organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-Benzoyl-N-phenyl­cyclo­propane­carboxamide

aExperimental Center of Medicine, Jilin Medical College, Jilin 132013, People's Republic of China
*Correspondence e-mail: wenliangli.chem@gmail.com

(Received 14 October 2008; accepted 18 October 2008; online 25 October 2008)

The title compound, C17H15NO2, was synthesized by reaction of 1,2-dibromo­ethane with 1-benzoyl-N-phenyl­cyclo­propane­carboxamide and K2CO3 in dimethyl­formamide. The mol­ecule exhibits a V-shaped conformation in the crystal with a dihedral angle of 88.7 (3)° between the two benzene rings. Pairs of N—H⋯O hydrogen bonds link the mol­ecules into dimers about centres of inversion.

Related literature

For further synthesis details, see: Zhang et al. (2007[Zhang, Z., Zhang, Q., Sun, S., Xiong, T. & Liu, Q. (2007). Angew. Chem. Int. Ed. 46, 1726-1729.]).

[Scheme 1]

Experimental

Crystal data
  • C17H15NO2

  • Mr = 265.30

  • Triclinic, [P \overline 1]

  • a = 7.424 (1) Å

  • b = 9.473 (1) Å

  • c = 10.831 (2) Å

  • α = 94.276 (2)°

  • β = 99.313 (2)°

  • γ = 105.773 (2)°

  • V = 717.72 (17) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 (2) K

  • 0.32 × 0.24 × 0.21 mm

Data collection
  • Bruker APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.981, Tmax = 0.986

  • 4053 measured reflections

  • 2748 independent reflections

  • 2213 reflections with I > 2σ(I)

  • Rint = 0.012

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.119

  • S = 1.04

  • 2748 reflections

  • 185 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.15 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.879 (14) 2.03 (1) 2.896 (1) 167.0 (1)
Symmetry code: (i) -x+1, -y+1, -z+1.

Data collection: SMART (Bruker, 1997[Bruker (1997). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Derivatives of 1-benzoyl-N-phenylcyclopropanecarboxamide have been long known for their diverse pharmacological and biological properties. The method for the synthesis of similar compounds has been reported previously (Zhang et al., 2007). In the crystal, the title compound exhibits a "V-shaped" conformation with interplanar angle of 91.3 (3)° between the two benzene rings (C1–C6 and C12–C17). The C8–C10 cyclopropane ring makes dihedral angles of 120.8 (3)° and 125.9 (2)° with the C1–C6 and C12–C17 benzene rings, respectively. The value of the dihedral angle between the planes defined by C7—O1—C8 and the C1–C6 ring is 18.8 (3)°.

Related literature top

For further synthesis details, see: Zhang et al. (2007).

Experimental top

1,2-Dibromoethane (0.95 ml, 11 mmol) was added to a solution of 1-benzoyl-N-phenylcyclopropanecarboxamide (2393 mg, 10 mmol) and K2CO3 (2950 mg, 23 mmol) in DMF (25 ml) and the mixture was stirred for 10 h (monitored by TLC) before being slowly poured into ice-water (200 ml). The precipitated white solid was filtered and purified by flash silica gel column chromatography (eluent: ether/ethyl acetate (1/3)) to give the title compound as colourless crystals.

Refinement top

H atoms bound to C atoms were placed geometrically and refined using a riding model with C—H = 0.93 Å for aromatic H or 0.97 Å for CH2 groups, and with Uiso = 1.2Ueq(C). The H atom of the NH group was located in a difference Fourier map and refined with the N—H distance restrained to be 0.88 (1) Å and with Uiso(H) = 1.5Ueq(N).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound with displacement ellipsoids drawn at the 30% probability level for non-H atoms.
1-Benzoyl-N-phenylcyclopropanecarboxamide top
Crystal data top
C17H15NO2Z = 2
Mr = 265.30F(000) = 280
Triclinic, P1Dx = 1.228 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71069 Å
a = 7.424 (1) ÅCell parameters from 2748 reflections
b = 9.4730 (13) Åθ = 1.9–26.0°
c = 10.8310 (15) ŵ = 0.08 mm1
α = 94.276 (2)°T = 293 K
β = 99.313 (2)°Block, colourless
γ = 105.773 (2)°0.32 × 0.24 × 0.21 mm
V = 717.72 (17) Å3
Data collection top
Bruker APEX CCD
diffractometer
2748 independent reflections
Radiation source: fine-focus sealed tube2213 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.012
ω scansθmax = 26.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 69
Tmin = 0.981, Tmax = 0.986k = 1111
4053 measured reflectionsl = 1313
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.119 w = 1/[σ2(Fo2) + (0.0561P)2 + 0.1075P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
2748 reflectionsΔρmax = 0.15 e Å3
185 parametersΔρmin = 0.15 e Å3
1 restraintExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.054 (6)
Crystal data top
C17H15NO2γ = 105.773 (2)°
Mr = 265.30V = 717.72 (17) Å3
Triclinic, P1Z = 2
a = 7.424 (1) ÅMo Kα radiation
b = 9.4730 (13) ŵ = 0.08 mm1
c = 10.8310 (15) ÅT = 293 K
α = 94.276 (2)°0.32 × 0.24 × 0.21 mm
β = 99.313 (2)°
Data collection top
Bruker APEX CCD
diffractometer
2748 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2213 reflections with I > 2σ(I)
Tmin = 0.981, Tmax = 0.986Rint = 0.012
4053 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0441 restraint
wR(F2) = 0.119H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.15 e Å3
2748 reflectionsΔρmin = 0.15 e Å3
185 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.4980 (2)0.72180 (15)0.70564 (13)0.0477 (4)
C20.4788 (2)0.72747 (17)0.83128 (14)0.0511 (4)
H20.52890.66800.88320.061*
C30.3862 (2)0.82028 (18)0.87980 (16)0.0603 (4)
H30.37620.82460.96440.072*
C40.3088 (3)0.9062 (2)0.8034 (2)0.0735 (5)
H40.24630.96890.83610.088*
C50.3235 (3)0.8996 (2)0.6782 (2)0.0811 (6)
H50.26910.95690.62630.097*
C60.4180 (3)0.8089 (2)0.62925 (16)0.0658 (5)
H60.42830.80590.54470.079*
C70.6119 (2)0.63374 (16)0.65224 (13)0.0498 (4)
C80.6665 (2)0.51699 (16)0.72240 (13)0.0488 (4)
C90.8739 (2)0.5593 (2)0.78679 (19)0.0733 (5)
H9A0.95460.65580.77730.088*
H9B0.90380.52580.86800.088*
C100.8063 (3)0.4471 (2)0.67465 (19)0.0736 (5)
H10A0.79510.34500.68740.088*
H10B0.84590.47490.59670.088*
C110.5257 (2)0.41812 (16)0.78762 (13)0.0471 (4)
C120.1879 (2)0.26815 (15)0.74941 (13)0.0455 (3)
C130.1551 (2)0.27890 (19)0.87138 (15)0.0591 (4)
H130.23980.35000.93330.071*
C140.0041 (3)0.1833 (2)0.90016 (17)0.0742 (5)
H140.02520.18930.98240.089*
C150.1321 (3)0.0793 (2)0.80958 (19)0.0748 (5)
H150.23860.01480.83030.090*
C160.1014 (3)0.07135 (19)0.68809 (17)0.0661 (5)
H160.18870.00210.62600.079*
C170.0577 (2)0.16516 (16)0.65724 (15)0.0525 (4)
H170.07750.15920.57460.063*
O10.67064 (19)0.66389 (14)0.55579 (10)0.0730 (4)
O20.56848 (17)0.38898 (14)0.89348 (11)0.0682 (4)
N10.34958 (18)0.36333 (14)0.71454 (11)0.0503 (3)
H1N0.338 (3)0.368 (2)0.6331 (14)0.076*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0472 (8)0.0443 (8)0.0446 (8)0.0012 (6)0.0084 (6)0.0072 (6)
C20.0540 (9)0.0509 (8)0.0491 (8)0.0119 (7)0.0149 (7)0.0123 (7)
C30.0634 (10)0.0598 (10)0.0608 (10)0.0154 (8)0.0239 (8)0.0097 (8)
C40.0724 (12)0.0700 (12)0.0874 (14)0.0306 (10)0.0227 (10)0.0127 (10)
C50.0869 (14)0.0849 (14)0.0832 (14)0.0441 (12)0.0096 (11)0.0250 (11)
C60.0737 (12)0.0677 (11)0.0518 (9)0.0153 (9)0.0059 (8)0.0150 (8)
C70.0493 (8)0.0519 (8)0.0394 (7)0.0013 (7)0.0113 (6)0.0034 (6)
C80.0442 (8)0.0519 (8)0.0472 (8)0.0079 (6)0.0127 (6)0.0010 (6)
C90.0484 (10)0.0856 (13)0.0772 (12)0.0084 (9)0.0073 (9)0.0070 (10)
C100.0663 (12)0.0811 (13)0.0827 (13)0.0263 (10)0.0321 (10)0.0088 (10)
C110.0494 (9)0.0471 (8)0.0447 (8)0.0116 (7)0.0118 (6)0.0066 (6)
C120.0470 (8)0.0430 (7)0.0479 (8)0.0111 (6)0.0141 (6)0.0101 (6)
C130.0560 (10)0.0667 (10)0.0486 (9)0.0058 (8)0.0153 (7)0.0028 (7)
C140.0724 (12)0.0884 (13)0.0582 (10)0.0057 (10)0.0307 (9)0.0116 (9)
C150.0653 (11)0.0684 (12)0.0818 (13)0.0052 (9)0.0304 (10)0.0107 (10)
C160.0602 (10)0.0549 (10)0.0724 (11)0.0010 (8)0.0165 (9)0.0017 (8)
C170.0556 (9)0.0496 (8)0.0514 (8)0.0108 (7)0.0156 (7)0.0046 (7)
O10.0927 (9)0.0769 (8)0.0522 (7)0.0144 (7)0.0360 (6)0.0146 (6)
O20.0616 (7)0.0863 (9)0.0541 (7)0.0149 (6)0.0070 (5)0.0249 (6)
N10.0510 (7)0.0538 (7)0.0413 (7)0.0039 (6)0.0123 (6)0.0091 (6)
Geometric parameters (Å, º) top
C1—C61.388 (2)C9—H9B0.970
C1—C21.390 (2)C10—H10A0.970
C1—C71.488 (2)C10—H10B0.970
C2—C31.378 (2)C11—O21.2118 (17)
C2—H20.930C11—N11.3566 (19)
C3—C41.370 (3)C12—C131.383 (2)
C3—H30.930C12—C171.383 (2)
C4—C51.376 (3)C12—N11.4161 (18)
C4—H40.930C13—C141.376 (2)
C5—C61.375 (3)C13—H130.930
C5—H50.930C14—C151.372 (3)
C6—H60.930C14—H140.930
C7—O11.2196 (16)C15—C161.371 (2)
C7—C81.495 (2)C15—H150.930
C8—C111.5080 (19)C16—C171.378 (2)
C8—C101.510 (2)C16—H160.930
C8—C91.514 (2)C17—H170.930
C9—C101.476 (3)N1—H1N0.879 (14)
C9—H9A0.970
C6—C1—C2118.62 (15)H9A—C9—H9B114.8
C6—C1—C7118.78 (14)C9—C10—C860.95 (11)
C2—C1—C7122.46 (13)C9—C10—H10A117.7
C3—C2—C1120.68 (15)C8—C10—H10A117.7
C3—C2—H2119.7C9—C10—H10B117.7
C1—C2—H2119.7C8—C10—H10B117.7
C4—C3—C2120.01 (16)H10A—C10—H10B114.8
C4—C3—H3120.0O2—C11—N1124.09 (13)
C2—C3—H3120.0O2—C11—C8122.85 (14)
C3—C4—C5119.93 (18)N1—C11—C8113.04 (12)
C3—C4—H4120.0C13—C12—C17119.77 (14)
C5—C4—H4120.0C13—C12—N1121.74 (14)
C6—C5—C4120.52 (17)C17—C12—N1118.46 (13)
C6—C5—H5119.7C14—C13—C12119.32 (16)
C4—C5—H5119.7C14—C13—H13120.3
C5—C6—C1120.21 (17)C12—C13—H13120.3
C5—C6—H6119.9C15—C14—C13121.14 (16)
C1—C6—H6119.9C15—C14—H14119.4
O1—C7—C1119.69 (14)C13—C14—H14119.4
O1—C7—C8120.33 (14)C14—C15—C16119.35 (16)
C1—C7—C8119.80 (12)C14—C15—H15120.3
C7—C8—C11120.13 (13)C16—C15—H15120.3
C7—C8—C10117.63 (13)C15—C16—C17120.55 (16)
C11—C8—C10114.96 (13)C15—C16—H16119.7
C7—C8—C9114.24 (13)C17—C16—H16119.7
C11—C8—C9116.43 (14)C16—C17—C12119.85 (15)
C10—C8—C958.41 (12)C16—C17—H17120.1
C10—C9—C860.64 (11)C12—C17—H17120.1
C10—C9—H9A117.7C11—N1—C12126.26 (12)
C8—C9—H9A117.7C11—N1—H1N118.1 (12)
C10—C9—H9B117.7C12—N1—H1N114.0 (12)
C8—C9—H9B117.7
C6—C1—C2—C31.6 (2)C7—C8—C10—C9102.84 (16)
C7—C1—C2—C3174.30 (14)C11—C8—C10—C9106.87 (16)
C1—C2—C3—C41.2 (3)C7—C8—C11—O2135.19 (16)
C2—C3—C4—C50.1 (3)C10—C8—C11—O275.3 (2)
C3—C4—C5—C61.0 (3)C9—C8—C11—O29.8 (2)
C4—C5—C6—C10.6 (3)C7—C8—C11—N146.30 (18)
C2—C1—C6—C50.6 (3)C10—C8—C11—N1103.20 (16)
C7—C1—C6—C5175.38 (16)C9—C8—C11—N1168.75 (14)
C6—C1—C7—O117.1 (2)C17—C12—C13—C142.1 (3)
C2—C1—C7—O1158.80 (15)N1—C12—C13—C14179.83 (16)
C6—C1—C7—C8167.79 (14)C12—C13—C14—C151.1 (3)
C2—C1—C7—C816.4 (2)C13—C14—C15—C160.5 (3)
O1—C7—C8—C11144.49 (15)C14—C15—C16—C171.0 (3)
C1—C7—C8—C1140.38 (19)C15—C16—C17—C120.1 (3)
O1—C7—C8—C104.2 (2)C13—C12—C17—C161.7 (2)
C1—C7—C8—C10170.91 (14)N1—C12—C17—C16179.76 (14)
O1—C7—C8—C969.84 (19)O2—C11—N1—C121.7 (2)
C1—C7—C8—C9105.29 (16)C8—C11—N1—C12179.78 (13)
C7—C8—C9—C10108.67 (15)C13—C12—N1—C1134.8 (2)
C11—C8—C9—C10104.33 (16)C17—C12—N1—C11147.15 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.88 (1)2.03 (1)2.896 (1)167 (1)
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC17H15NO2
Mr265.30
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.424 (1), 9.4730 (13), 10.8310 (15)
α, β, γ (°)94.276 (2), 99.313 (2), 105.773 (2)
V3)717.72 (17)
Z2
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.32 × 0.24 × 0.21
Data collection
DiffractometerBruker APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.981, 0.986
No. of measured, independent and
observed [I > 2σ(I)] reflections
4053, 2748, 2213
Rint0.012
(sin θ/λ)max1)0.618
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.119, 1.04
No. of reflections2748
No. of parameters185
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.15, 0.15

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.879 (14)2.03 (1)2.896 (1)167.0 (1)
Symmetry code: (i) x+1, y+1, z+1.
 

Acknowledgements

We thank the Analysis and Testing Foundation of Northeast Normal University for support.

References

First citationBruker (1997). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, Z., Zhang, Q., Sun, S., Xiong, T. & Liu, Q. (2007). Angew. Chem. Int. Ed. 46, 1726–1729.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds