organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,4-Di­hydroxy­benzaldehyde 4-ethyl­thio­semicarbazone

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and bFaculty of Engineering and Science, Universiti Tunku Abdul Rahman, 53300 Kuala Lumpur, Malaysia
*Correspondence e-mail: mjamil@um.edu.my

(Received 6 October 2008; accepted 12 October 2008; online 18 October 2008)

The mol­ecular conformation of the title compound, C10H13N3O2S, is stabilized by an intramolecular O—H⋯N hydrogen bond. Adjacent mol­ecules are linked by O—H⋯O hydrogen bonds to furnish a zigzag chain.

Related literature

For the structure of 3,4-dihydroxy­benzaldehyde 4-ethyl­thio­semicarbazone, see: Kayed et al. (2008[Kayed, S. F., Farina, Y., Baba, I. & Simpson, J. (2008). Acta Cryst. E64, o824-o825.]).

[Scheme 1]

Experimental

Crystal data
  • C10H13N3O2S

  • Mr = 239.29

  • Monoclinic, P 21 /n

  • a = 4.6592 (6) Å

  • b = 24.067 (3) Å

  • c = 10.047 (1) Å

  • β = 99.060 (2)°

  • V = 1112.5 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.28 mm−1

  • T = 100 (2) K

  • 0.40 × 0.12 × 0.06 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.896, Tmax = 0.983

  • 6303 measured reflections

  • 2517 independent reflections

  • 1972 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.109

  • S = 1.08

  • 2517 reflections

  • 148 parameters

  • H-atom parameters constrained

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N3 0.84 1.84 2.583 (2) 147
O2—H2⋯O1i 0.84 1.92 2.714 (2) 158
Symmetry code: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2008[Westrip, S. P. (2008). publCIF. In preparation.]).

Supporting information


Related literature top

For the structure of 3,4-dihydroxybenzaldehyde 4-ethylthiosemicarbazone, see: Kayed et al. (2008). [Figure caption mentions three molecules, but only one is shown and no mention is made of them in the Abstract. Please clarify]

Experimental top

4-Ethylthiosemicarbazide (1.19 g, 10 mmol) and 2,4-dihydroxybenzaldehyde (1.38 g, 10 mmol) were refluxed in ethanol (40 ml) for 6 h. Slow evaporation of the solvent yielded yellow crystals.

Refinement top

H-atoms were placed in calculated positions (C—H 0.95 Å, N—H 0.88 Å, O—H 0.85 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2U(C,N) or U(H) set to 1.5U(O).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2008).

Figures top
[Figure 1] Fig. 1. Displacement ellipsoid (Barbour, 2001) plot of the title compound at the 70% probability level. H atoms are drawn as spheres of arbitrary radius.
2,4-Dihydroxybenzaldehyde 4-ethylthiosemicarbazone top
Crystal data top
C10H13N3O2SF(000) = 504
Mr = 239.29Dx = 1.429 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1634 reflections
a = 4.6592 (6) Åθ = 2.6–28.1°
b = 24.067 (3) ŵ = 0.28 mm1
c = 10.047 (1) ÅT = 100 K
β = 99.060 (2)°Plate, yellow
V = 1112.5 (2) Å30.40 × 0.12 × 0.06 mm
Z = 4
Data collection top
Bruker SMART APEX
diffractometer
2517 independent reflections
Radiation source: fine-focus sealed tube1972 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ω scansθmax = 27.5°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 64
Tmin = 0.896, Tmax = 0.983k = 3031
6303 measured reflectionsl = 1312
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.109H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0512P)2 + 0.3651P]
where P = (Fo2 + 2Fc2)/3
2517 reflections(Δ/σ)max = 0.001
148 parametersΔρmax = 0.38 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C10H13N3O2SV = 1112.5 (2) Å3
Mr = 239.29Z = 4
Monoclinic, P21/nMo Kα radiation
a = 4.6592 (6) ŵ = 0.28 mm1
b = 24.067 (3) ÅT = 100 K
c = 10.047 (1) Å0.40 × 0.12 × 0.06 mm
β = 99.060 (2)°
Data collection top
Bruker SMART APEX
diffractometer
2517 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1972 reflections with I > 2σ(I)
Tmin = 0.896, Tmax = 0.983Rint = 0.028
6303 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.109H-atom parameters constrained
S = 1.08Δρmax = 0.38 e Å3
2517 reflectionsΔρmin = 0.25 e Å3
148 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S11.01421 (11)0.514276 (19)0.28484 (5)0.02112 (15)
O10.1480 (3)0.32859 (6)0.28304 (13)0.0240 (3)
H10.27070.35440.29080.036*
O20.4004 (3)0.21979 (5)0.53651 (13)0.0238 (3)
H20.41520.21170.61650.036*
N10.6825 (4)0.43087 (7)0.17727 (16)0.0225 (4)
H1N0.54950.40560.18450.027*
N20.6791 (3)0.44770 (6)0.40159 (15)0.0175 (3)
H2N0.73780.46660.47600.021*
N30.4854 (3)0.40468 (6)0.40248 (15)0.0169 (3)
C10.6265 (5)0.39432 (9)0.0504 (2)0.0270 (5)
H1A0.69850.39710.13670.040*
H1B0.41690.40150.06440.040*
H1C0.66440.35690.01320.040*
C20.7804 (5)0.43673 (9)0.0471 (2)0.0276 (5)
H2A0.99320.43090.05780.033*
H2B0.73710.47470.01150.033*
C30.7800 (4)0.46113 (7)0.28620 (18)0.0174 (4)
C40.3905 (4)0.39384 (7)0.51361 (17)0.0162 (4)
H40.45680.41520.59200.019*
C50.1834 (4)0.34936 (7)0.51966 (18)0.0154 (4)
C60.0690 (4)0.31772 (7)0.40586 (18)0.0174 (4)
C70.1245 (4)0.27525 (8)0.41357 (19)0.0195 (4)
H70.19830.25450.33520.023*
C80.2121 (4)0.26265 (7)0.53563 (18)0.0179 (4)
C90.1092 (4)0.29412 (7)0.65039 (18)0.0181 (4)
H90.17290.28640.73380.022*
C100.0857 (4)0.33653 (7)0.64102 (18)0.0171 (4)
H100.15600.35770.71920.021*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0235 (3)0.0188 (2)0.0214 (2)0.0054 (2)0.00430 (19)0.00073 (18)
O10.0316 (9)0.0240 (7)0.0169 (6)0.0099 (6)0.0059 (6)0.0026 (5)
O20.0275 (8)0.0207 (7)0.0225 (7)0.0089 (6)0.0019 (6)0.0036 (5)
N10.0235 (9)0.0242 (8)0.0207 (8)0.0087 (7)0.0063 (7)0.0028 (7)
N20.0181 (8)0.0176 (8)0.0167 (7)0.0047 (6)0.0022 (6)0.0009 (6)
N30.0154 (8)0.0139 (7)0.0211 (8)0.0016 (6)0.0019 (6)0.0017 (6)
C10.0302 (12)0.0283 (11)0.0228 (10)0.0037 (9)0.0056 (9)0.0022 (8)
C20.0301 (12)0.0332 (11)0.0209 (10)0.0089 (10)0.0081 (9)0.0025 (8)
C30.0141 (10)0.0168 (9)0.0209 (9)0.0029 (7)0.0017 (7)0.0019 (7)
C40.0151 (10)0.0162 (8)0.0165 (9)0.0004 (7)0.0004 (7)0.0011 (7)
C50.0138 (9)0.0133 (8)0.0185 (9)0.0021 (7)0.0006 (7)0.0002 (7)
C60.0176 (10)0.0179 (9)0.0166 (9)0.0025 (7)0.0027 (7)0.0007 (7)
C70.0208 (10)0.0169 (9)0.0195 (9)0.0012 (8)0.0010 (8)0.0014 (7)
C80.0154 (10)0.0139 (8)0.0232 (9)0.0007 (7)0.0005 (8)0.0031 (7)
C90.0184 (10)0.0190 (9)0.0168 (9)0.0012 (7)0.0021 (7)0.0033 (7)
C100.0180 (10)0.0170 (9)0.0155 (8)0.0015 (8)0.0003 (7)0.0017 (7)
Geometric parameters (Å, º) top
S1—C31.6826 (19)C1—H1C0.9800
O1—C61.367 (2)C2—H2A0.9900
O1—H10.8400C2—H2B0.9900
O2—C81.355 (2)C4—C51.449 (2)
O2—H20.8400C4—H40.9500
N1—C31.333 (2)C5—C101.401 (2)
N1—C21.458 (2)C5—C61.407 (2)
N1—H1N0.8800C6—C71.373 (3)
N2—C31.357 (2)C7—C81.386 (3)
N2—N31.374 (2)C7—H70.9500
N2—H2N0.8800C8—C91.400 (3)
N3—C41.291 (2)C9—C101.379 (3)
C1—C21.515 (3)C9—H90.9500
C1—H1A0.9800C10—H100.9500
C1—H1B0.9800
C6—O1—H1109.5N2—C3—S1120.03 (14)
C8—O2—H2109.5N3—C4—C5120.45 (16)
C3—N1—C2124.66 (16)N3—C4—H4119.8
C3—N1—H1N117.7C5—C4—H4119.8
C2—N1—H1N117.7C10—C5—C6117.04 (17)
C3—N2—N3120.08 (15)C10—C5—C4120.59 (16)
C3—N2—H2N120.0C6—C5—C4122.37 (16)
N3—N2—H2N120.0O1—C6—C7117.76 (17)
C4—N3—N2118.21 (15)O1—C6—C5120.57 (17)
C2—C1—H1A109.5C7—C6—C5121.67 (17)
C2—C1—H1B109.5C6—C7—C8120.03 (17)
H1A—C1—H1B109.5C6—C7—H7120.0
C2—C1—H1C109.5C8—C7—H7120.0
H1A—C1—H1C109.5O2—C8—C7116.98 (17)
H1B—C1—H1C109.5O2—C8—C9123.01 (17)
N1—C2—C1109.36 (17)C7—C8—C9120.00 (17)
N1—C2—H2A109.8C10—C9—C8119.21 (17)
C1—C2—H2A109.8C10—C9—H9120.4
N1—C2—H2B109.8C8—C9—H9120.4
C1—C2—H2B109.8C9—C10—C5122.00 (17)
H2A—C2—H2B108.3C9—C10—H10119.0
N1—C3—N2116.86 (17)C5—C10—H10119.0
N1—C3—S1123.11 (14)
C3—N2—N3—C4178.76 (17)C10—C5—C6—C71.5 (3)
C3—N1—C2—C1178.52 (18)C4—C5—C6—C7179.20 (17)
C2—N1—C3—N2175.78 (18)O1—C6—C7—C8179.83 (17)
C2—N1—C3—S14.9 (3)C5—C6—C7—C80.1 (3)
N3—N2—C3—N10.0 (2)C6—C7—C8—O2179.15 (16)
N3—N2—C3—S1179.30 (13)C6—C7—C8—C91.6 (3)
N2—N3—C4—C5179.27 (15)O2—C8—C9—C10179.01 (17)
N3—C4—C5—C10178.30 (17)C7—C8—C9—C101.8 (3)
N3—C4—C5—C62.4 (3)C8—C9—C10—C50.3 (3)
C10—C5—C6—O1178.39 (16)C6—C5—C10—C91.3 (3)
C4—C5—C6—O10.9 (3)C4—C5—C10—C9179.39 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N30.841.842.583 (2)147
O2—H2···O1i0.841.922.714 (2)158
Symmetry code: (i) x1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC10H13N3O2S
Mr239.29
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)4.6592 (6), 24.067 (3), 10.047 (1)
β (°) 99.060 (2)
V3)1112.5 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.28
Crystal size (mm)0.40 × 0.12 × 0.06
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.896, 0.983
No. of measured, independent and
observed [I > 2σ(I)] reflections
6303, 2517, 1972
Rint0.028
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.109, 1.08
No. of reflections2517
No. of parameters148
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.38, 0.25

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N30.841.842.583 (2)147
O2—H2···O1i0.841.922.714 (2)158
Symmetry code: (i) x1/2, y+1/2, z+1/2.
 

Acknowledgements

We thank the University of Malaya (grant No. PJP F316/2008C) for supporting this study. KWT thanks the Ministry of Higher Education for an SLAI scholarship in this research.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKayed, S. F., Farina, Y., Baba, I. & Simpson, J. (2008). Acta Cryst. E64, o824–o825.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2008). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds