organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-[4-Acetyl-5-(3-meth­oxy­phen­yl)-4,5-di­hydro-1,3,4-thia­diazol-2-yl]acetamide

aDivision of Image and Information Engineering, Pukyong National University, Busan 608-739, Republic of Korea, and bCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India
*Correspondence e-mail: ytjeong@pknu.ac.kr

(Received 29 September 2008; accepted 6 October 2008; online 11 October 2008)

The title compound, C13H15N3O3S, crystallizes with two mol­ecules in the asymmetric unit. The thia­diazole rings in both the mol­ecules adopt an envelope conformation. The crystal packing is stabilized by inter­molecular N—H⋯O and C—H⋯O inter­actions.

Related literature

For biological activities of thia­diazole derivatives, see: Balasubramanian et al. (2004[Balasubramanian, S., Ramalingan, C., Aridoss, G., Parthiban, S. & Kabilan, S. (2004). Med. Chem. Res. 13(5), 297-311.]); Li et al. (2001[Li, Z., Wang, X. & Da, Y. (2001). Synth. Commun. 31, 1829-1936.]); Radwan et al. (2007[Radwan, M. A. A., Ragab, E. A., Sabry, N. M. & El-Shenawy, S. M. (2007). Bioorg. Med. Chem. 15, 3832-3841.]); Supuran et al. (2001[Supuran, C. T., Briganti, F., Tilli, S., Chegwidden, W. R. & Scozzafava, A. (2001). Bioorg. Med. Chem. 9, 703-714.]). For ring conformational analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]); Nardelli (1983[Nardelli, M. (1983). Acta Cryst. C39, 1141-1142.]).

[Scheme 1]

Experimental

Crystal data
  • C13H15N3O3S

  • Mr = 293.34

  • Monoclinic, P 21

  • a = 11.3790 (4) Å

  • b = 10.5993 (3) Å

  • c = 11.9596 (2) Å

  • β = 108.225 (2)°

  • V = 1370.08 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 293 (2) K

  • 0.30 × 0.20 × 0.16 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1999[Bruker (1999). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.930, Tmax = 0.962

  • 16660 measured reflections

  • 7595 independent reflections

  • 5635 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.109

  • S = 1.03

  • 7595 reflections

  • 367 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.25 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), with 3584 Friedel pairs

  • Flack parameter: 0.07 (7)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯O5i 0.86 1.95 2.801 (3) 171
N6—H6A⋯O2ii 0.86 1.96 2.799 (3) 164
C25—H25C⋯O2ii 0.96 2.37 3.238 (4) 150
Symmetry codes: (i) [-x+2, y+{\script{1\over 2}}, -z+1]; (ii) [-x+1, y-{\script{1\over 2}}, -z+1].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Nitrogen heterocycles are one of the most important classes of biologically active compounds. Suitably substituted 1,3,4-thiadiazoles have attracted great attention owing to their broad spectrum of biological activities in the areas of medicine which includes antimicrobial, antituberculosis, anesthetic, antithrombotic, anticonvulsant, antihypertensive, anti-inflammatory and antiulcer activities (Balasubramanian et al., 2004; Li et al., 2001; Radwan et al. 2007; Supuran et al., 2001). Their action depends directly on the type and location of polar substituents on the heterocyclic ring. In general, pharmacological effect of potential drugs depends sensitively and solely on the stereochemistry and ring conformations. Thus, by keeping in view the promising biological potency of 1,3,4-thiadiazoles and variously substituted 1,3,4-thiadiazole frameworks, we have carried out the crystal structure determination of the title compound.

The title compound crystallizes with two molecules in the asymmetric unit. The sum of the angles at N1 (359.9 (6)°) and N4 (360.0 (6)°) are in accordance with sp2 hybridization. The torsion angles around C6—C1—O1—C13 [0.0 (4)°] and C19—C14—O4—C26 [-1.8 (4)°] indicates the coplanarity of the methoxy groups with the corresponding phenyl rings (C1–C6) and (C14–C19), respectively. The thiadiazole ring in both the molecules adopt envelope conformation with atoms C7 and C20 deviating by 0.395 (3) and 0.350 (3) Å, respectively, from the mean plane of the remaining atoms. The puckering parameters (Cremer & Pople, 1975) and the smallest displacement asymmetry parameters (Nardelli, 1983) for the thiadiazole rings C10—S2—C7—N1—N2 and C20—S2—C23—N5—N4 are q2 = 0.245 (2), 0.217 (2) Å, ϕ = 36.4 (6), 215.4 (6)° and Δs(C7) = 6.9 (2), Δs(C20) = 5.4 (2), respectively. N—H···O and C—H···O intermolecular interactions stabilize the crystal packing (Table 1).

Related literature top

For biological activities of thiadiazole derivatives, see: Balasubramanian et al. (2004); Li et al. (2001); Radwan et al. (2007); Supuran et al. (2001). For ring conformational analysis, see: Cremer & Pople (1975); Nardelli (1983).

Experimental top

The title compound was obtained by applying the method of Balasubramanian et al. (2004). 3-Methoxybenzadehyde thiosemicarbazone obtained by the reaction of 3-Methoxybenzadehyde and thiosemicarbazide was refluxed with excess of freshly distilled acetic anhydride on a water bath for about 7 h. After the completion of reaction, the excess of acetic anhydride was distilled off under reduced pressure and the obtained crude mass was purified by column chromatography (benzene–ethylacetate 5:1 v/v). Crystals were obtained from the solution of freshly distilled ethanol by slow evaporation at room temperature. 1H NMR (DMSO-d6, p.p.m.): 10.90 (s, 1H, amide NH); 7.36–6.76 (m, 5H, aromatic and ring methine protons); 3.78 (s, 3H, OCH3); 2.38 (s, 3H, –COCH3); 2.28 (s, 3H, –COCH3).

Refinement top

All H-atoms were refined using a riding model with d(C—H) = 0.93 Å, Uiso = 1.2Ueq (C) for aromatic, 0.98 Å, Uiso = 1.2Ueq (C) for CH, 0.96 Å, Uiso = 1.5Ueq (C) for CH3 and 0.86 Å, Uiso = 1.2Ueq (N) for NH atoms. The methyl groups were allowed to rotate but not to tip.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 (Bruker, 2004) and SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004) and XPREP (Bruker, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. The molecular packing of the title compound. For clarity, hydrogen atoms which are not involved in hydrogen bonding were omitted.
N-[4-Acetyl-5-(3-methoxyphenyl)-4,5-dihydro-1,3,4-thiadiazol-2-yl]acetamide top
Crystal data top
C13H15N3O3SF(000) = 616
Mr = 293.34Dx = 1.422 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 5353 reflections
a = 11.3790 (4) Åθ = 1.8–29.6°
b = 10.5993 (3) ŵ = 0.25 mm1
c = 11.9596 (2) ÅT = 293 K
β = 108.225 (2)°Prism, colourless
V = 1370.08 (7) Å30.30 × 0.20 × 0.16 mm
Z = 4
Data collection top
Bruker Kappa-APEXII CCD
diffractometer
7595 independent reflections
Radiation source: fine-focus sealed tube5635 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
ω and ϕ scansθmax = 29.6°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
h = 1515
Tmin = 0.930, Tmax = 0.962k = 1414
16660 measured reflectionsl = 1416
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.109 w = 1/[σ2(Fo2) + (0.0466P)2 + 0.2666P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
7595 reflectionsΔρmax = 0.33 e Å3
367 parametersΔρmin = 0.25 e Å3
1 restraintAbsolute structure: Flack (1983), with 3584 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.07 (7)
Crystal data top
C13H15N3O3SV = 1370.08 (7) Å3
Mr = 293.34Z = 4
Monoclinic, P21Mo Kα radiation
a = 11.3790 (4) ŵ = 0.25 mm1
b = 10.5993 (3) ÅT = 293 K
c = 11.9596 (2) Å0.30 × 0.20 × 0.16 mm
β = 108.225 (2)°
Data collection top
Bruker Kappa-APEXII CCD
diffractometer
7595 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
5635 reflections with I > 2σ(I)
Tmin = 0.930, Tmax = 0.962Rint = 0.030
16660 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.109Δρmax = 0.33 e Å3
S = 1.03Δρmin = 0.25 e Å3
7595 reflectionsAbsolute structure: Flack (1983), with 3584 Friedel pairs
367 parametersAbsolute structure parameter: 0.07 (7)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.5869 (2)0.7772 (2)0.4618 (2)0.0397 (5)
C20.6405 (3)0.8511 (3)0.3955 (3)0.0498 (8)
H20.60270.85950.31480.060*
C30.7499 (3)0.9119 (3)0.4499 (2)0.0538 (7)
H30.78620.96150.40550.065*
C40.8069 (2)0.9005 (3)0.5697 (2)0.0442 (6)
H40.88080.94280.60550.053*
C50.7547 (2)0.8268 (2)0.6360 (2)0.0309 (5)
C60.64253 (18)0.7665 (2)0.5812 (2)0.0350 (5)
H60.60510.71860.62580.042*
C70.8123 (2)0.8112 (3)0.7677 (2)0.0324 (6)
H70.75460.84190.80760.039*
C80.9343 (2)1.0017 (3)0.8382 (2)0.0363 (6)
C91.0571 (2)1.0645 (3)0.8708 (3)0.0441 (7)
H9A1.04641.15410.87420.066*
H9B1.09691.04550.81290.066*
H9C1.10741.03460.94640.066*
C101.0096 (2)0.6892 (3)0.8300 (2)0.0315 (6)
C111.0879 (3)0.4753 (3)0.8707 (2)0.0390 (6)
C121.1970 (3)0.3942 (3)0.8773 (3)0.0569 (8)
H12A1.19200.36580.79970.085*
H12B1.19750.32260.92670.085*
H12C1.27160.44200.90980.085*
C130.4198 (2)0.6425 (3)0.4616 (3)0.0548 (7)
H13A0.39710.69250.51860.082*
H13B0.47480.57630.50110.082*
H13C0.34680.60620.40740.082*
C140.8900 (2)0.2827 (3)0.5333 (2)0.0431 (6)
C150.8399 (3)0.3437 (3)0.6089 (3)0.0499 (8)
H150.87340.33190.68970.060*
C160.7400 (3)0.4223 (3)0.5648 (2)0.0524 (7)
H160.70530.46230.61620.063*
C170.6906 (2)0.4425 (2)0.4454 (2)0.0420 (6)
H170.62360.49670.41640.050*
C180.7410 (2)0.3820 (3)0.3691 (2)0.0313 (5)
C190.84171 (19)0.3018 (2)0.4136 (2)0.0365 (5)
H190.87640.26110.36260.044*
C200.6864 (2)0.3966 (3)0.2384 (2)0.0316 (5)
H200.74590.36620.20050.038*
C210.5698 (2)0.2018 (3)0.1704 (2)0.0352 (6)
C220.4489 (2)0.1337 (3)0.1313 (3)0.0457 (7)
H22A0.42800.10560.19900.069*
H22B0.45540.06210.08440.069*
H22C0.38570.18950.08550.069*
C230.4851 (2)0.5119 (3)0.1630 (2)0.0307 (5)
C240.4060 (2)0.7251 (3)0.1174 (2)0.0371 (6)
C250.2952 (2)0.8055 (3)0.1067 (3)0.0520 (8)
H25A0.26160.83470.02710.078*
H25B0.31900.87660.15870.078*
H25C0.23400.75690.12750.078*
C261.0400 (3)0.1360 (3)0.5113 (3)0.0692 (9)
H26A1.07530.19350.46860.104*
H26B0.97720.08630.45680.104*
H26C1.10350.08140.55860.104*
N10.92957 (17)0.8777 (2)0.81336 (18)0.0319 (5)
N21.03611 (17)0.8057 (2)0.8278 (2)0.0339 (5)
N31.10017 (18)0.5994 (2)0.8432 (2)0.0383 (5)
H3A1.16890.62240.83360.046*
N40.57049 (17)0.3249 (2)0.1927 (2)0.0332 (5)
N50.46128 (17)0.3956 (2)0.16790 (19)0.0330 (5)
N60.39184 (18)0.6002 (2)0.1401 (2)0.0357 (5)
H6A0.31990.57540.13990.043*
O10.47967 (16)0.7197 (2)0.39944 (16)0.0550 (5)
O20.83930 (16)1.0588 (2)0.8297 (2)0.0525 (5)
O30.99404 (17)0.4378 (2)0.88764 (19)0.0514 (5)
O40.98715 (18)0.2046 (2)0.58456 (19)0.0676 (6)
O50.66898 (16)0.1464 (2)0.18601 (19)0.0513 (5)
O60.50089 (16)0.7653 (2)0.10697 (18)0.0487 (5)
S10.85560 (5)0.64828 (6)0.81229 (6)0.03785 (17)
S20.63984 (5)0.55696 (6)0.18841 (6)0.03857 (17)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0346 (10)0.0384 (13)0.0415 (13)0.0002 (9)0.0053 (10)0.0048 (10)
C20.0547 (16)0.054 (2)0.0347 (15)0.0045 (14)0.0053 (13)0.0004 (13)
C30.0597 (15)0.0617 (19)0.0407 (15)0.0191 (14)0.0166 (12)0.0057 (13)
C40.0404 (12)0.0500 (15)0.0426 (14)0.0140 (11)0.0136 (11)0.0016 (12)
C50.0285 (10)0.0297 (14)0.0349 (13)0.0004 (9)0.0102 (10)0.0034 (11)
C60.0299 (9)0.0337 (12)0.0405 (12)0.0024 (8)0.0099 (9)0.0001 (10)
C70.0236 (10)0.0341 (14)0.0378 (14)0.0022 (10)0.0071 (10)0.0053 (12)
C80.0347 (12)0.0371 (16)0.0382 (15)0.0007 (11)0.0129 (11)0.0028 (12)
C90.0377 (12)0.0392 (16)0.0552 (18)0.0079 (13)0.0142 (12)0.0115 (15)
C100.0253 (10)0.0370 (16)0.0324 (13)0.0024 (10)0.0093 (9)0.0015 (11)
C110.0412 (13)0.0371 (16)0.0370 (15)0.0039 (12)0.0096 (11)0.0004 (12)
C120.0521 (16)0.0326 (16)0.086 (2)0.0014 (14)0.0209 (16)0.0069 (17)
C130.0384 (12)0.0568 (17)0.0667 (18)0.0103 (12)0.0129 (12)0.0108 (15)
C140.0331 (10)0.0456 (15)0.0455 (14)0.0001 (10)0.0048 (10)0.0045 (11)
C150.0554 (16)0.055 (2)0.0351 (16)0.0062 (14)0.0080 (13)0.0022 (13)
C160.0600 (15)0.0552 (18)0.0441 (15)0.0019 (13)0.0192 (13)0.0117 (13)
C170.0406 (11)0.0386 (13)0.0458 (14)0.0050 (10)0.0119 (11)0.0053 (11)
C180.0251 (10)0.0291 (14)0.0374 (14)0.0036 (9)0.0066 (10)0.0007 (11)
C190.0301 (9)0.0380 (12)0.0417 (13)0.0036 (9)0.0118 (9)0.0018 (11)
C200.0237 (10)0.0339 (14)0.0383 (14)0.0015 (10)0.0112 (10)0.0012 (12)
C210.0325 (12)0.0351 (15)0.0398 (15)0.0032 (11)0.0141 (10)0.0071 (12)
C220.0401 (13)0.0432 (18)0.0551 (18)0.0099 (13)0.0167 (12)0.0118 (15)
C230.0268 (10)0.0343 (15)0.0289 (13)0.0005 (10)0.0056 (9)0.0035 (10)
C240.0371 (13)0.0330 (15)0.0358 (14)0.0013 (11)0.0036 (11)0.0008 (12)
C250.0428 (14)0.0347 (16)0.074 (2)0.0065 (12)0.0111 (14)0.0046 (16)
C260.0557 (16)0.066 (2)0.088 (2)0.0258 (16)0.0253 (16)0.0328 (19)
N10.0219 (9)0.0343 (13)0.0381 (12)0.0010 (8)0.0074 (8)0.0054 (10)
N20.0238 (9)0.0348 (13)0.0425 (13)0.0014 (9)0.0096 (9)0.0019 (10)
N30.0308 (10)0.0327 (13)0.0541 (14)0.0009 (8)0.0171 (9)0.0045 (10)
N40.0234 (9)0.0334 (13)0.0407 (13)0.0005 (9)0.0069 (8)0.0048 (10)
N50.0257 (9)0.0332 (13)0.0388 (12)0.0007 (9)0.0083 (8)0.0038 (10)
N60.0272 (9)0.0322 (13)0.0461 (12)0.0002 (8)0.0089 (8)0.0034 (10)
O10.0433 (9)0.0665 (13)0.0459 (10)0.0145 (9)0.0006 (8)0.0070 (10)
O20.0383 (9)0.0388 (12)0.0845 (15)0.0039 (10)0.0252 (10)0.0079 (12)
O30.0465 (11)0.0472 (14)0.0617 (13)0.0102 (10)0.0187 (10)0.0077 (11)
O40.0572 (11)0.0840 (16)0.0567 (12)0.0303 (11)0.0110 (10)0.0231 (12)
O50.0363 (9)0.0405 (12)0.0795 (14)0.0048 (10)0.0216 (9)0.0079 (12)
O60.0431 (10)0.0430 (13)0.0617 (13)0.0049 (9)0.0187 (9)0.0097 (11)
S10.0281 (3)0.0403 (4)0.0434 (4)0.0051 (3)0.0087 (2)0.0057 (3)
S20.0264 (3)0.0371 (4)0.0505 (4)0.0023 (3)0.0096 (3)0.0090 (3)
Geometric parameters (Å, º) top
C1—O11.359 (3)C14—C191.377 (3)
C1—C61.374 (3)C15—C161.374 (4)
C1—C21.384 (4)C15—H150.9300
C2—C31.372 (4)C16—C171.378 (4)
C2—H20.9300C16—H160.9300
C3—C41.380 (4)C17—C181.378 (3)
C3—H30.9300C17—H170.9300
C4—C51.374 (3)C18—C191.392 (3)
C4—H40.9300C18—C201.499 (3)
C5—C61.394 (3)C19—H190.9300
C5—C71.514 (4)C20—N41.471 (3)
C6—H60.9300C20—S21.824 (3)
C7—N11.456 (3)C20—H200.9800
C7—S11.829 (3)C21—O51.234 (3)
C7—H70.9800C21—N41.332 (4)
C8—O21.215 (3)C21—C221.493 (3)
C8—N11.345 (4)C22—H22A0.9600
C8—C91.486 (4)C22—H22B0.9600
C9—H9A0.9600C22—H22C0.9600
C9—H9B0.9600C23—N51.267 (4)
C9—H9C0.9600C23—N61.377 (3)
C10—N21.274 (3)C23—S21.757 (2)
C10—N31.375 (3)C24—N61.370 (4)
C10—S11.753 (2)C24—C251.493 (4)
C11—O31.215 (3)C25—H25A0.9600
C11—N31.373 (4)C25—H25B0.9600
C11—C121.492 (4)C25—H25C0.9600
C12—H12A0.9600C26—O41.410 (4)
C12—H12B0.9600C26—H26A0.9600
C12—H12C0.9600C26—H26B0.9600
C13—O11.416 (3)C26—H26C0.9600
C13—H13A0.9600N1—N21.397 (3)
C13—H13B0.9600N3—H3A0.8600
C13—H13C0.9600N4—N51.401 (3)
C14—O41.364 (3)N6—H6A0.8600
C14—C151.373 (4)
O1—C1—C6125.1 (2)C16—C17—C18119.6 (2)
O1—C1—C2114.9 (2)C16—C17—H17120.2
C6—C1—C2120.0 (2)C18—C17—H17120.2
C3—C2—C1119.4 (3)C17—C18—C19119.6 (2)
C3—C2—H2120.3C17—C18—C20121.3 (2)
C1—C2—H2120.3C19—C18—C20119.0 (2)
C2—C3—C4120.9 (3)C14—C19—C18120.0 (2)
C2—C3—H3119.6C14—C19—H19120.0
C4—C3—H3119.6C18—C19—H19120.0
C5—C4—C3120.1 (2)N4—C20—C18111.4 (2)
C5—C4—H4120.0N4—C20—S2103.01 (16)
C3—C4—H4120.0C18—C20—S2114.9 (2)
C4—C5—C6119.2 (2)N4—C20—H20109.1
C4—C5—C7122.5 (2)C18—C20—H20109.1
C6—C5—C7118.3 (2)S2—C20—H20109.1
C1—C6—C5120.5 (2)O5—C21—N4119.2 (2)
C1—C6—H6119.8O5—C21—C22121.8 (3)
C5—C6—H6119.8N4—C21—C22118.9 (2)
N1—C7—C5112.6 (2)C21—C22—H22A109.5
N1—C7—S1102.46 (16)C21—C22—H22B109.5
C5—C7—S1113.33 (19)H22A—C22—H22B109.5
N1—C7—H7109.4C21—C22—H22C109.5
C5—C7—H7109.4H22A—C22—H22C109.5
S1—C7—H7109.4H22B—C22—H22C109.5
O2—C8—N1119.7 (3)N5—C23—N6120.6 (2)
O2—C8—C9122.5 (3)N5—C23—S2118.25 (19)
N1—C8—C9117.7 (2)N6—C23—S2121.2 (2)
C8—C9—H9A109.5O6—C24—N6121.8 (3)
C8—C9—H9B109.5O6—C24—C25123.3 (3)
H9A—C9—H9B109.5N6—C24—C25114.9 (2)
C8—C9—H9C109.5C24—C25—H25A109.5
H9A—C9—H9C109.5C24—C25—H25B109.5
H9B—C9—H9C109.5H25A—C25—H25B109.5
N2—C10—N3120.0 (2)C24—C25—H25C109.5
N2—C10—S1118.12 (19)H25A—C25—H25C109.5
N3—C10—S1121.8 (2)H25B—C25—H25C109.5
O3—C11—N3120.9 (3)O4—C26—H26A109.5
O3—C11—C12124.3 (3)O4—C26—H26B109.5
N3—C11—C12114.8 (3)H26A—C26—H26B109.5
C11—C12—H12A109.5O4—C26—H26C109.5
C11—C12—H12B109.5H26A—C26—H26C109.5
H12A—C12—H12B109.5H26B—C26—H26C109.5
C11—C12—H12C109.5C8—N1—N2122.2 (2)
H12A—C12—H12C109.5C8—N1—C7121.6 (2)
H12B—C12—H12C109.5N2—N1—C7116.1 (2)
O1—C13—H13A109.5C10—N2—N1109.3 (2)
O1—C13—H13B109.5C11—N3—C10124.2 (2)
H13A—C13—H13B109.5C11—N3—H3A117.9
O1—C13—H13C109.5C10—N3—H3A117.9
H13A—C13—H13C109.5C21—N4—N5122.2 (2)
H13B—C13—H13C109.5C21—N4—C20122.0 (2)
O4—C14—C15115.8 (2)N5—N4—C20115.8 (2)
O4—C14—C19124.1 (2)C23—N5—N4110.0 (2)
C15—C14—C19120.2 (2)C24—N6—C23124.4 (2)
C14—C15—C16119.7 (3)C24—N6—H6A117.8
C14—C15—H15120.1C23—N6—H6A117.8
C16—C15—H15120.1C1—O1—C13117.9 (2)
C15—C16—C17120.9 (3)C14—O4—C26118.5 (2)
C15—C16—H16119.6C10—S1—C788.3 (1)
C17—C16—H16119.6C23—S2—C2088.6 (1)
O1—C1—C2—C3179.1 (3)N3—C10—N2—N1179.8 (2)
C6—C1—C2—C30.8 (4)S1—C10—N2—N11.3 (3)
C1—C2—C3—C40.1 (5)C8—N1—N2—C10162.3 (3)
C2—C3—C4—C50.5 (5)C7—N1—N2—C1018.8 (3)
C3—C4—C5—C61.4 (4)O3—C11—N3—C101.5 (4)
C3—C4—C5—C7179.6 (3)C12—C11—N3—C10178.4 (3)
O1—C1—C6—C5178.2 (2)N2—C10—N3—C11166.0 (3)
C2—C1—C6—C51.8 (4)S1—C10—N3—C1115.5 (4)
C4—C5—C6—C12.1 (4)O5—C21—N4—N5174.7 (2)
C7—C5—C6—C1179.6 (2)C22—C21—N4—N57.5 (4)
C4—C5—C7—N12.5 (4)O5—C21—N4—C201.6 (4)
C6—C5—C7—N1179.3 (2)C22—C21—N4—C20176.2 (2)
C4—C5—C7—S1118.2 (2)C18—C20—N4—C2181.9 (3)
C6—C5—C7—S163.5 (3)S2—C20—N4—C21154.4 (2)
O4—C14—C15—C16178.6 (3)C18—C20—N4—N5101.6 (3)
C19—C14—C15—C161.1 (4)S2—C20—N4—N522.2 (3)
C14—C15—C16—C171.1 (5)N6—C23—N5—N4179.8 (2)
C15—C16—C17—C180.8 (4)S2—C23—N5—N40.8 (3)
C16—C17—C18—C190.4 (4)C21—N4—N5—C23160.5 (3)
C16—C17—C18—C20177.1 (3)C20—N4—N5—C2316.0 (3)
O4—C14—C19—C18179.0 (2)O6—C24—N6—C235.9 (4)
C15—C14—C19—C180.7 (4)C25—C24—N6—C23174.3 (2)
C17—C18—C19—C140.4 (4)N5—C23—N6—C24170.8 (3)
C20—C18—C19—C14177.2 (2)S2—C23—N6—C2410.3 (4)
C17—C18—C20—N474.4 (3)C6—C1—O1—C130.0 (4)
C19—C18—C20—N4103.1 (2)C2—C1—O1—C13180.0 (2)
C17—C18—C20—S242.2 (3)C15—C14—O4—C26177.9 (3)
C19—C18—C20—S2140.2 (2)C19—C14—O4—C261.8 (4)
O2—C8—N1—N2176.4 (2)N2—C10—S1—C711.6 (2)
C9—C8—N1—N26.0 (4)N3—C10—S1—C7166.9 (2)
O2—C8—N1—C74.7 (4)N1—C7—S1—C1018.96 (18)
C9—C8—N1—C7172.9 (2)C5—C7—S1—C10102.70 (18)
C5—C7—N1—C882.3 (3)N5—C23—S2—C2010.6 (2)
S1—C7—N1—C8155.5 (2)N6—C23—S2—C20168.4 (2)
C5—C7—N1—N296.6 (3)N4—C20—S2—C2316.77 (18)
S1—C7—N1—N225.5 (3)C18—C20—S2—C23104.62 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O5i0.861.952.801 (3)171
N6—H6A···O2ii0.861.962.799 (3)164
C25—H25C···O2ii0.962.373.238 (4)150
Symmetry codes: (i) x+2, y+1/2, z+1; (ii) x+1, y1/2, z+1.

Experimental details

Crystal data
Chemical formulaC13H15N3O3S
Mr293.34
Crystal system, space groupMonoclinic, P21
Temperature (K)293
a, b, c (Å)11.3790 (4), 10.5993 (3), 11.9596 (2)
β (°) 108.225 (2)
V3)1370.08 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.25
Crystal size (mm)0.30 × 0.20 × 0.16
Data collection
DiffractometerBruker Kappa-APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1999)
Tmin, Tmax0.930, 0.962
No. of measured, independent and
observed [I > 2σ(I)] reflections
16660, 7595, 5635
Rint0.030
(sin θ/λ)max1)0.695
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.109, 1.03
No. of reflections7595
No. of parameters367
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.33, 0.25
Absolute structureFlack (1983), with 3584 Friedel pairs
Absolute structure parameter0.07 (7)

Computer programs: , APEX2 (Bruker, 2004) and SAINT (Bruker, 2004), SAINT (Bruker, 2004) and XPREP (Bruker, 2004), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O5i0.861.952.801 (3)171
N6—H6A···O2ii0.861.962.799 (3)164
C25—H25C···O2ii0.962.373.238 (4)150
Symmetry codes: (i) x+2, y+1/2, z+1; (ii) x+1, y1/2, z+1.
 

Acknowledgements

This research work was supported by the second stage of the BK21 Program, Republic of Korea. DV acknowledges financial support from the University Grants Commission (UGC-SAP) and the Department of Science and Technology (DST-FIST), Government of India, for providing facilities.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBalasubramanian, S., Ramalingan, C., Aridoss, G., Parthiban, S. & Kabilan, S. (2004). Med. Chem. Res. 13(5), 297–311.  Web of Science CrossRef Google Scholar
First citationBruker (1999). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationLi, Z., Wang, X. & Da, Y. (2001). Synth. Commun. 31, 1829–1936.  Web of Science CrossRef CAS Google Scholar
First citationNardelli, M. (1983). Acta Cryst. C39, 1141–1142.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationRadwan, M. A. A., Ragab, E. A., Sabry, N. M. & El-Shenawy, S. M. (2007). Bioorg. Med. Chem. 15, 3832–3841.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSupuran, C. T., Briganti, F., Tilli, S., Chegwidden, W. R. & Scozzafava, A. (2001). Bioorg. Med. Chem. 9, 703–714.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds