organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 11| November 2008| Pages o2219-o2220

Ethyl 3-hydr­­oxy-13-methyl-4′-phenyl-2′-(3,4,5-tri­meth­oxy­phen­yl)-6,7,8,9,11,12,13,14,15,16-deca­hydro­spiro­[cyclo­penta­[a]phenanthrene-16,3′-pyrrolidine]-5′-carboxyl­ate

aDepartment of Physics, Easwari Engineering College, Ramapuram, Chennai 600 089, India, bDepartment of Analytical Chemistry, University of Madras, Guindy Campus, Chennai 600025, India, and cDepartment of Physics, SRM University, Ramapuram Campus, Chennai 600 089, India
*Correspondence e-mail: sudharose18@gmail.com

(Received 5 October 2008; accepted 23 October 2008; online 31 October 2008)

In the title compound, C39H45NO7,the pyrrolidine ring is connected to an estrone group, a trimeth­oxy benzene and a phenyl ring. The pyrrolidine ring exhibits a twist conformation and the other five-membered ring an envelope conformation. Mol­ecules are linked by N—H⋯O hydrogen bonds, C—H⋯π inter­actions and C—H⋯O hydrogen bonds.

Related literature

For general background, see: García-Peláez et al. (2004[García-Peláez, B., Ferrer-Lorente, R., Gómez-Ollés, S., Fernández-López, J. A., Remesar, X. & Alemany, M. (2004). J. Dairy Sci. 87, 2331-2336.]); Holland and Roy (1995[Holland, M. B. & Roy, D. (1995). Carcinogenesis, 16, 1955-1961.]); Obniska et al. (2002[Obniska, J., Zeic, A. & Zagorska, A. (2002). Acta Pol. Pharm. 59, 209-213.]); Suzuki et al. (1994[Suzuki, T., Nagasu Kawai, H., Fujiwara, K. & Tsuji, T. (1994). Tetrahedron Lett, 44, 6095-6098.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For asymmetry parameters, see: Nardelli (1983[Nardelli, M. (1983). Acta Cryst. C39, 1141-1142.]).

[Scheme 1]

Experimental

Crystal data
  • C39H45NO7

  • Mr = 639.76

  • Monoclinic, C 2

  • a = 26.1776 (6) Å

  • b = 10.3379 (2) Å

  • c = 13.6631 (3) Å

  • β = 91.1250 (10)°

  • V = 3696.82 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 (2) K

  • 0.30 × 0.30 × 0.25 mm

Data collection
  • Bruker Kappa APEXII diffractometer

  • Absorption correction: multi-scan (Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.977, Tmax = 0.981

  • 38566 measured reflections

  • 3462 independent reflections

  • 3186 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.132

  • S = 1.11

  • 3462 reflections

  • 425 parameters

  • 319 restraints

  • H-atom parameters constrained

  • Δρmax = 0.48 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2A⋯N1i 0.82 1.99 2.782 (4) 163
C39—H39A⋯O3ii 0.96 2.56 3.378 (4) 144
C29—H29ACg1iii 0.96 3.00 3.820 (4) 144
Symmetry codes: (i) [x+{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+2]; (iii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+1].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). SMART, SAINT and XPREP. Bruker AXS Inc., Madison,Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2004[Bruker (2004). SMART, SAINT and XPREP. Bruker AXS Inc., Madison,Wisconsin, USA.]); data reduction: SAINT and XPREP Bruker, 2004[Bruker (2004). SMART, SAINT and XPREP. Bruker AXS Inc., Madison,Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

Estrone is a powerful growth-inducing hormone that is present in milk, mainly in the form of fatty acid esters, at concentrations that promote growth in experimental animals (García-Peláez et al., 2004). Estrone treatment increased proliferation in mammary epithelial cells. In addition, estrone exposure altered cell cycle kinetics (Holland & Roy, 1995). Derivatives of pyrrolidine are found to have anticonvulsant properties (Obniska et al.,2002). Optically active pyrrolidines have been used as intermediates in controlled asymmetric synthesis (Suzuki et al.,1994).

Fig 1 shows the ORTEP plot of compound (I). Bond lengths and angles are comparable with other reported values (Allen et al., 1987).

In the molecule the five membered ring N1/C2/C1/C4/C3 exhibits twist conformation with assymetry parameters (Nardelli,1983) ΔCs (C4) =15.6 (3), ΔC2 (C2) =2.4 (3), and with the puckering parameters (Cremer and Pople,1975) q2 = 0.359 (3) Å, and ϕ2 = 125.5 (5)°. The ring C4/C5/C6/C19/C20 exhibits envelope conformation with envelope on C19 with the assymetry parameters ΔCs(C19) = 2.4 (3) and with the puckering parameters q2 = 0.422 (3)Å and ϕ2 =110.8 (4)°

The six membered ring C9/C10/C15/C16/C17/C18 is perpendicular to the pyrrolidine ring C1/C2/N1/C3/C4 making a dihedral angle of 89.44 (11)° and planar with the five membered ring C4/C5/C6/C19/C20 with a dihedral angle of 2.20 (11).

In the crystal packing, atoms O2 and N1 are involved in intermolecular N—H···O interactions and atom O3 is involved in intermolecular C - H···O interactions. The molecules pack into distinct layers facilitated by C - H···π interactions.

Related literature top

For general background, see: García-Peláez et al. (2004); Holland and Roy (1995); Obniska et al. (2002); Suzuki et al. (1994). For bond-length data, see: Allen et al. (1987). For puckering parameters, see: Cremer & Pople (1975). For asymmetry parameters, see: Nardelli (1983).

Experimental top

1.0 mole of (Z)-16-arylidene estrone (0.78 g) and 1.0 mol of ethyl {[(1E)-(3,4,5-trimethoxyphenyl) methylene] amino} acetate (1.0 g) was stirred in 20 ml of acetonitrile contain AgOAc (0.01 g) and triethylamine (2 ml). The reaction was allowed to stir overnight and the reaction was monitored by TLC. After the completion of reaction, the crude white solid was filtered and then purified by preparative HPLC using water and acetonitrile as eluent. The final pure compound was recrystallized using 2:8 ratio of acetone: hexane.

Refinement top

In the absence of anomalous scatterers Friedel pairs have been merged. H atoms were placed in idealized positions and allowed to ride on their parent atoms, with C–H = 0.93 or 0.96 Å and Uiso(H)= 1.2–1.5Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. The packing of the molecules viewed down c axis. Hydrogen bonds are indicated by dashed lines and C—H···π interactions are also shown.
Ethyl 3-hydroxy-13-methyl-4'-phenyl-2'-(3,4,5-trimethoxyphenyl)- 6,7,8,9,11,12,13,14,15,16-decahydrospiro[cyclopenta[a]phenanthrene- 16,3'-pyrrolidine]-5'-carboxylate top
Crystal data top
C39H45NO7F(000) = 1368
Mr = 639.76Dx = 1.149 Mg m3
Monoclinic, C2Mo Kα radiation, λ = 0.71073 Å
Hall symbol: C 2yCell parameters from 38566 reflections
a = 26.1776 (6) Åθ = 1.5–30.7°
b = 10.3379 (2) ŵ = 0.08 mm1
c = 13.6631 (3) ÅT = 293 K
β = 91.125 (1)°Prism, colourless
V = 3696.82 (14) Å30.30 × 0.30 × 0.25 mm
Z = 4
Data collection top
Bruker KappaAPEXII
diffractometer
3462 independent reflections
Radiation source: fine-focus sealed tube3186 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ω and ϕ scansθmax = 25.0°, θmin = 1.5°
Absorption correction: multi-scan
(Blessing, 1995)
h = 3131
Tmin = 0.977, Tmax = 0.981k = 1212
38566 measured reflectionsl = 1615
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047H-atom parameters constrained
wR(F2) = 0.132 w = 1/[σ2(Fo2) + (0.082P)2 + 1.3827P]
where P = (Fo2 + 2Fc2)/3
S = 1.11(Δ/σ)max < 0.001
3462 reflectionsΔρmax = 0.48 e Å3
425 parametersΔρmin = 0.24 e Å3
319 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0112 (9)
Crystal data top
C39H45NO7V = 3696.82 (14) Å3
Mr = 639.76Z = 4
Monoclinic, C2Mo Kα radiation
a = 26.1776 (6) ŵ = 0.08 mm1
b = 10.3379 (2) ÅT = 293 K
c = 13.6631 (3) Å0.30 × 0.30 × 0.25 mm
β = 91.125 (1)°
Data collection top
Bruker KappaAPEXII
diffractometer
3462 independent reflections
Absorption correction: multi-scan
(Blessing, 1995)
3186 reflections with I > 2σ(I)
Tmin = 0.977, Tmax = 0.981Rint = 0.027
38566 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.047319 restraints
wR(F2) = 0.132H-atom parameters constrained
S = 1.11Δρmax = 0.48 e Å3
3462 reflectionsΔρmin = 0.24 e Å3
425 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.15174 (10)0.2439 (3)0.8431 (2)0.0417 (6)
H10.15990.22420.91170.050*
C20.11604 (10)0.3642 (3)0.8400 (2)0.0460 (7)
H20.08360.33740.80930.055*
C30.17981 (9)0.3995 (3)0.7236 (2)0.0407 (6)
H30.16380.35480.66760.049*
C40.20146 (9)0.2927 (3)0.79377 (18)0.0367 (6)
C50.23722 (10)0.3500 (3)0.87263 (18)0.0380 (6)
C60.28956 (10)0.2904 (3)0.86410 (19)0.0400 (6)
C70.33546 (11)0.3760 (4)0.8831 (2)0.0569 (8)
H7A0.33660.40190.95140.068*
H7B0.33270.45350.84330.068*
C80.38453 (11)0.3024 (4)0.8583 (2)0.0591 (9)
H8A0.41350.36020.86590.071*
H8B0.38920.23170.90440.071*
C90.38342 (10)0.2479 (3)0.7540 (2)0.0459 (7)
H90.38270.32270.70990.055*
C100.43051 (10)0.1699 (3)0.7281 (2)0.0491 (7)
C110.47581 (11)0.1772 (4)0.7813 (2)0.0525 (7)
H110.47750.22900.83690.063*
C120.51874 (11)0.1095 (4)0.7539 (3)0.0581 (8)
H120.54890.11710.79050.070*
C130.51690 (11)0.0307 (4)0.6726 (2)0.0568 (8)
C140.47166 (13)0.0182 (5)0.6216 (3)0.0717 (11)
H140.46990.03660.56760.086*
C150.42859 (12)0.0850 (5)0.6485 (2)0.0669 (10)
C160.37936 (15)0.0587 (8)0.5916 (3)0.118 (3)
H16A0.38510.07570.52280.141*
H16B0.37110.03230.59790.141*
C170.33571 (11)0.1342 (4)0.6219 (2)0.0580 (9)
H17A0.30490.08590.60610.070*
H17B0.33460.21350.58390.070*
C180.33529 (10)0.1692 (3)0.7300 (2)0.0398 (6)
H180.33600.08960.76880.048*
C190.28882 (9)0.2477 (3)0.75683 (18)0.0354 (5)
H190.29040.32730.71800.042*
C200.23490 (9)0.1939 (3)0.7407 (2)0.0391 (6)
H20A0.23170.10840.76920.047*
H20B0.22600.18960.67150.047*
C210.21851 (9)0.4925 (3)0.68252 (19)0.0395 (6)
C220.23850 (11)0.5940 (3)0.7375 (2)0.0428 (6)
H220.22580.61130.79930.051*
C230.27723 (12)0.6695 (3)0.7007 (2)0.0466 (7)
C240.29617 (11)0.6431 (3)0.6073 (2)0.0482 (7)
C250.27614 (11)0.5418 (3)0.55345 (19)0.0450 (7)
C260.23668 (10)0.4680 (3)0.5897 (2)0.0423 (6)
H260.22240.40190.55190.051*
C270.28307 (18)0.8008 (5)0.8430 (3)0.0772 (11)
H27A0.30200.87360.86820.093*
H27B0.28830.72770.88530.093*
H27C0.24740.82180.83980.093*
C280.38287 (18)0.6790 (7)0.5804 (4)0.1085 (19)
H28A0.40570.73960.55090.130*
H28B0.38640.59600.54970.130*
H28C0.39110.67160.64900.130*
C290.28402 (16)0.4093 (4)0.4123 (2)0.0656 (9)
H29A0.30190.40740.35160.079*
H29B0.24790.40910.39910.079*
H29C0.29310.33460.45050.079*
C300.12845 (12)0.1248 (3)0.7966 (2)0.0509 (7)
C310.1356 (2)0.0062 (4)0.8399 (4)0.0837 (13)
H310.15460.00030.89790.100*
C320.1148 (3)0.1060 (5)0.7983 (5)0.120 (2)
H320.11990.18550.82880.143*
C330.0873 (3)0.0988 (6)0.7140 (5)0.1109 (19)
H330.07320.17330.68650.133*
C340.0803 (2)0.0170 (6)0.6697 (4)0.0965 (16)
H340.06140.02160.61130.116*
C350.10066 (15)0.1279 (4)0.7099 (3)0.0680 (10)
H350.09560.20650.67810.082*
C360.10410 (11)0.4229 (4)0.9382 (3)0.0603 (9)
C370.0691 (2)0.3797 (8)1.0936 (4)0.120 (2)
H37A0.09740.41741.13060.144*
H37B0.04300.44531.08460.144*
C380.0492 (3)0.2730 (11)1.1447 (4)0.171 (4)
H38A0.03730.30111.20720.205*
H38B0.07540.20911.15410.205*
H38C0.02130.23621.10750.205*
C390.28908 (13)0.1760 (4)0.9367 (2)0.0575 (8)
H39A0.32140.13200.93540.069*
H39B0.26230.11700.91830.069*
H39C0.28330.20791.00150.069*
N10.13869 (9)0.4615 (3)0.7770 (2)0.0521 (7)
H1A0.12950.54120.77210.062*
O10.22398 (8)0.4254 (2)0.93491 (14)0.0518 (5)
O20.55830 (9)0.0346 (3)0.64077 (19)0.0773 (9)
H2A0.58290.01940.67710.093*
O30.10751 (10)0.5359 (3)0.9562 (2)0.0814 (9)
O40.08664 (12)0.3347 (3)0.99822 (19)0.0842 (9)
O50.30005 (10)0.7705 (2)0.74826 (17)0.0641 (7)
O60.33211 (10)0.7226 (3)0.56819 (18)0.0708 (7)
O70.29758 (9)0.5228 (3)0.46488 (15)0.0590 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0373 (13)0.0503 (15)0.0380 (13)0.0004 (12)0.0077 (10)0.0014 (12)
C20.0314 (13)0.0572 (18)0.0494 (15)0.0013 (12)0.0049 (11)0.0071 (14)
C30.0294 (12)0.0489 (15)0.0438 (13)0.0008 (11)0.0005 (10)0.0030 (13)
C40.0330 (12)0.0394 (13)0.0379 (12)0.0011 (11)0.0033 (10)0.0006 (12)
C50.0386 (13)0.0412 (14)0.0344 (12)0.0029 (12)0.0039 (10)0.0009 (12)
C60.0368 (13)0.0463 (15)0.0368 (13)0.0070 (12)0.0018 (10)0.0014 (12)
C70.0415 (15)0.072 (2)0.0566 (17)0.0004 (15)0.0050 (13)0.0224 (17)
C80.0362 (14)0.079 (2)0.0620 (18)0.0012 (15)0.0075 (13)0.0192 (18)
C90.0325 (13)0.0553 (17)0.0498 (15)0.0026 (13)0.0011 (11)0.0011 (14)
C100.0327 (13)0.0632 (18)0.0513 (16)0.0037 (13)0.0038 (11)0.0072 (15)
C110.0336 (14)0.0558 (17)0.0679 (19)0.0019 (13)0.0018 (12)0.0006 (16)
C120.0305 (13)0.065 (2)0.078 (2)0.0023 (14)0.0050 (13)0.0093 (19)
C130.0363 (14)0.073 (2)0.0610 (19)0.0101 (15)0.0103 (13)0.0167 (18)
C140.0452 (17)0.112 (3)0.0578 (19)0.016 (2)0.0070 (14)0.014 (2)
C150.0367 (15)0.112 (3)0.0526 (17)0.0153 (18)0.0035 (13)0.010 (2)
C160.050 (2)0.225 (7)0.078 (3)0.037 (3)0.0085 (19)0.071 (4)
C170.0374 (14)0.085 (2)0.0515 (17)0.0059 (16)0.0002 (12)0.0226 (17)
C180.0317 (12)0.0443 (14)0.0435 (14)0.0052 (11)0.0028 (10)0.0001 (12)
C190.0323 (12)0.0379 (13)0.0359 (12)0.0053 (11)0.0001 (9)0.0016 (11)
C200.0327 (13)0.0430 (15)0.0416 (14)0.0025 (11)0.0021 (10)0.0044 (12)
C210.0314 (12)0.0442 (15)0.0427 (14)0.0064 (11)0.0006 (10)0.0054 (12)
C220.0426 (14)0.0450 (15)0.0410 (14)0.0040 (12)0.0073 (11)0.0034 (12)
C230.0510 (16)0.0418 (15)0.0472 (15)0.0010 (13)0.0031 (12)0.0018 (13)
C240.0482 (16)0.0516 (17)0.0449 (15)0.0057 (13)0.0066 (12)0.0081 (13)
C250.0442 (15)0.0551 (17)0.0357 (13)0.0044 (13)0.0026 (11)0.0085 (13)
C260.0401 (13)0.0475 (16)0.0391 (14)0.0019 (12)0.0036 (11)0.0058 (12)
C270.099 (3)0.070 (2)0.064 (2)0.024 (2)0.017 (2)0.016 (2)
C280.061 (3)0.145 (5)0.120 (4)0.030 (3)0.023 (3)0.018 (4)
C290.083 (2)0.069 (2)0.0449 (17)0.002 (2)0.0097 (15)0.0035 (16)
C300.0479 (16)0.0509 (17)0.0545 (18)0.0075 (14)0.0158 (13)0.0025 (14)
C310.105 (3)0.060 (2)0.086 (3)0.019 (2)0.006 (2)0.017 (2)
C320.158 (6)0.055 (3)0.146 (5)0.036 (3)0.024 (5)0.013 (3)
C330.135 (5)0.080 (3)0.118 (4)0.057 (3)0.017 (4)0.015 (3)
C340.107 (4)0.099 (4)0.083 (3)0.052 (3)0.004 (3)0.016 (3)
C350.075 (2)0.065 (2)0.064 (2)0.025 (2)0.0030 (18)0.0038 (18)
C360.0352 (14)0.080 (3)0.066 (2)0.0036 (16)0.0065 (13)0.022 (2)
C370.121 (4)0.174 (6)0.066 (3)0.014 (4)0.044 (3)0.029 (4)
C380.201 (7)0.237 (10)0.077 (3)0.035 (8)0.069 (4)0.023 (6)
C390.0578 (18)0.075 (2)0.0403 (15)0.0201 (17)0.0034 (13)0.0109 (16)
N10.0324 (11)0.0493 (14)0.0749 (18)0.0119 (11)0.0116 (11)0.0090 (13)
O10.0530 (11)0.0588 (13)0.0436 (10)0.0108 (10)0.0032 (9)0.0135 (10)
O20.0427 (12)0.116 (2)0.0739 (15)0.0270 (14)0.0088 (11)0.0065 (16)
O30.0622 (15)0.080 (2)0.102 (2)0.0025 (14)0.0078 (14)0.0431 (18)
O40.099 (2)0.096 (2)0.0591 (14)0.0074 (17)0.0375 (14)0.0088 (15)
O50.0755 (15)0.0619 (15)0.0554 (12)0.0238 (13)0.0129 (11)0.0080 (12)
O60.0726 (16)0.0733 (17)0.0673 (15)0.0251 (14)0.0218 (12)0.0038 (13)
O70.0677 (14)0.0703 (15)0.0396 (10)0.0097 (12)0.0127 (9)0.0016 (11)
Geometric parameters (Å, º) top
C1—C301.509 (4)C20—H20B0.9700
C1—C21.555 (4)C21—C261.386 (4)
C1—C41.561 (4)C21—C221.387 (4)
C1—H10.9800C22—C231.382 (4)
C2—N11.458 (4)C22—H220.9300
C2—C361.511 (4)C23—O51.362 (4)
C2—H20.9800C23—C241.404 (4)
C3—N11.460 (4)C24—O61.366 (4)
C3—C211.512 (4)C24—C251.378 (4)
C3—C41.562 (4)C25—O71.358 (3)
C3—H30.9800C25—C261.384 (4)
C4—C51.533 (4)C26—H260.9300
C4—C201.536 (4)C27—O51.411 (4)
C5—O11.210 (3)C27—H27A0.9600
C5—C61.509 (4)C27—H27B0.9600
C6—C71.511 (4)C27—H27C0.9600
C6—C191.530 (4)C28—O61.410 (6)
C6—C391.544 (5)C28—H28A0.9600
C7—C81.537 (5)C28—H28B0.9600
C7—H7A0.9700C28—H28C0.9600
C7—H7B0.9700C29—O71.417 (5)
C8—C91.532 (4)C29—H29A0.9600
C8—H8A0.9700C29—H29B0.9600
C8—H8B0.9700C29—H29C0.9600
C9—C101.521 (4)C30—C311.373 (6)
C9—C181.530 (4)C30—C351.378 (5)
C9—H90.9800C31—C321.396 (7)
C10—C111.380 (4)C31—H310.9300
C10—C151.399 (5)C32—C331.348 (9)
C11—C121.382 (5)C32—H320.9300
C11—H110.9300C33—C341.353 (9)
C12—C131.378 (5)C33—H330.9300
C12—H120.9300C34—C351.376 (6)
C13—O21.356 (4)C34—H340.9300
C13—C141.369 (5)C35—H350.9300
C14—C151.378 (5)C36—O31.197 (5)
C14—H140.9300C36—O41.314 (5)
C15—C161.516 (5)C37—C381.411 (12)
C16—C171.450 (5)C37—O41.466 (5)
C16—H16A0.9700C37—H37A0.9700
C16—H16B0.9700C37—H37B0.9700
C17—C181.522 (4)C38—H38A0.9600
C17—H17A0.9700C38—H38B0.9600
C17—H17B0.9700C38—H38C0.9600
C18—C191.513 (4)C39—H39A0.9600
C18—H180.9800C39—H39B0.9600
C19—C201.529 (4)C39—H39C0.9600
C19—H190.9800N1—H1A0.8600
C20—H20A0.9700O2—H2A0.8200
C30—C1—C2113.8 (2)C20—C19—H19106.0
C30—C1—C4114.6 (2)C6—C19—H19106.0
C2—C1—C4103.7 (2)C19—C20—C4102.9 (2)
C30—C1—H1108.2C19—C20—H20A111.2
C2—C1—H1108.2C4—C20—H20A111.2
C4—C1—H1108.2C19—C20—H20B111.2
N1—C2—C36109.9 (3)C4—C20—H20B111.2
N1—C2—C1108.4 (2)H20A—C20—H20B109.1
C36—C2—C1115.6 (3)C26—C21—C22120.1 (3)
N1—C2—H2107.5C26—C21—C3117.8 (3)
C36—C2—H2107.5C22—C21—C3121.9 (2)
C1—C2—H2107.5C23—C22—C21120.1 (3)
N1—C3—C21114.3 (2)C23—C22—H22120.0
N1—C3—C4105.4 (2)C21—C22—H22120.0
C21—C3—C4116.1 (2)O5—C23—C22125.2 (3)
N1—C3—H3106.8O5—C23—C24115.0 (3)
C21—C3—H3106.8C22—C23—C24119.7 (3)
C4—C3—H3106.8O6—C24—C25120.4 (3)
C5—C4—C20104.1 (2)O6—C24—C23119.8 (3)
C5—C4—C1108.9 (2)C25—C24—C23119.7 (3)
C20—C4—C1118.5 (2)O7—C25—C24115.2 (3)
C5—C4—C3111.5 (2)O7—C25—C26124.3 (3)
C20—C4—C3112.6 (2)C24—C25—C26120.5 (3)
C1—C4—C3101.4 (2)C25—C26—C21119.9 (3)
O1—C5—C6126.2 (2)C25—C26—H26120.1
O1—C5—C4124.4 (2)C21—C26—H26120.1
C6—C5—C4109.3 (2)O5—C27—H27A109.5
C5—C6—C7117.9 (3)O5—C27—H27B109.5
C5—C6—C19101.4 (2)H27A—C27—H27B109.5
C7—C6—C19109.2 (2)O5—C27—H27C109.5
C5—C6—C39104.1 (2)H27A—C27—H27C109.5
C7—C6—C39110.8 (3)H27B—C27—H27C109.5
C19—C6—C39113.2 (3)O6—C28—H28A109.5
C6—C7—C8109.7 (3)O6—C28—H28B109.5
C6—C7—H7A109.7H28A—C28—H28B109.5
C8—C7—H7A109.7O6—C28—H28C109.5
C6—C7—H7B109.7H28A—C28—H28C109.5
C8—C7—H7B109.7H28B—C28—H28C109.5
H7A—C7—H7B108.2O7—C29—H29A109.5
C9—C8—C7112.7 (2)O7—C29—H29B109.5
C9—C8—H8A109.0H29A—C29—H29B109.5
C7—C8—H8A109.0O7—C29—H29C109.5
C9—C8—H8B109.0H29A—C29—H29C109.5
C7—C8—H8B109.0H29B—C29—H29C109.5
H8A—C8—H8B107.8C31—C30—C35117.1 (4)
C10—C9—C18109.6 (3)C31—C30—C1119.9 (3)
C10—C9—C8114.2 (2)C35—C30—C1123.0 (3)
C18—C9—C8113.3 (2)C30—C31—C32121.2 (5)
C10—C9—H9106.4C30—C31—H31119.4
C18—C9—H9106.4C32—C31—H31119.4
C8—C9—H9106.4C33—C32—C31119.9 (5)
C11—C10—C15117.4 (3)C33—C32—H32120.0
C11—C10—C9122.8 (3)C31—C32—H32120.0
C15—C10—C9119.8 (2)C32—C33—C34119.8 (5)
C10—C11—C12121.7 (3)C32—C33—H33120.1
C10—C11—H11119.2C34—C33—H33120.1
C12—C11—H11119.2C33—C34—C35120.7 (5)
C13—C12—C11120.1 (3)C33—C34—H34119.7
C13—C12—H12119.9C35—C34—H34119.7
C11—C12—H12119.9C34—C35—C30121.2 (4)
O2—C13—C14118.6 (3)C34—C35—H35119.4
O2—C13—C12122.5 (3)C30—C35—H35119.4
C14—C13—C12118.9 (3)O3—C36—O4125.1 (4)
C13—C14—C15121.4 (4)O3—C36—C2124.0 (4)
C13—C14—H14119.3O4—C36—C2110.8 (3)
C15—C14—H14119.3C38—C37—O4108.5 (6)
C14—C15—C10120.3 (3)C38—C37—H37A110.0
C14—C15—C16117.7 (4)O4—C37—H37A110.0
C10—C15—C16121.9 (3)C38—C37—H37B110.0
C17—C16—C15115.1 (4)O4—C37—H37B110.0
C17—C16—H16A108.5H37A—C37—H37B108.4
C15—C16—H16A108.5C37—C38—H38A109.5
C17—C16—H16B108.5C37—C38—H38B109.5
C15—C16—H16B108.5H38A—C38—H38B109.5
H16A—C16—H16B107.5C37—C38—H38C109.5
C16—C17—C18115.2 (3)H38A—C38—H38C109.5
C16—C17—H17A108.5H38B—C38—H38C109.5
C18—C17—H17A108.5C6—C39—H39A109.5
C16—C17—H17B108.5C6—C39—H39B109.5
C18—C17—H17B108.5H39A—C39—H39B109.5
H17A—C17—H17B107.5C6—C39—H39C109.5
C19—C18—C17112.6 (2)H39A—C39—H39C109.5
C19—C18—C9109.0 (2)H39B—C39—H39C109.5
C17—C18—C9108.3 (2)C2—N1—C3107.7 (2)
C19—C18—H18109.0C2—N1—H1A126.1
C17—C18—H18109.0C3—N1—H1A126.1
C9—C18—H18109.0C13—O2—H2A109.5
C18—C19—C20120.9 (2)C36—O4—C37117.0 (4)
C18—C19—C6113.0 (2)C23—O5—C27117.7 (3)
C20—C19—C6103.7 (2)C24—O6—C28114.6 (4)
C18—C19—H19106.0C25—O7—C29117.9 (3)
C30—C1—C2—N1114.0 (3)C17—C18—C19—C6176.6 (3)
C4—C1—C2—N111.1 (3)C9—C18—C19—C656.4 (3)
C30—C1—C2—C36122.1 (3)C5—C6—C19—C18173.3 (2)
C4—C1—C2—C36112.8 (3)C7—C6—C19—C1861.6 (3)
C30—C1—C4—C5145.9 (3)C39—C6—C19—C1862.3 (3)
C2—C1—C4—C589.5 (3)C5—C6—C19—C2040.5 (3)
C30—C1—C4—C2027.4 (3)C7—C6—C19—C20165.6 (2)
C2—C1—C4—C20151.9 (2)C39—C6—C19—C2070.4 (3)
C30—C1—C4—C396.3 (3)C18—C19—C20—C4170.4 (2)
C2—C1—C4—C328.3 (3)C6—C19—C20—C442.3 (3)
N1—C3—C4—C578.9 (3)C5—C4—C20—C1926.6 (3)
C21—C3—C4—C548.7 (3)C1—C4—C20—C19147.7 (2)
N1—C3—C4—C20164.5 (2)C3—C4—C20—C1994.4 (2)
C21—C3—C4—C2067.8 (3)N1—C3—C21—C26139.7 (3)
N1—C3—C4—C136.9 (3)C4—C3—C21—C2697.2 (3)
C21—C3—C4—C1164.6 (2)N1—C3—C21—C2245.1 (3)
C20—C4—C5—O1174.4 (3)C4—C3—C21—C2278.0 (3)
C1—C4—C5—O147.1 (4)C26—C21—C22—C231.1 (4)
C3—C4—C5—O164.0 (3)C3—C21—C22—C23174.0 (3)
C20—C4—C5—C61.6 (3)C21—C22—C23—O5179.3 (3)
C1—C4—C5—C6128.9 (2)C21—C22—C23—C240.1 (4)
C3—C4—C5—C6120.0 (2)O5—C23—C24—O64.7 (4)
O1—C5—C6—C741.2 (4)C22—C23—C24—O6175.8 (3)
C4—C5—C6—C7142.9 (3)O5—C23—C24—C25179.2 (3)
O1—C5—C6—C19160.2 (3)C22—C23—C24—C250.3 (4)
C4—C5—C6—C1923.9 (3)O6—C24—C25—O75.0 (4)
O1—C5—C6—C3982.0 (4)C23—C24—C25—O7178.9 (3)
C4—C5—C6—C3993.9 (3)O6—C24—C25—C26174.5 (3)
C5—C6—C7—C8173.0 (3)C23—C24—C25—C261.6 (4)
C19—C6—C7—C858.1 (3)O7—C25—C26—C21177.9 (3)
C39—C6—C7—C867.3 (3)C24—C25—C26—C212.6 (4)
C6—C7—C8—C954.4 (4)C22—C21—C26—C252.4 (4)
C7—C8—C9—C10177.8 (3)C3—C21—C26—C25172.9 (2)
C7—C8—C9—C1851.3 (4)C2—C1—C30—C31139.2 (4)
C18—C9—C10—C11145.8 (3)C4—C1—C30—C31101.7 (4)
C8—C9—C10—C1117.4 (5)C2—C1—C30—C3542.2 (4)
C18—C9—C10—C1533.1 (4)C4—C1—C30—C3576.8 (4)
C8—C9—C10—C15161.5 (3)C35—C30—C31—C321.0 (7)
C15—C10—C11—C123.8 (5)C1—C30—C31—C32179.6 (5)
C9—C10—C11—C12177.2 (3)C30—C31—C32—C330.2 (10)
C10—C11—C12—C131.0 (5)C31—C32—C33—C340.4 (11)
C11—C12—C13—O2177.8 (3)C32—C33—C34—C350.3 (10)
C11—C12—C13—C141.8 (6)C33—C34—C35—C300.4 (8)
O2—C13—C14—C15178.0 (4)C31—C30—C35—C341.1 (6)
C12—C13—C14—C151.6 (6)C1—C30—C35—C34179.6 (4)
C13—C14—C15—C101.3 (7)N1—C2—C36—O37.9 (4)
C13—C14—C15—C16176.3 (5)C1—C2—C36—O3131.0 (4)
C11—C10—C15—C144.0 (6)N1—C2—C36—O4176.0 (3)
C9—C10—C15—C14177.0 (4)C1—C2—C36—O452.9 (4)
C11—C10—C15—C16173.5 (5)C36—C2—N1—C3139.8 (2)
C9—C10—C15—C165.5 (6)C1—C2—N1—C312.5 (3)
C14—C15—C16—C17178.6 (5)C21—C3—N1—C2160.0 (2)
C10—C15—C16—C173.8 (8)C4—C3—N1—C231.3 (3)
C15—C16—C17—C1831.5 (7)O3—C36—O4—C371.3 (6)
C16—C17—C18—C19179.9 (4)C2—C36—O4—C37174.8 (4)
C16—C17—C18—C959.5 (5)C38—C37—O4—C36176.6 (5)
C10—C9—C18—C19179.6 (2)C22—C23—O5—C270.2 (5)
C8—C9—C18—C1950.7 (3)C24—C23—O5—C27179.3 (3)
C10—C9—C18—C1757.6 (3)C25—C24—O6—C2886.9 (4)
C8—C9—C18—C17173.5 (3)C23—C24—O6—C2897.0 (4)
C17—C18—C19—C2059.7 (4)C24—C25—O7—C29170.9 (3)
C9—C18—C19—C20179.8 (2)C26—C25—O7—C299.6 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···N1i0.821.992.782 (4)163
C39—H39A···O3ii0.962.563.378 (4)144
C29—H29A···Cg1iii0.963.003.820 (4)144
C1—H1···O40.982.542.901 (4)101
Symmetry codes: (i) x+1/2, y1/2, z; (ii) x+1/2, y1/2, z+2; (iii) x+1/2, y+1/2, z+1.

Experimental details

Crystal data
Chemical formulaC39H45NO7
Mr639.76
Crystal system, space groupMonoclinic, C2
Temperature (K)293
a, b, c (Å)26.1776 (6), 10.3379 (2), 13.6631 (3)
β (°) 91.125 (1)
V3)3696.82 (14)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.30 × 0.30 × 0.25
Data collection
DiffractometerBruker KappaAPEXII
diffractometer
Absorption correctionMulti-scan
(Blessing, 1995)
Tmin, Tmax0.977, 0.981
No. of measured, independent and
observed [I > 2σ(I)] reflections
38566, 3462, 3186
Rint0.027
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.132, 1.11
No. of reflections3462
No. of parameters425
No. of restraints319
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.48, 0.24

Computer programs: APEX2 (Bruker, 2004), APEX2 and SAINT (Bruker, 2004), SAINT and XPREP Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···N1i0.821.992.782 (4)163
C39—H39A···O3ii0.962.563.378 (4)144
C29—H29A···Cg1iii0.963.003.820 (4)144
Symmetry codes: (i) x+1/2, y1/2, z; (ii) x+1/2, y1/2, z+2; (iii) x+1/2, y+1/2, z+1.
 

Acknowledgements

ETSK thanks Professor M. N. Ponnuswamy and Professor D. Velmurugan, Department of Crystallography and Biophysics, University of Madras, India, for their guidance and valuable suggestions. ETSK also thanks SRM Management for their support.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.  CrossRef Web of Science Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBruker (2004). SMART, SAINT and XPREP. Bruker AXS Inc., Madison,Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGarcía-Peláez, B., Ferrer-Lorente, R., Gómez-Ollés, S., Fernández-López, J. A., Remesar, X. & Alemany, M. (2004). J. Dairy Sci. 87, 2331–2336.  Web of Science PubMed Google Scholar
First citationHolland, M. B. & Roy, D. (1995). Carcinogenesis, 16, 1955–1961.  CrossRef CAS PubMed Web of Science Google Scholar
First citationNardelli, M. (1983). Acta Cryst. C39, 1141–1142.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationObniska, J., Zeic, A. & Zagorska, A. (2002). Acta Pol. Pharm. 59, 209–213.  PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSuzuki, T., Nagasu Kawai, H., Fujiwara, K. & Tsuji, T. (1994). Tetrahedron Lett, 44, 6095-6098.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 11| November 2008| Pages o2219-o2220
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds