metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(4,4′-methyl­enedi­cyclo­hexyl­aminium) μ-benzene-1,4-di­carboxyl­ato-bis­­[tri­chlorido­zinc(II)] tetra­hydrate

aDepartment of Chemistry, Chung-Yuan Christian University, Chung-Li 320, Taiwan
*Correspondence e-mail: chiaher@cycu.edu.tw

(Received 15 September 2008; accepted 12 October 2008; online 15 October 2008)

The title compound, (C13H28N2)2[Zn2(C8H4O4)Cl6]·4H2O, was prepared by the reaction of ZnCl2·6H2O, benzene-1,4-dicarboxylic acid and 4,4′-diamino­dicyclo­hexyl­methane in methanol. The [Zn2Cl6(C8H4O4)]4− anions lie on centres of inversion and comprise two ZnCl3 groups bridged by benzene-1,4-dicarboxyl­ate. In addition to N—H⋯Cl and N—H⋯O hydrogen bonds between the cations and anions, solvent water mol­ecules form O—H⋯O and O—H⋯Cl hydrogen bonds to give a three-dimensional network.

Related literature

For related structures, see: Clausen et al. (2005[Clausen, H. F., Poulsen, R. D., Bond, A. D., Chevallier, M.-A. S. & Iversen, B. B. (2005). J. Solid State Chem. 178, 3342-3351.]); Thirumurugan & Rao (2005[Thirumurugan, A. & Rao, C. N. R. (2005). J. Mater. Chem. 15, 3852-3858.]); Li et al. (1998[Li, H., Eddaoudi, M., Groy, T. L. & Yaghi, O. M. (1998). J. Am. Chem. Soc. 120, 8571-8572.], 1999[Li, H., Eddaoudi, M., O'Keeffe, M. & Yaghi, O. M. (1999). Nature (London), 402, 276-279.]).

[Scheme 1]

Experimental

Crystal data
  • (C13H28N2)2[Zn2(C8H4O4)Cl6]·4H2O

  • Mr = 1004.36

  • Monoclinic, P 21 /c

  • a = 14.264 (3) Å

  • b = 14.202 (2) Å

  • c = 11.712 (2) Å

  • β = 100.498 (16)°

  • V = 2333.0 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.42 mm−1

  • T = 295 (2) K

  • 0.70 × 0.40 × 0.10 mm

Data collection
  • Bruker P4 diffractometer

  • Absorption correction: ψ scan (XSCANS; Siemens, 1995[Siemens (1995). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]) Tmin = 0.694, Tmax = 0.868

  • 5093 measured reflections

  • 4071 independent reflections

  • 3405 reflections with I > 2σ(I)

  • Rint = 0.027

  • 3 standard reflections every 97 reflections intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.132

  • S = 1.05

  • 4071 reflections

  • 244 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 1.10 e Å−3

  • Δρmin = −0.83 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯Cl3 0.89 2.41 3.252 (4) 159
N1—H1B⋯Cl2i 0.89 2.51 3.290 (4) 147
N1—H1C⋯O3i 0.89 1.94 2.828 (5) 178
N2—H2A⋯Cl1ii 0.89 2.95 3.725 (5) 146
N2—H2A⋯Cl2ii 0.89 2.67 3.321 (4) 131
N2—H2B⋯O2iii 0.89 2.06 2.928 (4) 166
N2—H2C⋯O4iv 0.89 1.95 2.813 (4) 164
O3—H3B⋯O2 1.00 1.81 2.798 (4) 167.8
O3—H3C⋯Cl1v 1.06 2.24 3.262 (4) 160.3
O4—H4B⋯Cl3 0.98 2.21 3.172 (4) 164.9
O4—H4C⋯Cl2vi 0.94 2.38 3.258 (3) 154.9
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) x-1, y, z; (iii) -x, -y+1, -z; (iv) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (v) -x+1, -y+1, -z; (vi) -x+1, -y+1, -z+1.

Data collection: XSCANS (Siemens, 1995[Siemens (1995). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: XSCANS; data reduction: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The dianion of benzene-1,4-dicarboxylic acid is an important linker to bridge metal atoms which show significant chemical and physical properties (Clausen et al., 2005; Thirumurugan & Rao, 2005; Li et al., 1998, 1999). Since the anions contain four O atoms which are good hydrogen-bond acceptors, co-crystallization with organic cations would be expected to result in extensive hydrogen-bond networks. The title compound (Fig. 1) contains N—H···Cl and N—H···O hydrogen bonds between the cations and the anions, as well as O—H···O and O—H···Cl interactions formed by the lattice water molecules.

Related literature top

For related structures, see: Clausen et al. (2005); Thirumurugan & Rao (2005); Li et al. (1998, 1999).

Experimental top

ZnCl2.6H2O (0.49 g, 2.00 mmol) was added to a solution of 4,4'-diaminodicyclohexylmethane (0.21 g,1.00 mmol) and benzene-1,4-dicarboxylic acid (0.17 g, 1.00 mmol) in 30 ml MeOH. The mixture was refluxed for 24 h to yield a colorless solution with some white solid. The solution was filtered and then diethyl ether was added to induce precipitation. The precipitate was filtered and washed by ether (3 × 10 ml), then dried under reduced pressure to give a white powder. Colourless crystals were obtained by slow diffusion of ether into a methanol solution of the white powder over several weeks.

Refinement top

H atoms bound to C and N atoms were placed in idealized positions and constrained to ride on their parent atoms, with C—H = 0.93–0.98 Å and N—H = 0.89 Å, and with Uiso(H) = 1.2 or 1.5Ueq(C/N). The H atoms of the water molecules were located in difference Fourier maps, then constrained to ride on their parent O atom with Uiso(H) = 1.5Ueq(O). The C8—C11 and C11—C12 bond distances were restrained to be identical with a standard uncertainty of 0.02 Å.

Computing details top

Data collection: XSCANS (Siemens, 1995); cell refinement: XSCANS (Siemens, 1995); data reduction: SHELXTL (Sheldrick, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound with displacement ellipsoids drawn at the 30% probability level for non-H atoms. The [Zn2Cl6(C8H4O4)]4- anion lies on a centre of inversion. Symmetry code: -x, 1 - y, -z.
Bis(4,4'-methylenedicyclohexylaminium) µ-benzene-1,4-dicarboxylato-bis[trichloridozinc(II)] tetrahydrate top
Crystal data top
(C13H28N2)2[Zn2(C8H4O4)Cl6]·4H2OF(000) = 1052
Mr = 1004.36Dx = 1.430 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 33 reflections
a = 14.264 (3) Åθ = 5.7–12.5°
b = 14.202 (2) ŵ = 1.42 mm1
c = 11.712 (2) ÅT = 295 K
β = 100.498 (16)°Plate, colourless
V = 2333.0 (7) Å30.70 × 0.40 × 0.10 mm
Z = 2
Data collection top
Bruker P4
diffractometer
3405 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.027
Graphite monochromatorθmax = 25.0°, θmin = 2.0°
ω scansh = 1616
Absorption correction: ψ scan
(XSCANS; Siemens, 1995)
k = 116
Tmin = 0.694, Tmax = 0.868l = 113
5093 measured reflections3 standard reflections every 97 reflections
4071 independent reflections intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.132H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0344P)2 + 8.1458P]
where P = (Fo2 + 2Fc2)/3
4071 reflections(Δ/σ)max < 0.001
244 parametersΔρmax = 1.10 e Å3
2 restraintsΔρmin = 0.83 e Å3
Crystal data top
(C13H28N2)2[Zn2(C8H4O4)Cl6]·4H2OV = 2333.0 (7) Å3
Mr = 1004.36Z = 2
Monoclinic, P21/cMo Kα radiation
a = 14.264 (3) ŵ = 1.42 mm1
b = 14.202 (2) ÅT = 295 K
c = 11.712 (2) Å0.70 × 0.40 × 0.10 mm
β = 100.498 (16)°
Data collection top
Bruker P4
diffractometer
3405 reflections with I > 2σ(I)
Absorption correction: ψ scan
(XSCANS; Siemens, 1995)
Rint = 0.027
Tmin = 0.694, Tmax = 0.8683 standard reflections every 97 reflections
5093 measured reflections intensity decay: none
4071 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0572 restraints
wR(F2) = 0.132H-atom parameters constrained
S = 1.05Δρmax = 1.10 e Å3
4071 reflectionsΔρmin = 0.83 e Å3
244 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn0.37495 (3)0.50908 (4)0.23918 (5)0.04083 (17)
Cl10.48147 (11)0.41661 (13)0.17455 (16)0.0807 (5)
Cl20.41895 (9)0.66231 (9)0.22022 (11)0.0522 (3)
Cl30.37246 (11)0.48512 (10)0.42863 (12)0.0611 (4)
O10.2401 (2)0.4944 (3)0.1703 (3)0.0528 (9)
O20.2553 (2)0.4968 (3)0.0161 (3)0.0515 (8)
O30.3060 (3)0.6499 (3)0.1424 (4)0.0829 (14)
H3B0.28300.59190.10770.124*
H3C0.37350.64150.16680.124*
O40.4724 (3)0.2921 (3)0.5161 (3)0.0663 (11)
H4B0.45310.35550.48710.099*
H4C0.49170.28940.59720.099*
N10.3214 (3)0.6947 (3)0.5109 (4)0.0624 (12)
H1A0.34700.64580.48020.094*
H1B0.35750.70970.57870.094*
H1C0.31790.74370.46290.094*
N20.3906 (3)0.6298 (3)0.0987 (4)0.0495 (10)
H2A0.43990.60000.11930.074*
H2B0.35770.58970.06290.074*
H2C0.41190.67690.05080.074*
C10.2069 (3)0.4959 (3)0.0619 (4)0.0392 (10)
C20.0992 (3)0.4974 (3)0.0298 (4)0.0365 (9)
C30.0434 (3)0.4915 (4)0.1146 (4)0.0447 (11)
H3A0.07240.48570.19220.054*
C40.0549 (3)0.4940 (3)0.0853 (4)0.0425 (11)
H4A0.09150.49000.14320.051*
C50.2238 (3)0.6694 (4)0.5292 (5)0.0494 (12)
H5A0.22860.61610.58310.059*
C60.1788 (4)0.7515 (4)0.5812 (5)0.0599 (14)
H6A0.21710.76770.65580.072*
H6B0.17660.80580.53060.072*
C70.0792 (4)0.7268 (6)0.5970 (6)0.087 (2)
H7A0.05040.77960.63010.104*
H7B0.08060.67330.64870.104*
C80.0217 (4)0.7026 (8)0.4758 (9)0.153 (5)
H8A0.03230.75440.42440.183*
C90.0658 (4)0.6144 (7)0.4308 (9)0.144 (5)
H9A0.06800.56330.48620.173*
H9B0.02780.59430.35760.173*
C100.1653 (4)0.6397 (5)0.4146 (6)0.084 (2)
H10A0.19490.58580.38450.101*
H10B0.16260.69070.35900.101*
C110.0777 (4)0.6972 (7)0.4707 (7)0.129 (4)
H11A0.09850.75840.49320.154*
H11B0.08860.65290.52990.154*
C120.1428 (5)0.6698 (5)0.3598 (5)0.082 (2)
H12A0.11060.62240.32000.099*
C130.2310 (6)0.6253 (5)0.3937 (6)0.086 (2)
H13A0.21190.57360.44700.104*
H13B0.26370.67160.43310.104*
C140.2979 (5)0.5892 (4)0.2885 (5)0.0648 (16)
H14A0.26650.54050.25120.078*
H14B0.35380.56190.31190.078*
C150.3274 (3)0.6681 (3)0.2049 (4)0.0448 (11)
H15A0.36400.71380.24160.054*
C160.2440 (4)0.7187 (4)0.1693 (5)0.0568 (14)
H16A0.26690.77260.12140.068*
H16B0.21180.67670.12370.068*
C170.1739 (4)0.7515 (4)0.2759 (5)0.0657 (16)
H17A0.20350.80010.31550.079*
H17B0.11820.77860.25160.079*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn0.0279 (3)0.0487 (3)0.0448 (3)0.0002 (2)0.0038 (2)0.0039 (2)
Cl10.0513 (8)0.0921 (12)0.0964 (12)0.0202 (8)0.0077 (8)0.0412 (10)
Cl20.0443 (6)0.0524 (7)0.0572 (7)0.0055 (5)0.0023 (5)0.0085 (6)
Cl30.0727 (9)0.0612 (8)0.0493 (7)0.0159 (7)0.0108 (6)0.0109 (6)
O10.0318 (16)0.074 (2)0.050 (2)0.0063 (17)0.0002 (14)0.0007 (18)
O20.0348 (17)0.063 (2)0.060 (2)0.0050 (16)0.0154 (15)0.0004 (17)
O30.086 (3)0.063 (3)0.112 (4)0.007 (2)0.051 (3)0.012 (2)
O40.074 (3)0.052 (2)0.065 (2)0.0020 (19)0.010 (2)0.0026 (18)
N10.059 (3)0.057 (3)0.074 (3)0.014 (2)0.020 (2)0.018 (2)
N20.034 (2)0.059 (3)0.056 (2)0.0009 (19)0.0076 (18)0.004 (2)
C10.032 (2)0.030 (2)0.055 (3)0.0004 (18)0.006 (2)0.005 (2)
C20.028 (2)0.035 (2)0.046 (2)0.0022 (18)0.0072 (18)0.0064 (19)
C30.036 (2)0.059 (3)0.038 (2)0.001 (2)0.0023 (19)0.002 (2)
C40.035 (2)0.054 (3)0.040 (2)0.000 (2)0.0110 (19)0.003 (2)
C50.041 (3)0.044 (3)0.060 (3)0.001 (2)0.001 (2)0.006 (2)
C60.057 (3)0.064 (3)0.056 (3)0.001 (3)0.003 (3)0.022 (3)
C70.042 (3)0.116 (6)0.097 (5)0.002 (3)0.001 (3)0.063 (5)
C80.044 (4)0.219 (11)0.181 (9)0.025 (5)0.015 (5)0.162 (9)
C90.038 (3)0.181 (9)0.198 (10)0.017 (5)0.018 (5)0.149 (8)
C100.065 (4)0.097 (5)0.081 (4)0.030 (4)0.013 (3)0.049 (4)
C110.084 (5)0.167 (9)0.113 (6)0.057 (6)0.042 (5)0.090 (6)
C120.077 (4)0.090 (5)0.066 (4)0.044 (4)0.024 (3)0.038 (4)
C130.120 (6)0.074 (4)0.054 (4)0.001 (4)0.013 (4)0.001 (3)
C140.089 (4)0.052 (3)0.049 (3)0.010 (3)0.003 (3)0.001 (3)
C150.040 (2)0.048 (3)0.047 (3)0.000 (2)0.011 (2)0.004 (2)
C160.046 (3)0.063 (3)0.059 (3)0.011 (3)0.005 (2)0.012 (3)
C170.046 (3)0.071 (4)0.079 (4)0.011 (3)0.009 (3)0.011 (3)
Geometric parameters (Å, º) top
Zn—O11.956 (3)C7—C81.543 (9)
Zn—Cl12.2418 (15)C7—H7A0.97
Zn—Cl32.2514 (15)C7—H7B0.97
Zn—Cl22.2869 (14)C8—C111.410 (7)
O1—C11.272 (6)C8—C91.537 (10)
O2—C11.243 (6)C8—H8A0.98
O3—H3B1.00C9—C101.510 (11)
O3—H3C1.06C9—H9A0.97
O4—H4B0.98C9—H9B0.97
O4—H4C0.94C10—H10A0.97
N1—C51.491 (6)C10—H10B0.97
N1—H1A0.89C11—C121.503 (6)
N1—H1B0.89C11—H11A0.97
N1—H1C0.89C11—H11B0.97
N2—C151.500 (6)C12—C131.524 (11)
N2—H2A0.89C12—C171.534 (9)
N2—H2B0.89C12—H12A0.98
N2—H2C0.89C13—C141.503 (8)
C1—C21.513 (6)C13—H13A0.97
C2—C31.385 (6)C13—H13B0.97
C2—C4i1.386 (6)C14—C151.497 (7)
C3—C41.382 (6)C14—H14A0.97
C3—H3A0.93C14—H14B0.97
C4—C2i1.386 (6)C15—C161.512 (7)
C4—H4A0.93C15—H15A0.98
C5—C101.505 (7)C16—C171.523 (8)
C5—C61.512 (7)C16—H16A0.97
C5—H5A0.98C16—H16B0.97
C6—C71.506 (8)C17—H17A0.97
C6—H6A0.97C17—H17B0.97
C6—H6B0.97
O1—Zn—Cl1118.31 (12)C7—C8—H8A106.4
O1—Zn—Cl3101.50 (11)C10—C9—C8107.6 (7)
Cl1—Zn—Cl3112.19 (7)C10—C9—H9A110.2
O1—Zn—Cl2109.14 (12)C8—C9—H9A110.2
Cl1—Zn—Cl2108.05 (7)C10—C9—H9B110.2
Cl3—Zn—Cl2107.06 (6)C8—C9—H9B110.2
C1—O1—Zn124.7 (3)H9A—C9—H9B108.5
H3B—O3—H3C113.5C5—C10—C9109.6 (6)
H4B—O4—H4C113.5C5—C10—H10A109.8
C5—N1—H1A109.5C9—C10—H10A109.8
C5—N1—H1B109.5C5—C10—H10B109.8
H1A—N1—H1B109.5C9—C10—H10B109.8
C5—N1—H1C109.5H10A—C10—H10B108.2
H1A—N1—H1C109.5C8—C11—C12120.6 (7)
H1B—N1—H1C109.5C8—C11—H11A107.2
C15—N2—H2A109.5C12—C11—H11A107.2
C15—N2—H2B109.5C8—C11—H11B107.2
H2A—N2—H2B109.5C12—C11—H11B107.2
C15—N2—H2C109.5H11A—C11—H11B106.8
H2A—N2—H2C109.5C11—C12—C13107.0 (6)
H2B—N2—H2C109.5C11—C12—C17114.7 (7)
O2—C1—O1125.4 (4)C13—C12—C17109.0 (5)
O2—C1—C2119.5 (4)C11—C12—H12A108.6
O1—C1—C2115.2 (4)C13—C12—H12A108.6
C3—C2—C4i118.9 (4)C17—C12—H12A108.6
C3—C2—C1120.7 (4)C14—C13—C12111.0 (6)
C4i—C2—C1120.4 (4)C14—C13—H13A109.4
C4—C3—C2120.7 (4)C12—C13—H13A109.4
C4—C3—H3A119.7C14—C13—H13B109.4
C2—C3—H3A119.7C12—C13—H13B109.4
C3—C4—C2i120.4 (4)H13A—C13—H13B108.0
C3—C4—H4A119.8C15—C14—C13110.0 (5)
C2i—C4—H4A119.8C15—C14—H14A109.7
N1—C5—C10108.6 (5)C13—C14—H14A109.7
N1—C5—C6110.4 (4)C15—C14—H14B109.7
C10—C5—C6111.6 (4)C13—C14—H14B109.7
N1—C5—H5A108.7H14A—C14—H14B108.2
C10—C5—H5A108.7C14—C15—N2109.0 (4)
C6—C5—H5A108.7C14—C15—C16113.2 (4)
C7—C6—C5110.4 (5)N2—C15—C16109.2 (4)
C7—C6—H6A109.6C14—C15—H15A108.4
C5—C6—H6A109.6N2—C15—H15A108.4
C7—C6—H6B109.6C16—C15—H15A108.4
C5—C6—H6B109.6C15—C16—C17110.6 (5)
H6A—C6—H6B108.1C15—C16—H16A109.5
C6—C7—C8107.2 (6)C17—C16—H16A109.5
C6—C7—H7A110.3C15—C16—H16B109.5
C8—C7—H7A110.3C17—C16—H16B109.5
C6—C7—H7B110.3H16A—C16—H16B108.1
C8—C7—H7B110.3C16—C17—C12111.3 (5)
H7A—C7—H7B108.5C16—C17—H17A109.4
C11—C8—C9114.4 (7)C12—C17—H17A109.4
C11—C8—C7114.4 (7)C16—C17—H17B109.4
C9—C8—C7108.3 (7)C12—C17—H17B109.4
C11—C8—H8A106.4H17A—C17—H17B108.0
C9—C8—H8A106.4
Symmetry code: (i) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl30.892.413.252 (4)159
N1—H1B···Cl2ii0.892.513.290 (4)147
N1—H1C···O3ii0.891.942.828 (5)178
N2—H2A···Cl1iii0.892.953.725 (5)146
N2—H2A···Cl2iii0.892.673.321 (4)131
N2—H2B···O2i0.892.062.928 (4)166
N2—H2C···O4iv0.891.952.813 (4)164
O3—H3B···O21.001.812.798 (4)167.8
O3—H3C···Cl1v1.062.243.262 (4)160.3
O4—H4B···Cl30.982.213.172 (4)164.9
O4—H4C···Cl2vi0.942.383.258 (3)154.9
Symmetry codes: (i) x, y+1, z; (ii) x, y+3/2, z+1/2; (iii) x1, y, z; (iv) x, y+1/2, z+1/2; (v) x+1, y+1, z; (vi) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula(C13H28N2)2[Zn2(C8H4O4)Cl6]·4H2O
Mr1004.36
Crystal system, space groupMonoclinic, P21/c
Temperature (K)295
a, b, c (Å)14.264 (3), 14.202 (2), 11.712 (2)
β (°) 100.498 (16)
V3)2333.0 (7)
Z2
Radiation typeMo Kα
µ (mm1)1.42
Crystal size (mm)0.70 × 0.40 × 0.10
Data collection
DiffractometerBruker P4
diffractometer
Absorption correctionψ scan
(XSCANS; Siemens, 1995)
Tmin, Tmax0.694, 0.868
No. of measured, independent and
observed [I > 2σ(I)] reflections
5093, 4071, 3405
Rint0.027
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.132, 1.05
No. of reflections4071
No. of parameters244
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.10, 0.83

Computer programs: XSCANS (Siemens, 1995), SHELXTL (Sheldrick, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl30.892.413.252 (4)159.0
N1—H1B···Cl2i0.892.513.290 (4)147.0
N1—H1C···O3i0.891.942.828 (5)178.2
N2—H2A···Cl1ii0.892.953.725 (5)145.9
N2—H2A···Cl2ii0.892.673.321 (4)131.3
N2—H2B···O2iii0.892.062.928 (4)165.5
N2—H2C···O4iv0.891.952.813 (4)163.9
O3—H3B···O21.001.812.798 (4)167.8
O3—H3C···Cl1v1.062.243.262 (4)160.3
O4—H4B···Cl30.982.213.172 (4)164.9
O4—H4C···Cl2vi0.942.383.258 (3)154.9
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x1, y, z; (iii) x, y+1, z; (iv) x, y+1/2, z+1/2; (v) x+1, y+1, z; (vi) x+1, y+1, z+1.
 

Acknowledgements

The authors are grateful to the National Science Council of Taiwan for support. This research was also supported by the Project of the Specific Research Fields in Chung Yuan Christian University, Taiwan, under grant No. CYCU-97-CR-CH.

References

First citationClausen, H. F., Poulsen, R. D., Bond, A. D., Chevallier, M.-A. S. & Iversen, B. B. (2005). J. Solid State Chem. 178, 3342–3351.  Web of Science CSD CrossRef CAS Google Scholar
First citationLi, H., Eddaoudi, M., Groy, T. L. & Yaghi, O. M. (1998). J. Am. Chem. Soc. 120, 8571–8572.  Web of Science CSD CrossRef CAS Google Scholar
First citationLi, H., Eddaoudi, M., O'Keeffe, M. & Yaghi, O. M. (1999). Nature (London), 402, 276–279.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1995). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationThirumurugan, A. & Rao, C. N. R. (2005). J. Mater. Chem. 15, 3852–3858.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds