O42—H42B⋯N23 0.84 (4) 1.96 (4) 2.799 (4) 174 (4)
O43—H43A⋯N24v 0.85 (2) 2.15 (2) 2.995 (4) 174 (4)
O43—H43B⋯O42ix 0.84 (3) 1.95 (2) 2.778 (4) 168 (4)
C10—H10B⋯N23iii 0.97 2.53 3.328 (5) 139
C11—H11B⋯O42ix 0.97 2.59 3.430 (5) 145
Symmetry codes: (i) [-x, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) x, y-1, z; (iii) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iv) [-x+{\script{1\over 2}}, -y, z+{\script{1\over 2}}]; (v) [-x+{\script{1\over 2}}, -y+1, z+{\script{1\over 2}}]; (vi) [-x+{\script{1\over 2}}, -y+1, z-{\script{1\over 2}}]; (vii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1]; (viii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1]; (ix) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+2].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2004[Bruker (2004). SADABS, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus and XPREP (Bruker, 2004[Bruker (2004). SADABS, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The use of cyanometalates as molecular building blocks for potentially constructing clusters and networks with adjustable magnetic properties has developed a lot of interest over the last few years (Beauvais & Long, 2001; Przychodzen et al., 2006; Withers et al., 2005).

The title compound, [Co(en)3][Co(H2O)(en)22-NC)Mo(CN)7].2H2O (en = 1,2 diaminoethane), is isostructural with its NiII analogue (Withers et al., 2005; Chang et al., 2002). The MoIV metal centre is coordinated by eight cyanide ligands, one of which forms a bridge towards a CoII metal centre that is itself coordinated by two bidentate en ligands and a water molecule (Fig. 1). Another CoII complex, coordinated to three bidentate en ligands, acts as counter ion. The octahedral geometry around the two CoII atoms is slightly distorted, as illustrated by the bite angles of the bidentate en ligands, which vary between 81.55 (12) and 94.55 (13) °. The eight-coordinate MoIV atom forms a slightly distorted square antiprism with the cyanide ligands.

The crystal structure shows a range of hydrogen-bonding of the types N—H···N/O, O—H···N/O and C—H···N/O (Table 2), forming a three-dimensional network.

Related literature top

For the isostructural NiII compound, see: Withers et al. (2005); Chang et al. (2002). For other similar complexes and syntheses, see: Przychodzen et al. (2006); Holmes et al. (2002); Beauvais & Long (2001); Leipoldt et al. (1974).

Experimental top

The synthesis of K4[Mo(CN)8] and [Co(en)3]2+ is described elsewhere (Leipoldt et al., 1974; Holmes et al., 2002). The title compound was prepared by adding aqueous soloutions of [Mo(CN)8]4- and [Co(en)3]2+ (1: 2 mol ratio) and allowing to stand for several days. Red plate-like crystals were obtained after several days. The presence of cobalt was confirmed by Inductively Coupled Plasma (IPC) analysis.

Refinement top

The H atoms of the water molecules were located in a difference Fourier map and their positional parameters refined with Uiso(H) = 1.5Ueq(O), and with the O—H distances restrained to be 0.84 (1) Å. Other H atoms were placed geometrically and allowed to ride during subsequent refinement.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus (Bruker, 2004) and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound with displacement ellipsoids shown at 50% probability for non-H atoms. The lattice water molecules are omitted.
Tris(ethane-1,2-diamine-κ2N,N')cobalt(II) cis-aqua-2κO-µ-cyanido- 1:2κ2C:N-heptacyanido-1κ7C-bis(ethane-1,2-diamine- 2κ2N,N')cobalt(II)molybdenum(IV) dihydrate top
Crystal data top
[Co(C2H8N2)3][CoMo(CN)8(C2H8N2)2(H2O)]·2H2OF(000) = 1600
Mr = 776.53Dx = 1.603 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 5696 reflections
a = 11.5377 (3) Åθ = 2.1–28.3°
b = 14.8830 (3) ŵ = 1.45 mm1
c = 18.7376 (4) ÅT = 100 K
V = 3217.54 (13) Å3Plate, red
Z = 40.35 × 0.26 × 0.20 mm
Data collection top
Bruker APEXII CCD
diffractometer
6732 reflections with I > 2σ(I)
ϕ and ω scansRint = 0.077
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
θmax = 28.3°, θmin = 2.1°
Tmin = 0.640, Tmax = 0.750h = 1515
41911 measured reflectionsk = 1919
8019 independent reflectionsl = 2424
Refinement top
Refinement on F2H atoms treated by a mixture of independent and constrained refinement
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0424P)2]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.040(Δ/σ)max = 0.028
wR(F2) = 0.093Δρmax = 0.46 e Å3
S = 1.06Δρmin = 1.64 e Å3
8019 reflectionsAbsolute structure: Flack (1983), 3559 Friedel pairs
397 parametersAbsolute structure parameter: 0.063 (15)
7 restraints
Crystal data top
[Co(C2H8N2)3][CoMo(CN)8(C2H8N2)2(H2O)]·2H2OV = 3217.54 (13) Å3
Mr = 776.53Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 11.5377 (3) ŵ = 1.45 mm1
b = 14.8830 (3) ÅT = 100 K
c = 18.7376 (4) Å0.35 × 0.26 × 0.20 mm
Data collection top
Bruker APEXII CCD
diffractometer
8019 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
6732 reflections with I > 2σ(I)
Tmin = 0.640, Tmax = 0.750Rint = 0.077
41911 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.040H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.093Δρmax = 0.46 e Å3
S = 1.06Δρmin = 1.64 e Å3
8019 reflectionsAbsolute structure: Flack (1983), 3559 Friedel pairs
397 parametersAbsolute structure parameter: 0.063 (15)
7 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F\2\) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mo10.24254 (2)0.51274 (2)0.608619 (15)0.00886 (7)
Co20.25983 (4)0.73223 (3)0.38903 (2)0.00726 (10)
Co10.22748 (4)0.17502 (3)0.89163 (2)0.00804 (10)
N330.1756 (3)0.0605 (2)0.95186 (16)0.0147 (7)
H33B0.18440.01020.92580.018*
H33A0.10060.06530.96450.018*
N290.1544 (3)0.1322 (2)0.79287 (16)0.0143 (7)
H29B0.14810.17920.76290.017*
H29A0.08310.10940.80020.017*
N340.3084 (3)0.2088 (2)0.99000 (17)0.0173 (8)
H34A0.29520.26691.00050.021*
H34B0.38550.20030.98680.021*
N300.3729 (3)0.1043 (2)0.85102 (16)0.0161 (7)
H30B0.38060.05130.87380.019*
H30A0.43790.13650.8580.019*
N310.2809 (3)0.3007 (2)0.84807 (17)0.0156 (7)
H31B0.29150.29530.80070.019*
H31A0.34860.31760.86780.019*
N320.0747 (3)0.2480 (2)0.91233 (17)0.0166 (8)
H32B0.07390.2670.95790.02*
H32A0.01210.2130.9050.02*
C90.2306 (3)0.0629 (3)0.76151 (19)0.0168 (8)
H9B0.2150.00510.78340.02*
H9A0.21590.05780.71070.02*
C110.2503 (4)0.0570 (2)1.01647 (18)0.0171 (8)
H11B0.21640.01731.05180.02*
H11A0.32650.03431.00410.02*
C120.2599 (4)0.1509 (2)1.04599 (18)0.0167 (8)
H12B0.30990.15121.08760.02*
H12A0.1840.17261.06010.02*
C130.0728 (4)0.3255 (3)0.8632 (2)0.0175 (9)
H13A0.05270.30560.81550.021*
H13B0.0150.36860.87880.021*
C140.1913 (3)0.3694 (3)0.8625 (2)0.0167 (9)
H14B0.20610.39760.90830.02*
H14A0.19380.41550.8260.02*
C100.3545 (3)0.0890 (3)0.7740 (2)0.0167 (9)
H10A0.37240.14340.74770.02*
H10B0.40550.04170.75740.02*
C10.3326 (3)0.4932 (3)0.70783 (19)0.0135 (8)
C60.4102 (3)0.5675 (3)0.58215 (19)0.0146 (8)
N230.3798 (3)0.4855 (2)0.76167 (17)0.0179 (7)
N250.4996 (3)0.5958 (2)0.56850 (18)0.0209 (8)
C70.2162 (3)0.6069 (3)0.52324 (19)0.0115 (8)
C20.0689 (3)0.5478 (3)0.63968 (19)0.0138 (8)
N270.2112 (3)0.6594 (2)0.47794 (16)0.0164 (7)
N220.1263 (3)0.3320 (2)0.68324 (17)0.0182 (7)
N210.0255 (3)0.5631 (2)0.65610 (18)0.0194 (8)
C30.1686 (3)0.3946 (3)0.65782 (19)0.0126 (8)
C50.1426 (3)0.4461 (3)0.52647 (18)0.0115 (8)
C80.2476 (4)0.6432 (2)0.65994 (17)0.0130 (7)
C40.3543 (3)0.4051 (3)0.57178 (19)0.0139 (8)
O420.5286 (3)0.4769 (2)0.87944 (16)0.0277 (8)
O430.1617 (3)0.1648 (2)1.06962 (15)0.0238 (7)
N240.2504 (3)0.7142 (2)0.68527 (16)0.0187 (7)
N260.4141 (3)0.3472 (2)0.55381 (18)0.0200 (8)
N280.0874 (3)0.4089 (2)0.48443 (16)0.0153 (7)
N350.4319 (3)0.7425 (2)0.42627 (17)0.0137 (7)
H35A0.45870.79850.41930.016*
H35B0.43460.73040.47330.016*
N360.3217 (3)0.6119 (2)0.34467 (17)0.0170 (7)
H36B0.27080.56720.35260.02*
H36A0.33090.61820.29720.02*
C150.5036 (3)0.6773 (3)0.3866 (2)0.0197 (8)
H15B0.57510.66590.41230.024*
H15A0.5230.70120.340.024*
C160.4346 (4)0.5905 (3)0.3787 (2)0.0192 (9)
H16A0.47730.54810.34940.023*
H16B0.42190.56350.42520.023*
O410.2305 (2)0.85628 (18)0.44139 (13)0.0145 (6)
N370.2881 (3)0.8069 (2)0.29496 (16)0.0138 (7)
H37B0.33420.85430.30410.017*
H37A0.32260.77240.26170.017*
N380.0902 (3)0.7244 (2)0.34692 (17)0.0154 (7)
H38B0.06570.6670.34750.019*
H38A0.04150.75730.37380.019*
C170.0904 (3)0.7585 (3)0.2730 (2)0.0171 (9)
H17A0.0130.77740.25950.02*
H17B0.11510.71150.24040.02*
C180.1737 (3)0.8378 (3)0.2691 (2)0.0166 (9)
H18A0.180.8590.22030.02*
H18B0.14570.88680.29860.02*
H41A0.1590 (17)0.866 (3)0.442 (2)0.022*
H41B0.259 (3)0.856 (3)0.4833 (13)0.022*
H42A0.491 (4)0.507 (3)0.9084 (19)0.042*
H42B0.488 (4)0.481 (3)0.8422 (19)0.042*
H43A0.189 (3)0.201 (2)1.0999 (17)0.036*
H43B0.119 (3)0.127 (2)1.0899 (19)0.036*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mo10.00841 (14)0.00942 (14)0.00875 (14)0.00039 (12)0.00007 (14)0.00012 (11)
Co20.0074 (2)0.0068 (2)0.0076 (2)0.00054 (18)0.0008 (2)0.00084 (18)
Co10.0077 (2)0.0081 (2)0.0083 (2)0.00020 (18)0.0002 (2)0.00015 (19)
N330.0139 (17)0.0168 (19)0.0135 (16)0.0022 (14)0.0001 (13)0.0000 (14)
N290.0107 (16)0.0174 (18)0.0148 (17)0.0017 (14)0.0021 (13)0.0022 (14)
N340.0182 (18)0.0146 (18)0.0191 (18)0.0034 (14)0.0027 (14)0.0000 (14)
N300.0119 (17)0.0173 (19)0.0190 (18)0.0010 (14)0.0005 (13)0.0007 (14)
N310.0131 (17)0.0166 (18)0.0172 (17)0.0042 (14)0.0011 (13)0.0036 (13)
N320.0182 (19)0.0171 (19)0.0147 (18)0.0028 (15)0.0008 (13)0.0040 (14)
C90.014 (2)0.020 (2)0.0164 (18)0.0002 (18)0.0033 (16)0.0046 (16)
C110.018 (2)0.0155 (19)0.0176 (18)0.000 (2)0.0020 (17)0.0015 (15)
C120.019 (2)0.019 (2)0.0119 (17)0.0008 (18)0.0030 (16)0.0010 (14)
C130.019 (2)0.009 (2)0.025 (2)0.0037 (17)0.0024 (16)0.0031 (17)
C140.015 (2)0.015 (2)0.020 (2)0.0006 (16)0.0009 (16)0.0007 (17)
C100.014 (2)0.018 (2)0.018 (2)0.0037 (17)0.0051 (16)0.0016 (18)
C10.0071 (17)0.018 (2)0.0156 (19)0.0040 (16)0.0027 (14)0.0018 (17)
C60.015 (2)0.017 (2)0.0123 (18)0.0032 (17)0.0016 (15)0.0022 (16)
N230.0146 (17)0.0209 (19)0.0181 (17)0.0018 (15)0.0014 (13)0.0003 (15)
N250.0168 (19)0.026 (2)0.0197 (18)0.0049 (16)0.0011 (14)0.0001 (16)
C70.0096 (19)0.0147 (19)0.0102 (17)0.0033 (15)0.0008 (14)0.0028 (15)
C20.0127 (19)0.012 (2)0.0165 (19)0.0006 (16)0.0016 (15)0.0020 (16)
N270.0175 (18)0.0174 (18)0.0142 (16)0.0010 (14)0.0007 (13)0.0015 (14)
N220.0168 (18)0.021 (2)0.0172 (17)0.0041 (16)0.0046 (13)0.0038 (15)
N210.0163 (18)0.0160 (19)0.0260 (19)0.0005 (15)0.0020 (14)0.0015 (16)
C30.0098 (18)0.018 (2)0.0104 (19)0.0046 (16)0.0028 (14)0.0004 (16)
C50.0111 (18)0.013 (2)0.0102 (18)0.0025 (16)0.0028 (14)0.0007 (16)
C80.0139 (19)0.0147 (19)0.0102 (16)0.0017 (17)0.0014 (15)0.0039 (13)
C40.012 (2)0.017 (2)0.0132 (19)0.0004 (16)0.0020 (15)0.0021 (16)
O420.0262 (17)0.042 (2)0.0154 (15)0.0188 (15)0.0059 (13)0.0105 (15)
O430.0283 (18)0.0214 (18)0.0216 (16)0.0077 (14)0.0068 (13)0.0017 (14)
N240.0221 (19)0.0154 (17)0.0185 (16)0.0011 (16)0.0016 (16)0.0023 (13)
N260.0119 (17)0.027 (2)0.0214 (18)0.0046 (15)0.0045 (14)0.0077 (16)
N280.0152 (18)0.0132 (18)0.0176 (17)0.0004 (14)0.0001 (14)0.0013 (14)
N350.0169 (18)0.0120 (17)0.0123 (16)0.0003 (14)0.0013 (13)0.0009 (14)
N360.0210 (19)0.0152 (18)0.0148 (17)0.0015 (15)0.0045 (14)0.0011 (14)
C150.0115 (18)0.024 (2)0.023 (2)0.0011 (16)0.0026 (17)0.002 (2)
C160.018 (2)0.021 (2)0.019 (2)0.0060 (17)0.0020 (16)0.0003 (18)
O410.0107 (14)0.0178 (14)0.0150 (13)0.0008 (12)0.0008 (11)0.0011 (11)
N370.0134 (17)0.0158 (18)0.0122 (16)0.0037 (14)0.0018 (12)0.0013 (13)
N380.0137 (17)0.0135 (18)0.0192 (18)0.0008 (14)0.0020 (13)0.0029 (14)
C170.014 (2)0.023 (2)0.015 (2)0.0012 (17)0.0047 (16)0.0005 (18)
C180.013 (2)0.017 (2)0.021 (2)0.0020 (17)0.0015 (15)0.0028 (18)
Geometric parameters (Å, º) top
Mo1—C72.149 (4)C12—H12A0.97
Mo1—C12.149 (4)C13—C141.515 (5)
Mo1—C22.150 (4)C13—H13A0.97
Mo1—C62.156 (4)C13—H13B0.97
Mo1—C32.161 (4)C14—H14B0.97
Mo1—C52.164 (4)C14—H14A0.97
Mo1—C82.168 (4)C10—H10A0.97
Mo1—C42.169 (4)C10—H10B0.97
Co2—N272.065 (3)C1—N231.152 (4)
Co2—N362.099 (3)C6—N251.144 (5)
Co2—N372.109 (3)C7—N271.155 (5)
Co2—N352.109 (3)C2—N211.155 (5)
Co2—N382.113 (3)N22—C31.154 (5)
Co2—O412.118 (3)C5—N281.155 (5)
Co1—N322.106 (4)C8—N241.158 (4)
Co1—N302.122 (3)C4—N261.154 (5)
Co1—N342.126 (3)O42—H42B0.84 (4)
Co1—N332.130 (3)O42—H42A0.82 (4)
Co1—N292.131 (3)O43—H43B0.84 (2)
Co1—N312.132 (3)O43—H43A0.85 (2)
N33—C111.487 (5)N35—C151.475 (5)
N33—H33B0.90N35—H35A0.90
N33—H33A0.90N35—H35B0.90
N29—C91.477 (5)N36—C161.485 (5)
N29—H29B0.90N36—H36B0.90
N29—H29A0.90N36—H36A0.90
N34—C121.468 (5)C15—C161.526 (6)
N34—H34A0.90C15—H15B0.97
N34—H34B0.90C15—H15A0.97
N30—C101.475 (5)C16—H16A0.97
N30—H30B0.90C16—H16B0.97
N30—H30A0.90O41—H41B0.85 (2)
N31—C141.479 (5)O41—H41A0.84 (2)
N31—H31B0.90N37—C181.479 (5)
N31—H31A0.90N37—H37B0.90
N32—C131.476 (5)N37—H37A0.90
N32—H32B0.90N38—C171.475 (5)
N32—H32A0.90N38—H38B0.90
C9—C101.500 (6)N38—H38A0.90
C9—H9B0.97C17—C181.524 (5)
C9—H9A0.97C17—H17A0.97
C11—C121.507 (5)C17—H17B0.97
C11—H11B0.97C18—H18A0.97
C11—H11A0.97C18—H18B0.97
C12—H12B0.97
C7—Mo1—C1143.17 (15)C10—C9—H9B109.9
C7—Mo1—C284.93 (14)N29—C9—H9A109.9
C1—Mo1—C2104.42 (14)C10—C9—H9A109.9
C7—Mo1—C673.08 (14)H9B—C9—H9A108.3
C1—Mo1—C679.42 (14)N33—C11—C12107.9 (3)
C2—Mo1—C6143.71 (16)N33—C11—H11B110.1
C7—Mo1—C3142.44 (14)C12—C11—H11B110.1
C1—Mo1—C373.26 (14)N33—C11—H11A110.1
C2—Mo1—C373.40 (15)C12—C11—H11A110.1
C6—Mo1—C3139.43 (15)H11B—C11—H11A108.4
C7—Mo1—C572.19 (14)N34—C12—C11108.0 (3)
C1—Mo1—C5144.18 (15)N34—C12—H12B110.1
C2—Mo1—C578.89 (14)C11—C12—H12B110.1
C6—Mo1—C5119.18 (13)N34—C12—H12A110.1
C3—Mo1—C573.74 (14)C11—C12—H12A110.1
C7—Mo1—C875.50 (13)H12B—C12—H12A108.4
C1—Mo1—C874.01 (14)N32—C13—C14109.2 (3)
C2—Mo1—C871.78 (15)N32—C13—H13A109.8
C6—Mo1—C874.91 (15)C14—C13—H13A109.8
C3—Mo1—C8123.39 (14)N32—C13—H13B109.8
C5—Mo1—C8137.76 (14)C14—C13—H13B109.8
C7—Mo1—C4109.20 (14)H13A—C13—H13B108.3
C1—Mo1—C483.56 (14)N31—C14—C13109.5 (3)
C2—Mo1—C4145.00 (15)N31—C14—H14B109.8
C6—Mo1—C470.90 (15)C13—C14—H14B109.8
C3—Mo1—C476.66 (15)N31—C14—H14A109.8
C5—Mo1—C475.64 (14)C13—C14—H14A109.8
C8—Mo1—C4141.90 (15)H14B—C14—H14A108.2
N27—Co2—N3687.94 (13)N30—C10—C9109.2 (3)
N27—Co2—N37173.08 (13)N30—C10—H10A109.8
N36—Co2—N3793.78 (13)C9—C10—H10A109.8
N27—Co2—N3591.53 (13)N30—C10—H10B109.8
N36—Co2—N3582.67 (12)C9—C10—H10B109.8
N37—Co2—N3595.34 (12)H10A—C10—H10B108.3
N27—Co2—N3891.17 (13)N23—C1—Mo1177.8 (4)
N36—Co2—N3896.88 (13)N25—C6—Mo1179.3 (4)
N37—Co2—N3881.97 (12)N27—C7—Mo1174.6 (3)
N35—Co2—N38177.24 (13)N21—C2—Mo1177.3 (4)
N27—Co2—O4192.32 (12)C7—N27—Co2159.1 (3)
N36—Co2—O41168.90 (12)N22—C3—Mo1178.2 (3)
N37—Co2—O4187.28 (11)N28—C5—Mo1177.7 (3)
N35—Co2—O4186.23 (12)N24—C8—Mo1177.9 (3)
N38—Co2—O4194.21 (12)N26—C4—Mo1178.4 (3)
N32—Co1—N30169.59 (12)H42B—O42—H42A103 (3)
N32—Co1—N3494.94 (13)H43B—O43—H43A110 (3)
N30—Co1—N3494.64 (13)C15—N35—Co2108.3 (2)
N32—Co1—N3394.55 (13)C15—N35—H35A110
N30—Co1—N3390.88 (13)Co2—N35—H35A110
N34—Co1—N3381.55 (12)C15—N35—H35B110
N32—Co1—N2989.02 (12)Co2—N35—H35B110
N30—Co1—N2981.55 (12)H35A—N35—H35B108.4
N34—Co1—N29175.62 (13)C16—N36—Co2108.2 (2)
N33—Co1—N2996.29 (12)C16—N36—H36B110.1
N32—Co1—N3181.96 (13)Co2—N36—H36B110.1
N30—Co1—N3193.99 (13)C16—N36—H36A110.1
N34—Co1—N3189.88 (13)Co2—N36—H36A110.1
N33—Co1—N31170.46 (12)H36B—N36—H36A108.4
N29—Co1—N3192.54 (13)N35—C15—C16108.2 (3)
C11—N33—Co1107.3 (2)N35—C15—H15B110.1
C11—N33—H33B110.3C16—C15—H15B110.1
Co1—N33—H33B110.3N35—C15—H15A110.1
C11—N33—H33A110.3C16—C15—H15A110.1
Co1—N33—H33A110.3H15B—C15—H15A108.4
H33B—N33—H33A108.5N36—C16—C15108.5 (3)
C9—N29—Co1108.6 (2)N36—C16—H16A110
C9—N29—H29B110C15—C16—H16A110
Co1—N29—H29B110N36—C16—H16B110
C9—N29—H29A110C15—C16—H16B110
Co1—N29—H29A110H16A—C16—H16B108.4
H29B—N29—H29A108.4Co2—O41—H41B111 (3)
C12—N34—Co1108.3 (2)Co2—O41—H41A108 (3)
C12—N34—H34A110H41B—O41—H41A112 (3)
Co1—N34—H34A110C18—N37—Co2107.5 (2)
C12—N34—H34B110C18—N37—H37B110.2
Co1—N34—H34B110Co2—N37—H37B110.2
H34A—N34—H34B108.4C18—N37—H37A110.2
C10—N30—Co1108.3 (2)Co2—N37—H37A110.2
C10—N30—H30B110H37B—N37—H37A108.5
Co1—N30—H30B110C17—N38—Co2109.3 (2)
C10—N30—H30A110C17—N38—H38B109.8
Co1—N30—H30A110Co2—N38—H38B109.8
H30B—N30—H30A108.4C17—N38—H38A109.8
C14—N31—Co1109.5 (2)Co2—N38—H38A109.8
C14—N31—H31B109.8H38B—N38—H38A108.3
Co1—N31—H31B109.8N38—C17—C18108.2 (3)
C14—N31—H31A109.8N38—C17—H17A110.1
Co1—N31—H31A109.8C18—C17—H17A110.1
H31B—N31—H31A108.2N38—C17—H17B110.1
C13—N32—Co1107.5 (2)C18—C17—H17B110.1
C13—N32—H32B110.2H17A—C17—H17B108.4
Co1—N32—H32B110.2N37—C18—C17107.8 (3)
C13—N32—H32A110.2N37—C18—H18A110.1
Co1—N32—H32A110.2C17—C18—H18A110.1
H32B—N32—H32A108.5N37—C18—H18B110.1
N29—C9—C10108.9 (3)C17—C18—H18B110.1
N29—C9—H9B109.9H18A—C18—H18B108.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N29—H29A···N22i0.902.593.313 (5)138
N29—H29B···N24ii0.902.453.243 (5)147
N30—H30A···N26iii0.902.393.121 (5)139
N31—H31B···N24ii0.902.223.079 (4)160
N32—H32A···N22i0.902.43.163 (5)143
N32—H32B···N26iv0.902.163.037 (5)164
N33—H33B···O41v0.902.513.233 (4)138
N34—H34A···N28iv0.902.533.213 (5)133
N34—H34B···N26iii0.902.533.408 (5)164
N36—H36A···N22vi0.902.313.195 (4)166
N36—H36B···N23vi0.902.563.151 (5)124
N37—H37A···N22vi0.902.223.103 (5)167
N37—H37B···N21vii0.902.173.035 (5)162
N38—H38A···N25viii0.902.493.282 (5)148
N38—H38B···O42vi0.902.473.350 (5)164
O41—H41A···N25viii0.84 (2)1.94 (2)2.764 (4)170 (4)
O41—H41B···O43vi0.85 (2)1.89 (2)2.724 (4)168 (4)
O42—H42A···N28v0.82 (4)2.10 (4)2.924 (4)173 (4)
O42—H42B···N230.84 (4)1.96 (4)2.799 (4)174 (4)
O43—H43A···N24v0.85 (2)2.15 (2)2.995 (4)174 (4)
O43—H43B···O42ix0.84 (3)1.95 (2)2.778 (4)168 (4)
C10—H10B···N23iii0.972.533.328 (5)139
C11—H11B···O42ix0.972.593.430 (5)145
Symmetry codes: (i) x, y1/2, z+3/2; (ii) x, y1, z; (iii) x+1, y1/2, z+3/2; (iv) x+1/2, y, z+1/2; (v) x+1/2, y+1, z+1/2; (vi) x+1/2, y+1, z1/2; (vii) x+1/2, y+3/2, z+1; (viii) x1/2, y+3/2, z+1; (ix) x1/2, y+1/2, z+2.

Experimental details

Crystal data
Chemical formula[Co(C2H8N2)3][CoMo(CN)8(C2H8N2)2(H2O)]·2H2O
Mr776.53
Crystal system, space groupOrthorhombic, P212121
Temperature (K)100
a, b, c (Å)11.5377 (3), 14.8830 (3), 18.7376 (4)
V3)3217.54 (13)
Z4
Radiation typeMo Kα
µ (mm1)1.45
Crystal size (mm)0.35 × 0.26 × 0.20
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.640, 0.750
No. of measured, independent and
observed [I > 2σ(I)] reflections
41911, 8019, 6732
Rint0.077
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.093, 1.06
No. of reflections8019
No. of parameters397
No. of restraints7
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.46, 1.64
Absolute structureFlack (1983), 3559 Friedel pairs
Absolute structure parameter0.063 (15)

Computer programs: APEX2 (Bruker, 2005), SAINT-Plus (Bruker, 2004) and XPREP (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2005).

Selected bond lengths (Å) top
Mo1—C72.149 (4)Co2—N372.109 (3)
Mo1—C12.149 (4)Co2—N352.109 (3)
Mo1—C22.150 (4)Co2—N382.113 (3)
Mo1—C62.156 (4)Co2—O412.118 (3)
Mo1—C32.161 (4)Co1—N322.106 (4)
Mo1—C52.164 (4)Co1—N302.122 (3)
Mo1—C82.168 (4)Co1—N342.126 (3)
Mo1—C42.169 (4)Co1—N332.130 (3)
Co2—N272.065 (3)Co1—N292.131 (3)
Co2—N362.099 (3)Co1—N312.132 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N29—H29A···N22i0.902.593.313 (5)138.1
N29—H29B···N24ii0.902.453.243 (5)146.5
N30—H30A···N26iii0.902.393.121 (5)138.6
N31—H31B···N24ii0.902.223.079 (4)159.8
N32—H32A···N22i0.902.43.163 (5)143.3
N32—H32B···N26iv0.902.163.037 (5)164.1
N33—H33B···O41v0.902.513.233 (4)137.8
N34—H34A···N28iv0.902.533.213 (5)133.4
N34—H34B···N26iii0.902.533.408 (5)163.8
N36—H36A···N22vi0.902.313.195 (4)165.9
N36—H36B···N23vi0.902.563.151 (5)124.1
N37—H37A···N22vi0.902.223.103 (5)167.3
N37—H37B···N21vii0.902.173.035 (5)162.2
N38—H38A···N25viii0.902.493.282 (5)147.5
N38—H38B···O42vi0.902.473.350 (5)164.3
O41—H41A···N25viii0.84 (2)1.94 (2)2.764 (4)170 (4)
O41—H41B···O43vi0.85 (2)1.89 (2)2.724 (4)168 (4)
O42—H42A···N28v0.82 (4)2.10 (4)2.924 (4)173 (4)
O42—H42B···N230.84 (4)1.96 (4)2.799 (4)174 (4)
O43—H43A···N24v0.85 (2)2.15 (2)2.995 (4)174 (4)
O43—H43B···O42ix0.84 (3)1.95 (2)2.778 (4)168 (4)
C10—H10B···N23iii0.972.533.328 (5)138.9
C11—H11B···O42ix0.972.593.430 (5)144.8
Symmetry codes: (i) x, y1/2, z+3/2; (ii) x, y1, z; (iii) x+1, y1/2, z+3/2; (iv) x+1/2, y, z+1/2; (v) x+1/2, y+1, z+1/2; (vi) x+1/2, y+1, z1/2; (vii) x+1/2, y+3/2, z+1; (viii) x1/2, y+3/2, z+1; (ix) x1/2, y+1/2, z+2.
 

Acknowledgements

The University of the Free State is gratefully aknowledged for financial support.

References

First citationBeauvais, L. G. & Long, J. R. (2001). J. Am. Chem. Soc. 124, 2110–2111.  Web of Science CSD CrossRef Google Scholar
First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2004). SADABS, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChang, F., Sun, H.-L., Kou, H. Z. & Gao, S. (2002). Inorg. Chem. Commun. 5, 660–663.  Web of Science CSD CrossRef CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHolmes, S. M., McKinley, S. G., Girolami, G. S., Szalay, P. S. & Dunbar, K. R. (2002). Inorg. Synth. 33, 91–103.  CAS Google Scholar
First citationLeipoldt, J. G., Bok, L. D. & Cilliers, P. J. Z. (1974). Z. Anorg. Allg. Chem. 409, 343–344.  CrossRef CAS Web of Science Google Scholar
First citationPrzychodzen, P., Korzeniak, T., Podgajny, R. & Sieklucka, B. (2006). Coord. Chem. Rev. 250, 2234–2260.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWithers, J. R., Ruschmann, C., Bojang, P., Parkin, S. & Holmes, S. M. (2005). Inorg. Chem. 44, 352–358.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 11| November 2008| Pages m1438-m1439
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds