organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(2-Pyrid­yl)-N,N′-dipyrimidin-2-ylmethane­di­amine

aDepartment of Chemistry, Islamic Azad University, Yazd Branch, Yazd, Iran, bDepartment of Chemistry, Islamic Azad University, Mashhad Branch, Mashhad, Iran, cDepartment of Textile Engineering, Yazd, Iran, and dDepartment of Chemistry, Shahid Beheshti University, Tehran, Iran
*Correspondence e-mail: tabatabaee45m@yahoo.com

(Received 16 September 2008; accepted 8 October 2008; online 15 October 2008)

In the title compound, C14H13N7, inter­molecular N—H⋯N and C—H⋯N hydrogen bonds link the mol­ecules into infinite one-dimensional chains along (100). A C—H⋯π inter­action also occurs in the crystal.

Related literature

For the biological activity of pyrimidine derivatives, see: Onal & Altral (1999[Onal, Z. & Altral, B. (1999). Turk. J. Chem. 23, 401-405.]); Ponticelli & Spanu (1999[Ponticelli, G. & Spanu, A. (1999). Transition Met. Chem. 24, 370-372.]). For their uses in coordination chemistry, see: Prince et al. (2003[Prince, B. J., Turnbull, M. M. & Willett, R. D. (2003). J. Coord. Chem. 56, 441-452.]); Lee et al. (2003[Lee, J. H., Lewos, R. D., Mendes, J., Turnbull, M. M. & Awwadi, F. F. (2003). J. Coord. Chem. 56, 1425-1442.]); Masaki et al. (2002[Masaki, M. E., Prince, B. J. & Turnbull, M. M. (2002). J. Coord. Chem. 55, 1337-1351.]). For studies of the reactions of heterocyclic amines with aromatic aldehyde to prepare new ligands, see: Tabatabaee et al. (2006[Tabatabaee, M., Ghassemzadeh, M., Zarabi, B. & &Neumüller, B. (2006). Z. Naturforsch. Teil B, 61, 1421-1425.], 2007a[Tabatabaee, M., Ghassemzadeh, M., Dehghan, A. R., Khavasi, H. R. & Heravi, M. M. (2007a). Acta Cryst. E63, o42-o43.],b[Tabatabaee, M., Ghassemzadeh, M., Zarabi, B., Heravi, M. M., Anary- Abbasinejad, M. & Neumüller, B. (2007b). Phosphorus Sulfur Silicon Relat. Elem. 182, 677-686.], 2008[Tabatabaee, M., Ghassemzadeh, M. & Soleimani, N. (2008). Anal. Sci. 24, x173-x174.]).

[Scheme 1]

Experimental

Crystal data
  • C14H13N7

  • Mr = 279.31

  • Monoclinic, P 21 /n

  • a = 9.5781 (19) Å

  • b = 9.3543 (16) Å

  • c = 15.975 (4) Å

  • β = 97.521 (17)°

  • V = 1419.0 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 296 K

  • 0.45 × 0.20 × 0.05 mm

Data collection
  • Stoe IPDS-II diffractometer

  • Absorption correction: numerical [shape of crystal determined optically; X-SHAPE and X-RED32 (Stoe & Cie, 2005[Stoe & Cie (2005). X-AREA, X-RED32and X-SHAPE. Stoe & Cie, Darmstadt, Germany.])]Tmin = 0.970, Tmax = 0.998

  • 12281 measured reflections

  • 2997 independent reflections

  • 2443 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.058

  • wR(F2) = 0.140

  • S = 1.12

  • 2997 reflections

  • 242 parameters

  • All H-atom parameters refined

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the N6/N7/C11–C14 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2B⋯N4i 0.885 (19) 2.181 (19) 3.064 (2) 175.3 (19)
N5—H5B⋯N7ii 0.787 (19) 2.259 (19) 3.042 (3) 174 (2)
C12—H12⋯N3iii 1.00 (3) 2.57 (2) 3.304 (3) 130.4 (15)
C9—H9⋯Cg1iv 0.99 (3) 2.62 (3) 3.532 (3) 154 (3)
Symmetry codes: (i) -x+2, -y+1, -z; (ii) -x+1, -y+1, -z; (iii) -x+1, -y+2, -z; (iv) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: X-AREA (Stoe & Cie, 2005[Stoe & Cie (2005). X-AREA, X-RED32and X-SHAPE. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2005[Stoe & Cie (2005). X-AREA, X-RED32and X-SHAPE. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Pyrimidines derivatives possess remarkable biological activity and have been widely used in medicinal and industrial applications (Onal & Altral, 1999; Ponticelli et al. 1999). Moreover amino pyrimidine derivatives find use in coordination chemistry (Prince et al. 2003; Masaki et al. 2002; Lee et al. 2003). In continuation of our recent work on the reactions of heterocyclic amines with aromatic aldehyde to prepare of new ligands (Tabatabaee et al. 2006; Tabatabaee et al. 2007a,b; Tabatabaee et al. 2008) in this communication, we report, our results on the reaction of 2-aminopyrimidine and 2-pyridinecarbaldehyde. The title compound, C14H13N7, (I), is a new aminoacetal compound obtained from condensation of 2-aminopyrimidine with 2-pyridinecarbaldehyde. The crystal structure of (I) (Fig. 1) shows that one molecule of 2-pyridinecarbaldehyde was reacted with two molecules of 2-aminopyrimidine to form (I). Bond lengths and angles are unexceptional and the molecular structure is stabilized by some intermolecular N—H···N and C—H···N hydrogen-bonds (Table I). In the crystal packing (Fig. 2), molecules are linked into infinite one dimensional chains by hydrogen-bond interactions. A considerable feature of the compound (I) is the presence of C—H···π stacking interactions between C—H groups from one molecule and aromatic pyrimidine ring of adjacent molecule.The C—H···π distance is 2.62 (3) Å for C9—H9···Cg1 (Cg1 is the center of pyrimidine ring), with the angle of 154 (3)° (Fig.3).

Related literature top

For the biological activity of pyrimidine derivatives, see: Onal & Altral (1999); Ponticelli & Spanu (1999). For their uses in coordination chemistry, see: Prince et al. (2003); Lee et al. (2003); Masaki et al. (2002). For studies of the reactions of heterocyclic amines with aromatic aldehyde to prepare new ligands, see: Tabatabaee et al. (2006, 2007a,b, 2008). Cg1 is the centroid of the pyrimidine ring.

Experimental top

A solution of 2-aminopyrimidine (0.94 g, 1 mmol) in EtOH (15 ml) was treated with 2-pyridinecarbaldehyde (0.107 g, 1 mmol) and the resulting mixture was acidified with 37% hydrochloric acid (0.2 ml). The reaction mixture was refluxed for 8 h. The solid residue was filtered and the filtrate was kept at 293 K. Colorless crystals of the title compound were obtained after a few days (yield 83%).

Refinement top

All of the H atoms were located in a difference synthesis and refined isotropically [aromatic C—H = 0.82 (2)–1.07 (3) Å, tertiary C—H = 0.97 (2) Å and N—H = 0.79 (2)–0.89 (2) Å] and refined isotropically.

Computing details top

Data collection: X-AREA (Stoe & Cie, 2005); cell refinement: X-AREA (Stoe & Cie, 2005); data reduction: X-RED32 (Stoe & Cie, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I). Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Packing diagram of (I), molecules are linked into infinite one dimensional chains by hydrogen-bond interactions (dashed lines).
[Figure 3] Fig. 3. Intermolecular C—H···\p interaction between one aromatic pyrimidine ring and adjacent molecule.
1-(2-Pyridyl)-N,N'-dipyrimidin-2-ylmethanediamine top
Crystal data top
C14H13N7F(000) = 584
Mr = 279.31Dx = 1.307 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2000 reflections
a = 9.5781 (19) Åθ = 2.4–26.8°
b = 9.3543 (16) ŵ = 0.09 mm1
c = 15.975 (4) ÅT = 296 K
β = 97.521 (17)°Plate, colorless
V = 1419.0 (5) Å30.45 × 0.20 × 0.05 mm
Z = 4
Data collection top
Stoe IPDS-II
diffractometer
2997 independent reflections
Radiation source: fine-focus sealed tube2443 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
rotation method scansθmax = 26.8°, θmin = 2.4°
Absorption correction: numerical
shape of crystal determined optically (Program? reference?)
h = 1212
Tmin = 0.970, Tmax = 0.998k = 1111
12281 measured reflectionsl = 2017
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.140All H-atom parameters refined
S = 1.12 w = 1/[σ2(Fo2) + (0.0555P)2 + 0.3988P]
where P = (Fo2 + 2Fc2)/3
2997 reflections(Δ/σ)max = 0.002
242 parametersΔρmax = 0.15 e Å3
0 restraintsΔρmin = 0.16 e Å3
Crystal data top
C14H13N7V = 1419.0 (5) Å3
Mr = 279.31Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.5781 (19) ŵ = 0.09 mm1
b = 9.3543 (16) ÅT = 296 K
c = 15.975 (4) Å0.45 × 0.20 × 0.05 mm
β = 97.521 (17)°
Data collection top
Stoe IPDS-II
diffractometer
2997 independent reflections
Absorption correction: numerical
shape of crystal determined optically (Program? reference?)
2443 reflections with I > 2σ(I)
Tmin = 0.970, Tmax = 0.998Rint = 0.032
12281 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0580 restraints
wR(F2) = 0.140All H-atom parameters refined
S = 1.12Δρmax = 0.15 e Å3
2997 reflectionsΔρmin = 0.16 e Å3
242 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.9822 (4)0.8397 (4)0.2536 (3)0.1170 (12)
H11.065 (4)0.909 (5)0.265 (3)0.172 (17)*
C20.9364 (4)0.7672 (5)0.3161 (2)0.1087 (12)
H20.973 (4)0.786 (4)0.372 (3)0.149 (14)*
C30.8303 (4)0.6738 (5)0.2982 (2)0.1054 (12)
H30.783 (4)0.619 (4)0.328 (3)0.141 (14)*
C40.7696 (3)0.6561 (3)0.21369 (16)0.0746 (7)
H40.702 (3)0.604 (3)0.2000 (16)0.074 (8)*
C50.82060 (18)0.7345 (2)0.15391 (11)0.0488 (4)
C60.76338 (17)0.7253 (2)0.06118 (11)0.0458 (4)
H60.7549 (19)0.821 (2)0.0380 (12)0.048 (5)*
C70.87637 (17)0.6815 (2)0.06540 (11)0.0464 (4)
C80.8208 (3)0.8159 (3)0.18238 (15)0.0816 (8)
H80.753 (3)0.896 (3)0.2127 (17)0.098 (8)*
C90.9149 (3)0.7437 (3)0.22277 (16)0.0859 (8)
H90.928 (3)0.768 (3)0.2817 (19)0.106 (9)*
C100.9855 (3)0.6351 (3)0.17964 (14)0.0745 (7)
H101.054 (3)0.577 (3)0.2047 (16)0.086 (7)*
C110.50462 (17)0.72192 (19)0.05133 (10)0.0441 (4)
C120.3865 (2)0.9233 (2)0.07540 (14)0.0599 (5)
H120.394 (2)1.026 (3)0.0921 (14)0.074 (7)*
C130.2605 (2)0.8541 (3)0.05806 (16)0.0698 (6)
H130.170 (3)0.897 (3)0.0602 (16)0.091 (8)*
C140.2664 (2)0.7119 (3)0.03806 (16)0.0681 (6)
H140.180 (3)0.652 (3)0.0280 (15)0.078 (7)*
N10.9275 (2)0.8262 (3)0.17169 (15)0.0913 (7)
N20.86343 (15)0.65215 (18)0.01597 (9)0.0504 (4)
H2B0.915 (2)0.583 (2)0.0422 (13)0.058 (6)*
N30.7991 (2)0.7869 (2)0.10338 (11)0.0681 (5)
N40.96897 (16)0.59970 (18)0.10065 (10)0.0565 (4)
N50.62782 (15)0.65417 (19)0.04528 (11)0.0523 (4)
H5B0.623 (2)0.575 (2)0.0285 (13)0.055 (6)*
N60.51088 (15)0.85980 (16)0.07449 (10)0.0505 (4)
N70.38702 (15)0.64257 (18)0.03335 (11)0.0569 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.116 (3)0.121 (3)0.100 (3)0.013 (2)0.041 (2)0.015 (2)
C20.116 (3)0.145 (3)0.0593 (18)0.041 (2)0.0115 (17)0.023 (2)
C30.108 (2)0.148 (3)0.0659 (18)0.040 (2)0.0316 (17)0.026 (2)
C40.0699 (15)0.0954 (18)0.0600 (14)0.0035 (14)0.0142 (11)0.0109 (12)
C50.0422 (9)0.0545 (10)0.0499 (10)0.0134 (8)0.0070 (7)0.0050 (8)
C60.0405 (8)0.0518 (10)0.0466 (9)0.0107 (7)0.0112 (7)0.0019 (8)
C70.0407 (8)0.0538 (10)0.0455 (9)0.0083 (7)0.0090 (7)0.0013 (7)
C80.1015 (18)0.0871 (17)0.0587 (13)0.0359 (15)0.0206 (12)0.0189 (12)
C90.112 (2)0.0959 (19)0.0560 (13)0.0323 (16)0.0355 (13)0.0144 (12)
C100.0840 (15)0.0874 (16)0.0574 (13)0.0288 (13)0.0289 (11)0.0031 (11)
C110.0417 (9)0.0548 (10)0.0366 (8)0.0108 (7)0.0072 (6)0.0032 (7)
C120.0564 (11)0.0512 (11)0.0751 (14)0.0147 (9)0.0204 (10)0.0017 (10)
C130.0472 (11)0.0715 (14)0.0916 (16)0.0217 (10)0.0126 (10)0.0089 (12)
C140.0410 (10)0.0758 (15)0.0865 (16)0.0063 (10)0.0041 (9)0.0215 (12)
N10.0819 (14)0.0997 (16)0.0858 (15)0.0169 (13)0.0136 (11)0.0007 (12)
N20.0471 (8)0.0599 (10)0.0458 (8)0.0211 (7)0.0127 (6)0.0045 (7)
N30.0792 (12)0.0745 (12)0.0535 (10)0.0336 (10)0.0197 (8)0.0095 (8)
N40.0549 (9)0.0641 (10)0.0533 (9)0.0174 (8)0.0173 (7)0.0023 (7)
N50.0394 (8)0.0528 (10)0.0648 (10)0.0093 (7)0.0066 (6)0.0165 (8)
N60.0480 (8)0.0486 (8)0.0575 (9)0.0088 (7)0.0162 (7)0.0010 (7)
N70.0406 (8)0.0603 (10)0.0690 (11)0.0080 (7)0.0041 (7)0.0189 (8)
Geometric parameters (Å, º) top
C1—C21.327 (6)C8—C91.355 (3)
C1—N11.350 (4)C8—H81.07 (3)
C1—H11.03 (4)C9—C101.357 (4)
C2—C31.343 (6)C9—H90.99 (3)
C2—H20.93 (4)C10—N41.334 (3)
C3—C41.408 (4)C10—H100.98 (3)
C3—H30.87 (4)C11—N61.341 (2)
C4—C51.346 (3)C11—N71.348 (2)
C4—H40.82 (2)C11—N51.354 (2)
C5—N11.338 (3)C12—N61.333 (2)
C5—C61.513 (3)C12—C131.366 (3)
C6—N21.446 (2)C12—H121.00 (2)
C6—N51.452 (2)C13—C141.371 (3)
C6—H60.97 (2)C13—H130.96 (3)
C7—N31.331 (2)C14—N71.335 (2)
C7—N41.349 (2)C14—H141.00 (2)
C7—N21.350 (2)N2—H2B0.89 (2)
C8—N31.334 (3)N5—H5B0.79 (2)
C2—C1—N1123.8 (4)C8—C9—H9120.8 (17)
C2—C1—H1121 (2)C10—C9—H9122.4 (17)
N1—C1—H1115 (2)N4—C10—C9123.6 (2)
C1—C2—C3119.2 (3)N4—C10—H10114.7 (15)
C1—C2—H2120 (3)C9—C10—H10121.8 (15)
C3—C2—H2120 (2)N6—C11—N7126.46 (15)
C2—C3—C4119.1 (3)N6—C11—N5117.52 (16)
C2—C3—H3135 (3)N7—C11—N5116.02 (16)
C4—C3—H3106 (3)N6—C12—C13123.62 (19)
C5—C4—C3118.3 (3)N6—C12—H12113.6 (13)
C5—C4—H4118.9 (18)C13—C12—H12122.7 (13)
C3—C4—H4122.7 (18)C12—C13—C14116.41 (18)
N1—C5—C4122.5 (2)C12—C13—H13124.8 (16)
N1—C5—C6114.40 (18)C14—C13—H13118.7 (16)
C4—C5—C6123.1 (2)N7—C14—C13123.1 (2)
N2—C6—N5109.37 (15)N7—C14—H14115.2 (14)
N2—C6—C5109.70 (14)C13—C14—H14121.6 (14)
N5—C6—C5113.47 (15)C5—N1—C1117.0 (3)
N2—C6—H6105.9 (11)C7—N2—C6122.37 (15)
N5—C6—H6109.2 (11)C7—N2—H2B119.2 (13)
C5—C6—H6108.9 (11)C6—N2—H2B118.4 (13)
N3—C7—N4125.93 (16)C7—N3—C8115.86 (17)
N3—C7—N2118.29 (15)C10—N4—C7114.85 (17)
N4—C7—N2115.78 (16)C11—N5—C6122.74 (16)
N3—C8—C9123.0 (2)C11—N5—H5B117.0 (15)
N3—C8—H8114.3 (15)C6—N5—H5B120.0 (15)
C9—C8—H8122.5 (15)C12—N6—C11115.09 (17)
C8—C9—C10116.7 (2)C14—N7—C11115.17 (17)
N1—C1—C2—C30.4 (6)N5—C6—N2—C785.7 (2)
C1—C2—C3—C40.5 (5)C5—C6—N2—C7149.27 (18)
C2—C3—C4—C50.3 (5)N4—C7—N3—C82.7 (3)
C3—C4—C5—N11.1 (4)N2—C7—N3—C8176.9 (2)
C3—C4—C5—C6179.6 (2)C9—C8—N3—C70.2 (4)
N1—C5—C6—N271.8 (2)C9—C10—N4—C70.6 (4)
C4—C5—C6—N2107.6 (2)N3—C7—N4—C102.9 (3)
N1—C5—C6—N5165.58 (18)N2—C7—N4—C10176.74 (19)
C4—C5—C6—N515.0 (3)N6—C11—N5—C61.2 (3)
N3—C8—C9—C101.8 (5)N7—C11—N5—C6178.94 (16)
C8—C9—C10—N41.6 (5)N2—C6—N5—C11154.94 (16)
N6—C12—C13—C140.7 (4)C5—C6—N5—C1182.2 (2)
C12—C13—C14—N71.5 (4)C13—C12—N6—C112.9 (3)
C4—C5—N1—C11.1 (4)N7—C11—N6—C123.3 (3)
C6—C5—N1—C1179.5 (3)N5—C11—N6—C12176.80 (17)
C2—C1—N1—C50.4 (5)C13—C14—N7—C111.2 (3)
N3—C7—N2—C63.6 (3)N6—C11—N7—C141.4 (3)
N4—C7—N2—C6176.73 (17)N5—C11—N7—C14178.76 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2B···N4i0.885 (19)2.181 (19)3.064 (2)175.3 (19)
N5—H5B···N7ii0.787 (19)2.259 (19)3.042 (3)174 (2)
C4—H4···N50.82 (3)2.53 (3)2.851 (3)105 (2)
C6—H6···N30.968 (19)2.373 (19)2.756 (3)102.9 (13)
C12—H12···N3iii1.00 (3)2.57 (2)3.304 (3)130.4 (15)
C9—H9···Cg1iv0.99 (3)2.62 (3)3.532 (3)154 (3)
Symmetry codes: (i) x+2, y+1, z; (ii) x+1, y+1, z; (iii) x+1, y+2, z; (iv) x+1/2, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formulaC14H13N7
Mr279.31
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)9.5781 (19), 9.3543 (16), 15.975 (4)
β (°) 97.521 (17)
V3)1419.0 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.45 × 0.20 × 0.05
Data collection
DiffractometerStoe IPDS-II
diffractometer
Absorption correctionNumerical
shape of crystal determined optically (Program? reference?)
Tmin, Tmax0.970, 0.998
No. of measured, independent and
observed [I > 2σ(I)] reflections
12281, 2997, 2443
Rint0.032
(sin θ/λ)max1)0.634
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.140, 1.12
No. of reflections2997
No. of parameters242
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.15, 0.16

Computer programs: X-AREA (Stoe & Cie, 2005), X-RED32 (Stoe & Cie, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2B···N4i0.885 (19)2.181 (19)3.064 (2)175.3 (19)
N5—H5B···N7ii0.787 (19)2.259 (19)3.042 (3)174 (2)
C4—H4···N50.82 (3)2.53 (3)2.851 (3)105 (2)
C6—H6···N30.968 (19)2.373 (19)2.756 (3)102.9 (13)
C12—H12···N3iii1.00 (3)2.57 (2)3.304 (3)130.4 (15)
C9—H9···Cg1iv0.99 (3)2.62 (3)3.532 (3)154 (3)
Symmetry codes: (i) x+2, y+1, z; (ii) x+1, y+1, z; (iii) x+1, y+2, z; (iv) x+1/2, y+3/2, z1/2.
 

References

First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationLee, J. H., Lewos, R. D., Mendes, J., Turnbull, M. M. & Awwadi, F. F. (2003). J. Coord. Chem. 56, 1425–1442.  Web of Science CSD CrossRef CAS Google Scholar
First citationMasaki, M. E., Prince, B. J. & Turnbull, M. M. (2002). J. Coord. Chem. 55, 1337–1351.  Web of Science CSD CrossRef CAS Google Scholar
First citationOnal, Z. & Altral, B. (1999). Turk. J. Chem. 23, 401–405.  CAS Google Scholar
First citationPonticelli, G. & Spanu, A. (1999). Transition Met. Chem. 24, 370–372.  Web of Science CrossRef CAS Google Scholar
First citationPrince, B. J., Turnbull, M. M. & Willett, R. D. (2003). J. Coord. Chem. 56, 441–452.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2005). X-AREA, X-RED32and X-SHAPE. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationTabatabaee, M., Ghassemzadeh, M., Dehghan, A. R., Khavasi, H. R. & Heravi, M. M. (2007a). Acta Cryst. E63, o42–o43.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTabatabaee, M., Ghassemzadeh, M. & Soleimani, N. (2008). Anal. Sci. 24, x173–x174.  CAS Google Scholar
First citationTabatabaee, M., Ghassemzadeh, M., Zarabi, B., Heravi, M. M., Anary- Abbasinejad, M. & Neumüller, B. (2007b). Phosphorus Sulfur Silicon Relat. Elem. 182, 677–686.  Web of Science CSD CrossRef CAS Google Scholar
First citationTabatabaee, M., Ghassemzadeh, M., Zarabi, B. & &Neumüller, B. (2006). Z. Naturforsch. Teil B, 61, 1421–1425.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds