metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 11| November 2008| Pages m1424-m1425

Poly[μ-4,4′-bi­pyridine-κ2N:N′-μ-thio­cyanato-κ2N:S-copper(I)]

aInstitut für Anorganische Chemie, Christian-Albrechts-Universität Kiel, Max-Eyth-Strasse 2, D-24118 Kiel, Germany
*Correspondence e-mail: cnaether@ac.uni-kiel.de

(Received 10 October 2008; accepted 13 October 2008; online 18 October 2008)

In the crystal structure of the title compound, [Cu(NCS)(C10H8N2)]n, the CuI atom is coordinated by two N atoms from two symmetry-related 4,4′-bipyridine (bipy) ligands and one N and one S atom from two symmetry-related thio­cyanate ligands in a distorted tetra­hedral environment. The thio­cyanate ligands bridge the CuI atoms into a zigzag [CuSCN]n chain running parallel to the a axis. These chains are further connected through two bipy ligands that bridge the CuI centers to generate a two-dimensional brick-like network. The pyridyl planes of the ligands exhibit a dihedral angle of 37.35 (12)°.

Related literature

For related structures, see: Goher & Mautner (1999[Goher, M. A. S. & Mautner, F. A. (1999). Polyhedron, 18, 1805-1810.]); Teichert & Sheldrick (1999[Teichert, O. & Sheldrick, W. S. (1999). Z. Anorg. Allg. Chem. 625, 1860-1865.]); Wang et al. (1999[Wang, Q. M., Guo, G.-C. & Mak, T. C. W. (1999). Chem. Commun. pp. 1849-1850.]). For related chemistry, see: Bhosekar et al. (2007[Bhosekar, G., Jess, I. & Näther, C. (2007). Inorg. Chem. 43, 6508-6515.]); Healy et al. (1984[Healy, P. C., Pakawatchai, C., Papasergio, R. I., Patrick, V. A. & White, A. H. (1984). Inorg. Chem. 23, 3769-3772.]); Näther & Greve (2003[Näther, C. & Greve, J. (2003). J. Solid State Chem. 176, 259-265.]); Näther & Jess (2001[Näther, C. & Jess, I. (2001). Monatsh. Chem. 132, 897-910.], 2006[Näther, C. & Jess, I. (2006). Inorg. Chem. 45, 7446-7454.]); Näther et al. (2002[Näther, C., Greve, J. & Jess, I. (2002). Chem. Mater. 14, 4536-4542.]); Näther, Greve & Jess (2003[Näther, C., Greve, J. & Jess, I. (2003). J. Solid State Chem. 175, 328-340.]); Näther, Wriedt & Jess (2003[Näther, C., Wriedt, M. & Jess, I. (2003). Inorg. Chem. 42, 2391-2397.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(NCS)(C10H8N2)]

  • Mr = 277.80

  • Orthorhombic, P b c a

  • a = 11.4340 (4) Å

  • b = 12.2530 (5) Å

  • c = 15.3806 (6) Å

  • V = 2154.83 (14) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 2.19 mm−1

  • T = 170 (2) K

  • 0.12 × 0.08 × 0.05 mm

Data collection
  • Stoe IPDS-II diffractometer

  • Absorption correction: numerical (X-SHAPE and X-RED32; Stoe & Cie, 2008[Stoe & Cie (2008). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.817, Tmax = 0.901

  • 23916 measured reflections

  • 2915 independent reflections

  • 2567 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.090

  • S = 1.24

  • 2915 reflections

  • 146 parameters

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.43 e Å−3

Table 1
Selected geometric parameters (Å, °)

Cu1—N11 1.966 (2)
Cu1—N1 2.080 (2)
Cu1—N2i 2.122 (2)
Cu1—S11ii 2.2755 (8)
N11—C11 1.151 (3)
C11—S11 1.651 (3)
N11—Cu1—N1 111.31 (9)
N11—Cu1—N2i 101.07 (9)
N1—Cu1—N2i 97.36 (9)
N11—Cu1—S11ii 115.22 (7)
N1—Cu1—S11ii 111.96 (6)
N2i—Cu1—S11ii 118.21 (6)
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [x-{\script{1\over 2}}, y, -z+{\script{1\over 2}}].

Data collection: X-AREA (Stoe & Cie, 2008[Stoe & Cie (2008). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: XCIF in SHELXTL.

Supporting information


Comment top

In our ongoing investigation on the synthesis, structures and properties of new coordination polymers based on metal halides as well as pseudohalides and N-donor ligands, we have startet systematic investigation on their thermal behavior because we have demonstrated that new ligand deficient coordination polymers can be conveniently prepared by thermal decompisition of suitable ligand rich precursor compounds (Näther, Wriedt & Jeß, 2003; Näther & Jeß, 2006; Bhosekar et al. 2007). If the ligand rich precursor compounds contain besides the N-donor ligands paramagnetic metal atoms and small magnetically active ligands like SCN-, ligand deficient compounds with briding SCN- ligands are obtained, which show cooperative magnetic phenomena at lower temperatures (Näther & Greve, 2003). During these investigations we have reacted copper(II)chloride and potassium thiocyanate with bipy. In this reaction the diamagnetic copper(I) title compound has been formed by accident.

The coordination properties of bipy enables a series of different coordination modes, because it can connect two different metal cations. In addition, typical Cu—S—C angles in CuSCN polymers are in the range of 100–106° (Healy et al. 1984) and this should enable the construction of stairlike single or double [Cu(SCN)] chains in 1:1 and 2:1 complexes, whose Cu atoms can then be connected by linear spacer ligands into sheets (Näther & Jeß, 2001; Näther et al. 2002; Näther, Greve & Jeß, 2003).

The 1:1 title compound [CuSCN(bipy)]n, whose structure (Fig. 1) represents a two-dimensional CuSCN coordination polymer, contains single [CuSCN] ribbons (Fig. 2) as a characteristic motif. Copper(i) thiocyanato compounds with pyrazine (Goher & Mautner, 1999), methylpyrazine (Teichert & Sheldrick, 1999) and 1,2-bis(4-pyridyl)ethane (Wang et al. 1999) as ligand show a similar topology. Within each layer the metal ions are bridged by two µ2(N,N')-bipy ligands and two µ(N,S)-thiocyanato groups. Thus, each copper(i) atom is tetrahedrally coordinated. The angels arround the copper(i) atoms range between 97.36 (9) and 115.22 (7)° and the Cu—SCN and Cu—NCS distances amount to 2.2755 (8) and 1.966 (2) Å, respectively. The Cu—Nbipy distances ranges from 2.080 (2) to 2.122 (2) Å (Tab. 1). The layers can be described as formed by two types of perpendicular zigzag like chains crossing at the copper(i) centers. Chains of the first type run along the c-axis and have bipy as a bridging ligand, while the second type extend along the a-axis containing bridging thiocyanate ligands. The intralayer Cu···Cu distances are 5.7942 (2) and 11.2037 (3) Å for Cu—NCS—Cu and Cu—bipy—Cu, respectively. The packing of the crystal structure is achieved by stacking the two-dimensional layers along the b-axis in corrugated sheets (Fig. 3) with an interlayer stacking distance between the centroides of the sixmembered rings of 4.237 (2) Å.

Related literature top

For related structures, see: Goher & Mautner (1999); Teichert & Sheldrick (1999); Wang et al. (1999). For related chemistry, see: Bhosekar et al. (2007); Healy et al. (1984); Näther & Greve (2003); Näther & Jeß (2001, 2006); Näther et al. (2002); Näther, Greve & Jeß (2003); Näther, Wriedt & Jeß (2003).

Experimental top

CuCl2 and bipy was obtained from Alfa Aesar, KSCN and methanol was obtained from Fluka. 0.1 mmol (13.4 mg) CuCl2, 0.2 mmol (19.4 mg) KSCN, 0.6 mmol (93.7 mg) and 1 ml of methanol were transfered in a test-tube, which was closed and heated to 120 °C for three days. On cooling orange block-shaped single crystals of the title compound were obtained.

Refinement top

All H atoms were located in difference map but were positioned with idealized geometry and were refined isotropic with Ueq(H) = 1.2 Ueq(C) of the parent atom using a riding model with C—H = 0.95 Å.

Computing details top

Data collection: X-AREA (Stoe & Cie, 2008); cell refinement: X-AREA (Stoe & Cie, 2008); data reduction: X-AREA (Stoe & Cie, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: XCIF in SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Crystal structure of the title compund with labelling and displacement ellipsoids drawn at the 50% probability level. [Symmetry codes: i = x, -y + 1/2, z - 1/2; ii = x - 1/2, y, -z + 1/2; iii = x + 1/2, y, -z + 1/2.]
[Figure 2] Fig. 2. Crystal structure of the title compound with view along the b axis.
[Figure 3] Fig. 3. Crystal structure of the title compound with view along the a axis.
Poly[µ-4,4'-bipyridine-κ2N:N'-µ-thiocyanato-κ2N:S- copper(I)] top
Crystal data top
[Cu(NCS)(C10H8N2)]Dx = 1.713 Mg m3
Mr = 277.80Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 23129 reflections
a = 11.4340 (4) Åθ = 1.7–29.7°
b = 12.2530 (5) ŵ = 2.19 mm1
c = 15.3806 (6) ÅT = 170 K
V = 2154.83 (14) Å3Block, orange
Z = 80.12 × 0.08 × 0.05 mm
F(000) = 1120
Data collection top
Stoe IPDS-II
diffractometer
2915 independent reflections
Radiation source: fine-focus sealed tube2567 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
ω scansθmax = 29.3°, θmin = 2.7°
Absorption correction: numerical
(X-SHAPE and X-RED32; Stoe & Cie, 2008)
h = 1515
Tmin = 0.817, Tmax = 0.901k = 1616
23916 measured reflectionsl = 2120
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047H-atom parameters constrained
wR(F2) = 0.090 w = 1/[σ2(Fo2) + (0.0317P)2 + 1.4342P]
where P = (Fo2 + 2Fc2)/3
S = 1.24(Δ/σ)max = 0.001
2915 reflectionsΔρmax = 0.32 e Å3
146 parametersΔρmin = 0.43 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0015 (3)
Crystal data top
[Cu(NCS)(C10H8N2)]V = 2154.83 (14) Å3
Mr = 277.80Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 11.4340 (4) ŵ = 2.19 mm1
b = 12.2530 (5) ÅT = 170 K
c = 15.3806 (6) Å0.12 × 0.08 × 0.05 mm
Data collection top
Stoe IPDS-II
diffractometer
2915 independent reflections
Absorption correction: numerical
(X-SHAPE and X-RED32; Stoe & Cie, 2008)
2567 reflections with I > 2σ(I)
Tmin = 0.817, Tmax = 0.901Rint = 0.040
23916 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.090H-atom parameters constrained
S = 1.24Δρmax = 0.32 e Å3
2915 reflectionsΔρmin = 0.43 e Å3
146 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.44386 (3)0.58247 (3)0.28065 (2)0.03676 (11)
N10.42996 (19)0.45592 (18)0.37017 (14)0.0353 (5)
N20.4249 (2)0.01317 (17)0.66651 (14)0.0361 (5)
C10.3680 (2)0.4601 (2)0.44384 (17)0.0385 (6)
H10.32520.52470.45610.046*
C20.3631 (2)0.3757 (2)0.50299 (17)0.0388 (6)
H20.31760.38250.55440.047*
C30.4252 (2)0.2806 (2)0.48664 (16)0.0325 (5)
C40.4902 (2)0.2762 (2)0.41074 (17)0.0372 (5)
H40.53500.21320.39720.045*
C50.4892 (2)0.3641 (2)0.35506 (17)0.0387 (6)
H50.53320.35910.30280.046*
C60.4236 (2)0.18673 (19)0.54777 (15)0.0314 (5)
C70.3241 (2)0.1573 (2)0.59312 (19)0.0404 (6)
H70.25320.19630.58450.048*
C80.3280 (2)0.0711 (2)0.65107 (18)0.0414 (6)
H80.25850.05210.68130.050*
C90.5207 (2)0.0408 (2)0.62150 (17)0.0389 (6)
H90.59020.00010.63080.047*
C100.5238 (2)0.1255 (2)0.56241 (17)0.0375 (6)
H100.59390.14170.53200.045*
N110.6066 (2)0.6321 (2)0.26898 (16)0.0419 (5)
C110.6915 (2)0.6652 (2)0.23866 (16)0.0342 (5)
S110.81061 (6)0.71667 (6)0.19394 (5)0.04387 (18)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.03545 (17)0.03621 (17)0.03862 (17)0.00274 (13)0.00331 (14)0.00139 (13)
N10.0374 (11)0.0341 (10)0.0342 (11)0.0018 (9)0.0027 (9)0.0024 (9)
N20.0416 (12)0.0339 (10)0.0329 (11)0.0005 (9)0.0020 (9)0.0028 (8)
C10.0445 (15)0.0336 (12)0.0375 (13)0.0026 (11)0.0052 (11)0.0007 (11)
C20.0459 (15)0.0372 (13)0.0334 (12)0.0005 (11)0.0078 (11)0.0011 (11)
C30.0352 (12)0.0322 (11)0.0302 (11)0.0046 (9)0.0020 (9)0.0001 (9)
C40.0419 (14)0.0338 (12)0.0359 (13)0.0039 (11)0.0027 (11)0.0004 (10)
C50.0430 (14)0.0406 (13)0.0323 (12)0.0017 (11)0.0053 (11)0.0022 (11)
C60.0386 (13)0.0275 (10)0.0281 (11)0.0027 (9)0.0021 (9)0.0015 (9)
C70.0374 (14)0.0366 (13)0.0472 (15)0.0009 (11)0.0032 (11)0.0052 (11)
C80.0385 (14)0.0411 (14)0.0446 (14)0.0020 (11)0.0043 (11)0.0049 (12)
C90.0397 (13)0.0404 (13)0.0366 (13)0.0038 (11)0.0004 (11)0.0035 (11)
C100.0375 (13)0.0418 (14)0.0332 (12)0.0012 (11)0.0027 (10)0.0030 (11)
N110.0348 (12)0.0455 (13)0.0455 (13)0.0060 (10)0.0005 (10)0.0006 (10)
C110.0322 (12)0.0330 (12)0.0374 (13)0.0021 (10)0.0057 (10)0.0006 (10)
S110.0321 (3)0.0384 (3)0.0611 (4)0.0008 (3)0.0043 (3)0.0118 (3)
Geometric parameters (Å, º) top
Cu1—N111.966 (2)C4—C51.376 (4)
Cu1—N12.080 (2)C4—H40.9500
Cu1—N2i2.122 (2)C5—H50.9500
Cu1—S11ii2.2755 (8)C6—C71.382 (4)
N1—C51.333 (3)C6—C101.388 (4)
N1—C11.337 (3)C7—C81.383 (4)
N2—C81.336 (4)C7—H70.9500
N2—C91.339 (3)C8—H80.9500
N2—Cu1iii2.122 (2)C9—C101.380 (4)
C1—C21.379 (4)C9—H90.9500
C1—H10.9500C10—H100.9500
C2—C31.388 (4)N11—C111.151 (3)
C2—H20.9500C11—S111.651 (3)
C3—C41.385 (4)S11—Cu1iv2.2755 (8)
C3—C61.485 (3)
N11—Cu1—N1111.31 (9)C3—C4—H4120.3
N11—Cu1—N2i101.07 (9)N1—C5—C4123.8 (2)
N1—Cu1—N2i97.36 (9)N1—C5—H5118.1
N11—Cu1—S11ii115.22 (7)C4—C5—H5118.1
N1—Cu1—S11ii111.96 (6)C7—C6—C10117.2 (2)
N2i—Cu1—S11ii118.21 (6)C7—C6—C3122.1 (2)
C5—N1—C1116.7 (2)C10—C6—C3120.7 (2)
C5—N1—Cu1118.34 (17)C6—C7—C8119.8 (3)
C1—N1—Cu1124.96 (18)C6—C7—H7120.1
C8—N2—C9116.8 (2)C8—C7—H7120.1
C8—N2—Cu1iii121.67 (18)N2—C8—C7123.2 (3)
C9—N2—Cu1iii118.92 (18)N2—C8—H8118.4
N1—C1—C2123.5 (3)C7—C8—H8118.4
N1—C1—H1118.2N2—C9—C10123.5 (3)
C2—C1—H1118.2N2—C9—H9118.3
C1—C2—C3119.3 (2)C10—C9—H9118.3
C1—C2—H2120.4C9—C10—C6119.5 (2)
C3—C2—H2120.4C9—C10—H10120.3
C4—C3—C2117.4 (2)C6—C10—H10120.3
C4—C3—C6120.7 (2)C11—N11—Cu1160.8 (2)
C2—C3—C6121.9 (2)N11—C11—S11177.9 (2)
C5—C4—C3119.4 (2)C11—S11—Cu1iv101.83 (9)
C5—C4—H4120.3
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x1/2, y, z+1/2; (iii) x, y+1/2, z+1/2; (iv) x+1/2, y, z+1/2.

Experimental details

Crystal data
Chemical formula[Cu(NCS)(C10H8N2)]
Mr277.80
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)170
a, b, c (Å)11.4340 (4), 12.2530 (5), 15.3806 (6)
V3)2154.83 (14)
Z8
Radiation typeMo Kα
µ (mm1)2.19
Crystal size (mm)0.12 × 0.08 × 0.05
Data collection
DiffractometerStoe IPDS-II
diffractometer
Absorption correctionNumerical
(X-SHAPE and X-RED32; Stoe & Cie, 2008)
Tmin, Tmax0.817, 0.901
No. of measured, independent and
observed [I > 2σ(I)] reflections
23916, 2915, 2567
Rint0.040
(sin θ/λ)max1)0.688
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.090, 1.24
No. of reflections2915
No. of parameters146
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.32, 0.43

Computer programs: X-AREA (Stoe & Cie, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008), XCIF in SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Cu1—N111.966 (2)Cu1—S11ii2.2755 (8)
Cu1—N12.080 (2)N11—C111.151 (3)
Cu1—N2i2.122 (2)C11—S111.651 (3)
N11—Cu1—N1111.31 (9)N11—Cu1—S11ii115.22 (7)
N11—Cu1—N2i101.07 (9)N1—Cu1—S11ii111.96 (6)
N1—Cu1—N2i97.36 (9)N2i—Cu1—S11ii118.21 (6)
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x1/2, y, z+1/2.
 

Acknowledgements

MW thanks the `Stiftung Stipendien-Fonds des Verbandes der Chemischen Industrie' for a PhD scholarship. This work is supported by the state of Schleswig-Holstein and the Deutsche Forschungsgemeinschaft (projekt No. NA 720/1-1). We are very thankful to Professor Dr Wolfgang Bensch for the use of his experimental equipment.

References

First citationBhosekar, G., Jess, I. & Näther, C. (2007). Inorg. Chem. 43, 6508–6515.  Google Scholar
First citationGoher, M. A. S. & Mautner, F. A. (1999). Polyhedron, 18, 1805–1810.  Web of Science CSD CrossRef CAS Google Scholar
First citationHealy, P. C., Pakawatchai, C., Papasergio, R. I., Patrick, V. A. & White, A. H. (1984). Inorg. Chem. 23, 3769–3772.  CSD CrossRef CAS Web of Science Google Scholar
First citationNäther, C. & Greve, J. (2003). J. Solid State Chem. 176, 259–265.  Google Scholar
First citationNäther, C., Greve, J. & Jess, I. (2002). Chem. Mater. 14, 4536–4542.  Google Scholar
First citationNäther, C., Greve, J. & Jess, I. (2003). J. Solid State Chem. 175, 328–340.  Google Scholar
First citationNäther, C. & Jess, I. (2001). Monatsh. Chem. 132, 897–910.  Web of Science CSD CrossRef CAS Google Scholar
First citationNäther, C. & Jess, I. (2006). Inorg. Chem. 45, 7446–7454.  Web of Science PubMed Google Scholar
First citationNäther, C., Wriedt, M. & Jess, I. (2003). Inorg. Chem. 42, 2391–2397.  Web of Science CSD CrossRef PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2008). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationTeichert, O. & Sheldrick, W. S. (1999). Z. Anorg. Allg. Chem. 625, 1860–1865.  CrossRef CAS Google Scholar
First citationWang, Q. M., Guo, G.-C. & Mak, T. C. W. (1999). Chem. Commun. pp. 1849–1850.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 11| November 2008| Pages m1424-m1425
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds