organic compounds
Bis[(m-phenylenedimethylene)diammonium] tetradecaborate
aState Key Laboratory Base of Novel Functional Materials and Preparation Science, Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, People's Republic of China
*Correspondence e-mail: liangyunxiao@nbu.edu.cn
The title compound 2C8H14N22+·[B14O20(OH)6]4−, contains diprotonated C8H14N22+ cations and centrosymmetric tetradecaborate anions. The is stabilized by O—H⋯O and N—H⋯O hydrogen bonds.
Related literature
For background on the importance of borate compounds, see: Chen et al. (1995); Grice et al. (1999). For previous work on boron oxoanions, see: Liu et al. (2006); Pan et al. (2007); Grice et al. (1999); Schubert et al. (2000); Touboul et al. (2003); Burns (1995).
Experimental
Crystal data
|
Refinement
|
Data collection: RAPID-AUTO (Rigaku, 1998); cell RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536808033333/bt2801sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808033333/bt2801Isup2.hkl
The title compound was obtained by the reaction of H3BO3 and 1,3-Bis(aminomethyl)benzene under mild solvothermal conditions. Typically, a mixture of H3BO3 (0.9882 g), 1,3-Bis(aminomethyl)benzene (3 ml) was stirred at room temperature. The final mixture was sealed in a Teflon-lined autoclave, heated to 443 K at a rate of 10 K/h, kept at 443 K for 4 days and then cooled to room temperature at a rate of 5 K/h. Colorless transparent block-like crystals were collected and dried in air.
All H atoms were positioned geometrically and refined as riding model [O—H = 0.82 Å, N—H = 0.89 Å, C—Haromatic = 0.93 Å, C—H2 = 0.97 Å, and with Uiso(H) = 1.5Ueq(O), Uiso(H) = 1.5Ueq(N), Uiso(H) = 1.2Ueq(C)].
Data collection: RAPID-AUTO (Rigaku, 1998); cell
RAPID-AUTO (Rigaku, 1998); data reduction: (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).Fig. 1. The crystal structure of [(C8H14N2)]2[B14O20(OH)6]: (a) [B14O20(OH)6]4-; (b) [(C8H14N2)]2+, drawn at the 50% probability level. [Symmetry codes: (i) -x+1, -y+1, -z+1.] | |
Fig. 2. Formation of the two-dimensional sheet from the [B14O20(OH)6]4- polyanions. Hydrogen bonds are indicated by dashed lines. | |
Fig. 3. View of the diprotonated of organic amines in the inorganic borate network along a axis. |
2C8H14N22+·B14H6O264− | Z = 1 |
Mr = 849.81 | F(000) = 436 |
Triclinic, P1 | Dx = 1.646 Mg m−3 |
Hall symbol: -P1 | Mo Kα radiation, λ = 0.71073 Å |
a = 9.1025 (18) Å | Cell parameters from 4940 reflections |
b = 10.293 (2) Å | θ = 6.7–54.9° |
c = 10.942 (2) Å | µ = 0.14 mm−1 |
α = 109.68 (3)° | T = 295 K |
β = 108.24 (3)° | Block, colourless |
γ = 102.19 (3)° | 0.34 × 0.26 × 0.18 mm |
V = 857.4 (5) Å3 |
Rigaku R-AXIS RAPID diffractometer | 3009 independent reflections |
Radiation source: fine-focus sealed tube | 2002 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.023 |
ω scans | θmax = 25.0°, θmin = 3.4° |
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) | h = −10→10 |
Tmin = 0.964, Tmax = 0.973 | k = −12→12 |
6803 measured reflections | l = −12→12 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.035 | H-atom parameters constrained |
wR(F2) = 0.128 | w = 1/[σ2(Fo2) + (0.0299P)2 + 1.2547P] where P = (Fo2 + 2Fc2)/3 |
S = 1.24 | (Δ/σ)max < 0.001 |
3009 reflections | Δρmax = 0.42 e Å−3 |
272 parameters | Δρmin = −0.46 e Å−3 |
0 restraints | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.012 (2) |
2C8H14N22+·B14H6O264− | γ = 102.19 (3)° |
Mr = 849.81 | V = 857.4 (5) Å3 |
Triclinic, P1 | Z = 1 |
a = 9.1025 (18) Å | Mo Kα radiation |
b = 10.293 (2) Å | µ = 0.14 mm−1 |
c = 10.942 (2) Å | T = 295 K |
α = 109.68 (3)° | 0.34 × 0.26 × 0.18 mm |
β = 108.24 (3)° |
Rigaku R-AXIS RAPID diffractometer | 3009 independent reflections |
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) | 2002 reflections with I > 2σ(I) |
Tmin = 0.964, Tmax = 0.973 | Rint = 0.023 |
6803 measured reflections |
R[F2 > 2σ(F2)] = 0.035 | 0 restraints |
wR(F2) = 0.128 | H-atom parameters constrained |
S = 1.24 | Δρmax = 0.42 e Å−3 |
3009 reflections | Δρmin = −0.46 e Å−3 |
272 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
B1 | 0.6460 (5) | 0.4668 (4) | 0.7888 (4) | 0.0240 (8) | |
B2 | 0.7413 (4) | 0.3345 (4) | 0.6060 (4) | 0.0222 (8) | |
B3 | 0.5338 (4) | 0.1936 (4) | 0.6602 (4) | 0.0247 (8) | |
B4 | 0.6535 (4) | 0.6248 (4) | 1.0187 (4) | 0.0209 (7) | |
B5 | 0.4617 (5) | 0.6104 (4) | 0.8040 (4) | 0.0233 (8) | |
B6 | 0.7437 (4) | 0.3478 (4) | 0.3829 (4) | 0.0225 (8) | |
B7 | 0.9709 (5) | 0.3173 (4) | 0.5343 (4) | 0.0252 (8) | |
O1 | 0.7649 (3) | 0.4597 (2) | 0.7304 (2) | 0.0238 (5) | |
O2 | 0.6220 (3) | 0.1961 (2) | 0.5811 (2) | 0.0279 (5) | |
O3 | 0.5410 (3) | 0.3195 (2) | 0.7601 (2) | 0.0266 (5) | |
O4 | 0.7324 (3) | 0.5555 (2) | 0.9474 (2) | 0.0231 (5) | |
O5 | 0.5160 (3) | 0.6519 (2) | 0.9489 (2) | 0.0259 (5) | |
O6 | 0.5330 (3) | 0.5377 (2) | 0.7283 (2) | 0.0248 (5) | |
O7 | 0.6718 (3) | 0.3576 (2) | 0.4736 (2) | 0.0263 (5) | |
O8 | 0.8946 (3) | 0.3301 (3) | 0.4095 (2) | 0.0297 (6) | |
O9 | 0.9009 (3) | 0.3166 (2) | 0.6244 (2) | 0.0260 (5) | |
O10 | 0.4275 (3) | 0.0652 (3) | 0.6413 (3) | 0.0447 (7) | |
H10A | 0.4225 | −0.0042 | 0.5733 | 0.067* | |
O11 | 0.7074 (3) | 0.6690 (2) | 1.1630 (2) | 0.0269 (5) | |
H11A | 0.6297 | 0.6722 | 1.1852 | 0.040* | |
O12 | 0.3292 (3) | 0.6490 (3) | 0.7475 (2) | 0.0284 (5) | |
O13 | 1.1239 (3) | 0.3064 (3) | 0.5617 (2) | 0.0374 (6) | |
H13A | 1.1659 | 0.3147 | 0.6433 | 0.056* | |
N1 | 0.3291 (3) | 0.3057 (3) | 0.4112 (3) | 0.0329 (7) | |
H1A | 0.4353 | 0.3287 | 0.4654 | 0.049* | |
H1B | 0.2747 | 0.3228 | 0.4662 | 0.049* | |
H1C | 0.3203 | 0.3605 | 0.3633 | 0.049* | |
N2 | −0.1153 (3) | 0.4082 (3) | 0.0950 (3) | 0.0320 (7) | |
H2A | −0.1372 | 0.4667 | 0.0531 | 0.048* | |
H2B | −0.0078 | 0.4427 | 0.1513 | 0.048* | |
H2C | −0.1730 | 0.4060 | 0.1471 | 0.048* | |
C1 | 0.0788 (4) | 0.1079 (4) | 0.2176 (4) | 0.0316 (8) | |
C2 | 0.0378 (4) | 0.1765 (4) | 0.1291 (4) | 0.0313 (8) | |
H2D | 0.1214 | 0.2350 | 0.1185 | 0.038* | |
C3 | −0.1245 (4) | 0.1600 (4) | 0.0564 (4) | 0.0310 (8) | |
C4 | −0.2492 (4) | 0.0650 (4) | 0.0667 (4) | 0.0380 (9) | |
H4A | −0.3593 | 0.0505 | 0.0165 | 0.046* | |
C5 | −0.2107 (5) | −0.0074 (4) | 0.1508 (4) | 0.0452 (10) | |
H5A | −0.2949 | −0.0713 | 0.1563 | 0.054* | |
C6 | −0.0475 (5) | 0.0143 (4) | 0.2272 (4) | 0.0387 (9) | |
H6A | −0.0220 | −0.0337 | 0.2850 | 0.046* | |
C7 | 0.2573 (5) | 0.1467 (4) | 0.3083 (4) | 0.0413 (9) | |
H7A | 0.2681 | 0.0865 | 0.3600 | 0.050* | |
H7B | 0.3166 | 0.1274 | 0.2483 | 0.050* | |
C8 | −0.1624 (5) | 0.2555 (4) | −0.0168 (4) | 0.0373 (9) | |
H8A | −0.2794 | 0.2172 | −0.0789 | 0.045* | |
H8B | −0.1006 | 0.2570 | −0.0744 | 0.045* |
U11 | U22 | U33 | U12 | U13 | U23 | |
B1 | 0.0293 (19) | 0.027 (2) | 0.0191 (19) | 0.0131 (16) | 0.0134 (16) | 0.0092 (16) |
B2 | 0.0212 (18) | 0.025 (2) | 0.0231 (19) | 0.0095 (15) | 0.0124 (16) | 0.0104 (16) |
B3 | 0.0267 (19) | 0.024 (2) | 0.024 (2) | 0.0084 (16) | 0.0132 (16) | 0.0098 (17) |
B4 | 0.0219 (18) | 0.0198 (18) | 0.0207 (19) | 0.0057 (14) | 0.0104 (15) | 0.0081 (15) |
B5 | 0.0287 (19) | 0.0248 (19) | 0.0197 (19) | 0.0128 (16) | 0.0115 (16) | 0.0101 (16) |
B6 | 0.0245 (19) | 0.0242 (19) | 0.0179 (18) | 0.0128 (15) | 0.0081 (15) | 0.0060 (15) |
B7 | 0.0265 (19) | 0.032 (2) | 0.0162 (18) | 0.0142 (17) | 0.0085 (16) | 0.0072 (16) |
O1 | 0.0236 (11) | 0.0247 (12) | 0.0230 (12) | 0.0071 (9) | 0.0145 (10) | 0.0067 (10) |
O2 | 0.0325 (12) | 0.0254 (12) | 0.0273 (13) | 0.0089 (10) | 0.0197 (11) | 0.0073 (10) |
O3 | 0.0327 (13) | 0.0219 (12) | 0.0295 (13) | 0.0083 (10) | 0.0211 (11) | 0.0095 (10) |
O4 | 0.0253 (11) | 0.0272 (12) | 0.0160 (11) | 0.0119 (9) | 0.0086 (9) | 0.0071 (10) |
O5 | 0.0291 (12) | 0.0354 (13) | 0.0188 (12) | 0.0186 (10) | 0.0117 (10) | 0.0119 (10) |
O6 | 0.0292 (12) | 0.0320 (13) | 0.0190 (11) | 0.0182 (10) | 0.0119 (10) | 0.0113 (10) |
O7 | 0.0251 (12) | 0.0394 (14) | 0.0243 (12) | 0.0182 (10) | 0.0145 (10) | 0.0168 (11) |
O8 | 0.0280 (12) | 0.0458 (15) | 0.0253 (13) | 0.0196 (11) | 0.0161 (10) | 0.0183 (11) |
O9 | 0.0248 (12) | 0.0392 (14) | 0.0237 (12) | 0.0175 (10) | 0.0153 (10) | 0.0157 (11) |
O10 | 0.0624 (17) | 0.0251 (14) | 0.0473 (16) | 0.0051 (12) | 0.0399 (15) | 0.0069 (12) |
O11 | 0.0280 (12) | 0.0377 (14) | 0.0196 (12) | 0.0158 (10) | 0.0130 (10) | 0.0123 (10) |
O12 | 0.0315 (13) | 0.0418 (14) | 0.0240 (12) | 0.0234 (11) | 0.0155 (10) | 0.0178 (11) |
O13 | 0.0271 (13) | 0.0688 (18) | 0.0272 (13) | 0.0275 (13) | 0.0146 (11) | 0.0238 (13) |
N1 | 0.0276 (15) | 0.0430 (18) | 0.0291 (16) | 0.0123 (13) | 0.0137 (13) | 0.0152 (14) |
N2 | 0.0338 (16) | 0.0351 (17) | 0.0316 (16) | 0.0160 (13) | 0.0139 (13) | 0.0170 (14) |
C1 | 0.0338 (19) | 0.0238 (18) | 0.0276 (19) | 0.0091 (15) | 0.0082 (15) | 0.0054 (15) |
C2 | 0.0323 (19) | 0.0286 (19) | 0.0274 (19) | 0.0091 (15) | 0.0107 (16) | 0.0085 (15) |
C3 | 0.0325 (19) | 0.0279 (19) | 0.0270 (19) | 0.0117 (15) | 0.0102 (16) | 0.0072 (15) |
C4 | 0.0290 (19) | 0.029 (2) | 0.045 (2) | 0.0075 (16) | 0.0120 (17) | 0.0087 (18) |
C5 | 0.044 (2) | 0.033 (2) | 0.054 (3) | 0.0065 (18) | 0.024 (2) | 0.014 (2) |
C6 | 0.050 (2) | 0.028 (2) | 0.043 (2) | 0.0132 (17) | 0.0213 (19) | 0.0194 (18) |
C7 | 0.041 (2) | 0.037 (2) | 0.038 (2) | 0.0188 (18) | 0.0109 (18) | 0.0096 (18) |
C8 | 0.041 (2) | 0.038 (2) | 0.0250 (19) | 0.0164 (17) | 0.0063 (16) | 0.0113 (17) |
B1—O1 | 1.421 (4) | O13—H13A | 0.8200 |
B1—O3 | 1.480 (4) | N1—C7 | 1.489 (5) |
B1—O4 | 1.496 (4) | N1—H1A | 0.8900 |
B1—O6 | 1.499 (4) | N1—H1B | 0.8900 |
B2—O1 | 1.442 (4) | N1—H1C | 0.8900 |
B2—O9 | 1.463 (4) | N2—C8 | 1.497 (4) |
B2—O2 | 1.477 (4) | N2—H2A | 0.8900 |
B2—O7 | 1.509 (4) | N2—H2B | 0.8900 |
B3—O2 | 1.354 (4) | N2—H2C | 0.8900 |
B3—O3 | 1.358 (4) | C1—C2 | 1.385 (5) |
B3—O10 | 1.370 (4) | C1—C6 | 1.391 (5) |
B4—O4 | 1.351 (4) | C1—C7 | 1.495 (5) |
B4—O11 | 1.370 (4) | C2—C3 | 1.383 (5) |
B4—O5 | 1.386 (4) | C2—H2D | 0.9300 |
B5—O6 | 1.338 (4) | C3—C4 | 1.394 (5) |
B5—O12 | 1.377 (4) | C3—C8 | 1.492 (5) |
B5—O5 | 1.380 (4) | C4—C5 | 1.377 (6) |
B6—O7 | 1.338 (4) | C4—H4A | 0.9300 |
B6—O8 | 1.377 (4) | C5—C6 | 1.383 (5) |
B6—O12i | 1.388 (4) | C5—H5A | 0.9300 |
B7—O9 | 1.332 (4) | C6—H6A | 0.9300 |
B7—O13 | 1.368 (4) | C7—H7A | 0.9700 |
B7—O8 | 1.388 (4) | C7—H7B | 0.9700 |
O10—H10A | 0.8200 | C8—H8A | 0.9700 |
O11—H11A | 0.8200 | C8—H8B | 0.9700 |
O12—B6i | 1.388 (4) | ||
O1—B1—O3 | 112.6 (3) | C7—N1—H1B | 109.5 |
O1—B1—O4 | 109.6 (3) | H1A—N1—H1B | 109.5 |
O3—B1—O4 | 107.5 (2) | C7—N1—H1C | 109.5 |
O1—B1—O6 | 111.1 (3) | H1A—N1—H1C | 109.5 |
O3—B1—O6 | 107.2 (3) | H1B—N1—H1C | 109.5 |
O4—B1—O6 | 108.6 (2) | C8—N2—H2A | 109.5 |
O1—B2—O9 | 108.6 (3) | C8—N2—H2B | 109.5 |
O1—B2—O2 | 112.9 (2) | H2A—N2—H2B | 109.5 |
O9—B2—O2 | 109.0 (3) | C8—N2—H2C | 109.5 |
O1—B2—O7 | 110.2 (3) | H2A—N2—H2C | 109.5 |
O9—B2—O7 | 110.1 (2) | H2B—N2—H2C | 109.5 |
O2—B2—O7 | 105.9 (3) | C2—C1—C6 | 118.9 (3) |
O2—B3—O3 | 121.8 (3) | C2—C1—C7 | 118.6 (3) |
O2—B3—O10 | 122.5 (3) | C6—C1—C7 | 122.2 (3) |
O3—B3—O10 | 115.7 (3) | C3—C2—C1 | 121.5 (3) |
O4—B4—O11 | 120.4 (3) | C3—C2—H2D | 119.2 |
O4—B4—O5 | 121.5 (3) | C1—C2—H2D | 119.2 |
O11—B4—O5 | 118.1 (3) | C2—C3—C4 | 118.6 (3) |
O6—B5—O12 | 124.5 (3) | C2—C3—C8 | 120.2 (3) |
O6—B5—O5 | 121.6 (3) | C4—C3—C8 | 120.9 (3) |
O12—B5—O5 | 113.8 (3) | C5—C4—C3 | 120.5 (3) |
O7—B6—O8 | 122.9 (3) | C5—C4—H4A | 119.8 |
O7—B6—O12i | 122.9 (3) | C3—C4—H4A | 119.8 |
O8—B6—O12i | 114.2 (3) | C4—C5—C6 | 120.3 (4) |
O9—B7—O13 | 120.9 (3) | C4—C5—H5A | 119.8 |
O9—B7—O8 | 122.5 (3) | C6—C5—H5A | 119.8 |
O13—B7—O8 | 116.6 (3) | C5—C6—C1 | 120.1 (3) |
B1—O1—B2 | 123.5 (3) | C5—C6—H6A | 120.0 |
B3—O2—B2 | 122.1 (3) | C1—C6—H6A | 120.0 |
B3—O3—B1 | 121.8 (2) | N1—C7—C1 | 109.5 (3) |
B4—O4—B1 | 119.7 (3) | N1—C7—H7A | 109.8 |
B5—O5—B4 | 118.9 (2) | C1—C7—H7A | 109.8 |
B5—O6—B1 | 120.7 (2) | N1—C7—H7B | 109.8 |
B6—O7—B2 | 122.4 (2) | C1—C7—H7B | 109.8 |
B6—O8—B7 | 117.6 (3) | H7A—C7—H7B | 108.2 |
B7—O9—B2 | 124.2 (3) | C3—C8—N2 | 108.3 (3) |
B3—O10—H10A | 109.5 | C3—C8—H8A | 110.0 |
B4—O11—H11A | 109.5 | N2—C8—H8A | 110.0 |
B5—O12—B6i | 132.5 (3) | C3—C8—H8B | 110.0 |
B7—O13—H13A | 109.5 | N2—C8—H8B | 110.0 |
C7—N1—H1A | 109.5 | H8A—C8—H8B | 108.4 |
Symmetry code: (i) −x+1, −y+1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O10—H10A···O2ii | 0.82 | 1.98 | 2.784 (2) | 168 |
O11—H11A···O3iii | 0.82 | 1.84 | 2.659 (2) | 179 |
O13—H13A···O11iv | 0.82 | 2.00 | 2.815 (2) | 173 |
N1—H1A···O7 | 0.89 | 2.08 | 2.863 (2) | 146 |
N1—H1B···O13v | 0.89 | 1.98 | 2.850 (2) | 166 |
N1—H1C···O6i | 0.89 | 2.20 | 2.916 (2) | 137 |
N1—H1C···O1i | 0.89 | 2.54 | 3.394 (2) | 161 |
N2—H2A···O4vi | 0.89 | 1.97 | 2.822 (2) | 159 |
N2—H2B···O1i | 0.89 | 1.99 | 2.877 (2) | 173 |
N2—H2B···O9i | 0.89 | 2.55 | 3.052 (2) | 116 |
N2—H2C···O12vii | 0.89 | 2.19 | 3.067 (2) | 168 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+1, −y, −z+1; (iii) −x+1, −y+1, −z+2; (iv) −x+2, −y+1, −z+2; (v) x−1, y, z; (vi) x−1, y, z−1; (vii) −x, −y+1, −z+1. |
Experimental details
Crystal data | |
Chemical formula | 2C8H14N22+·B14H6O264− |
Mr | 849.81 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 295 |
a, b, c (Å) | 9.1025 (18), 10.293 (2), 10.942 (2) |
α, β, γ (°) | 109.68 (3), 108.24 (3), 102.19 (3) |
V (Å3) | 857.4 (5) |
Z | 1 |
Radiation type | Mo Kα |
µ (mm−1) | 0.14 |
Crystal size (mm) | 0.34 × 0.26 × 0.18 |
Data collection | |
Diffractometer | Rigaku R-AXIS RAPID diffractometer |
Absorption correction | Multi-scan (ABSCOR; Higashi, 1995) |
Tmin, Tmax | 0.964, 0.973 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 6803, 3009, 2002 |
Rint | 0.023 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.035, 0.128, 1.24 |
No. of reflections | 3009 |
No. of parameters | 272 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.42, −0.46 |
Computer programs: RAPID-AUTO (Rigaku, 1998),
(Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPII (Johnson, 1976).D—H···A | D—H | H···A | D···A | D—H···A |
O10—H10A···O2i | 0.82 | 1.98 | 2.784 (2) | 168 |
O11—H11A···O3ii | 0.82 | 1.84 | 2.659 (2) | 179 |
O13—H13A···O11iii | 0.82 | 2.00 | 2.815 (2) | 173 |
N1—H1A···O7 | 0.89 | 2.08 | 2.863 (2) | 146 |
N1—H1B···O13iv | 0.89 | 1.98 | 2.850 (2) | 166 |
N1—H1C···O6v | 0.89 | 2.20 | 2.916 (2) | 137 |
N1—H1C···O1v | 0.89 | 2.54 | 3.394 (2) | 161 |
N2—H2A···O4vi | 0.89 | 1.97 | 2.822 (2) | 159 |
N2—H2B···O1v | 0.89 | 1.99 | 2.877 (2) | 173 |
N2—H2B···O9v | 0.89 | 2.55 | 3.052 (2) | 116 |
N2—H2C···O12vii | 0.89 | 2.19 | 3.067 (2) | 168 |
Symmetry codes: (i) −x+1, −y, −z+1; (ii) −x+1, −y+1, −z+2; (iii) −x+2, −y+1, −z+2; (iv) x−1, y, z; (v) −x+1, −y+1, −z+1; (vi) x−1, y, z−1; (vii) −x, −y+1, −z+1. |
Acknowledgements
This work was supported by the Ningbo Natural Science Foundation (grant No. 2007A610022) and the K. C. Wong Magna Fund of Ningbo University.
References
Burns, P. C. (1995). Can. Mineral. 33, 1167–1176. CAS Google Scholar
Chen, C., Wang, Y., Wu, B., Wu, K., Zeng, W. & Yu, L. (1995). Nature (London), 373, 322–324. CrossRef CAS Web of Science Google Scholar
Grice, J. D., Burns, P. C. & Hawthorne, F. C. (1999). Can. Mineral. 37, 731–762. CAS Google Scholar
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan. Google Scholar
Johnson, C. K. (1976). ORTEPII. Report ORNL–5138. Oak Ridge National Laboratory, Tennessee, USA. Google Scholar
Liu, Z. H., Li, L. Q. & Zhang, W. J. (2006). Inorg. Chem. 45, 1430–1432. Web of Science CSD CrossRef PubMed CAS Google Scholar
Pan, C. Y., Wang, G. M., Zheng, S. T. & Yang, G. Y. (2007). Z. Anorg. Allg. Chem. 633, 336–340. Web of Science CSD CrossRef CAS Google Scholar
Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan. Google Scholar
Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA. Google Scholar
Schubert, D. M., Visi, M. Z. & Knobler, C. B. (2000). Inorg. Chem. 39, 2250–2251. Web of Science CSD CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Touboul, M., Penin, N. & Nowogrocki, G. (2003). Solid State Sci. 5, 1327–1342. Web of Science CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Borate compounds have considerable mineralogical and industrial importance (Chen et al., 1995; Grice et al., 1999). Boron atoms form strong bonds with oxygen atoms not only in trigonal planar BO3, but also in tetrahedral BO4 groups. These BO3 and BO4 groups may be linked together by sharing common oxygen to form isolated rings and cages or extended chains, sheets, and networks. So far, a number of isolated boron oxoanions have been found in mineral and synthetic borates, such as [B(OH)4]-, [B2O(OH)6]2-, [B3O3(OH)4]-, [B4O5(OH)4]2-, [B5O6(OH)4]-, [B6O7(OH)6]2- (Grice et al., 1999; Touboul et al., 2003), [B7O9(OH)5]2- (Liu et al., 2006; Pan et al., 2007), [B9O12(OH)6]3- (Schubert et al., 2000), and [B14O20(OH)6]4- (Liu et al., 2006; Pan et al., 2007). Compared with metal borates, the synthesis of organically modified nonmetal borates was less well explored in the past decades. Herein, we describe the synthesis and crystal structure of a new nonmetal borate with [B14O20(OH)6]4- as polyanions.
As shown in Fig. 1, the title compound consists of isolated [B14O20(OH)6]4- polyborate anions and [C8H14N2]2+ cations. The [B14O20(OH)6]4- borate anion is composed of four BO4, four BO3, and six BO2(OH) groups (Burns, 1995). It can also be seen as two [B7O9(OH)5]2- clusters combined with each other through the dehydration of four hydroxyl groups. Each [B7O9(OH)5]2- group contains three B3O3 cycles held together via two common BO4 tetrahedra. The B—O bond lengths and O—B—O bond angles are in the range of 1.332 (4)–1.509 (4) Å and 105.9 (3)–124.5 (3)° (Table 1), which are in good agreement with other borates reported previously (Liu et al., 2006; Pan et al., 2007).
In the present instance, the isolated tetradecaborates anions are linked together through hydrogen bonds: O10—H10A···O2, O11—H11A···O3 (Fig. 2), forming a two-dimensional sheetlike structure. The adjacent borate sheets are further linked together by strong H-bonding interactions [O13—H13A···O11] to form a three-dimensional network (Fig. 3). The hydrogen bonds are listed in Table 2.