organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-3-Bromo-N′-(5-bromo-2-hy­droxy­benzyl­­idene)benzohydrazide

aDepartment of Chemistry, Ankang University, Ankang Shanxi 725000, People's Republic of China, and bDepartment of Biology, Ankang University, Ankang Shanxi 725000, People's Republic of China
*Correspondence e-mail: guobiao_cao@126.com

(Received 21 September 2008; accepted 23 September 2008; online 4 October 2008)

The title compound, C14H10Br2N2O2, was synthesized by the reaction of 5-bromo­salicylaldehyde with an equimolar quantity of 3-bromo­benzohydrazide in methanol. The dihedral angle between the two benzene rings is 10.5 (4)°. In the crystal structure, mol­ecules are linked through inter­molecular N—H⋯O hydrogen bonds to form chains parallel to the c axis, and an intra­molecular O—H⋯N inter­action also occurs.

Related literature

For related structures, see: Cao (2007a[Cao, G.-B. (2007a). Synth. React. Inorg. Met.-Org. Nano-Met. Chem. 37, 639-642.],b[Cao, G.-B. (2007b). Acta Cryst. E63, m1149-m1150.]); Yang et al. (2008[Yang, T., Cao, G.-B., Xiang, J.-M. & Zhang, L.-H. (2008). Acta Cryst. E64, o1186.]); Zhen & Han (2005[Zhen, X.-L. & Han, J.-R. (2005). Acta Cryst. E61, o4360-o4361.]); Peng & Hou (2008[Peng, S.-J. & Hou, H.-Y. (2008). Acta Cryst. E64, o1864.]); Tang (2008[Tang, C.-B. (2008). Acta Cryst. E64, o1382.]); Salhin et al. (2007[Salhin, A., Tameem, A. A., Saad, B., Ng, S.-L. & Fun, H.-K. (2007). Acta Cryst. E63, o2880.]); Yathirajan et al. (2007[Yathirajan, H. S., Sarojini, B. K., Narayana, B., Sunil, K. & Bolte, M. (2007). Acta Cryst. E63, o2719.]).

[Scheme 1]

Experimental

Crystal data
  • C14H10Br2N2O2

  • Mr = 398.06

  • Monoclinic, P 21 /n

  • a = 5.657 (5) Å

  • b = 32.08 (3) Å

  • c = 7.856 (7) Å

  • β = 93.217 (13)°

  • V = 1423 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 5.70 mm−1

  • T = 298 (2) K

  • 0.13 × 0.08 × 0.07 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.525, Tmax = 0.691

  • 8526 measured reflections

  • 3227 independent reflections

  • 1830 reflections with I > 2σ(I)

  • Rint = 0.044

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.108

  • S = 1.06

  • 3227 reflections

  • 185 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.63 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.82 1.92 2.638 (5) 145
N2—H2⋯O2i 0.90 (4) 1.98 (2) 2.838 (5) 160 (5)
Symmetry code: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

We have recently reported some transition metal complexes with Schiff base ligands (Cao, 2007a,b) and a hydrazone compound (Yang et al., 2008). We report herein the crystal structure of the title compound, (I), derived from the reaction of 5-bromosalicylaldehyde with an equimolar quantity of 3-bromobenzohydrazide in methanol.

In compound (I), Fig. 1, the dihedral angle between the two benzene rings is 10.5 (4)°. All the bond values are comparable to those in other similar hydrazones (Zhen & Han, 2005; Peng & Hou, 2008; Tang, 2008; Salhin et al., 2007; Yathirajan et al., 2007). In the crystal structure, molecules are linked through intermolecular N—H···O hydrogen bonds, Table 1, to form chains parallel to the c axis, Fig. 2.

Related literature top

For related structures, see: Cao (2007a,b); Yang et al. (2008); Zhen & Han (2005); Peng & Hou (2008); Tang (2008); Salhin et al. (2007); Yathirajan et al. (2007).

Experimental top

The compound was prepared by refluxing equimolar quantities of 5-bromosalicylaldehyde with 3-bromobenzohydrazide in methanol. Colorless block-like crystals were formed when the solution was evaporated in air for about a week.

Refinement top

H2 was located in a difference Fourier map and refined isotropically, with the N–H distance restrained to 0.90 (4) Å. The other H atoms were placed in idealized positions and constrained to ride on their parent atoms, with C–H distances of 0.93 Å, the O–H distance of 0.82 Å, and with Uiso(H) set at 1.2Ueq(C) and 1.5Ueq(O).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with ellipsoids drawn at the 30% probability level. Dashed lines indicate intramolecular hydrogen bond.
[Figure 2] Fig. 2. The molecular packing of (I), viewed along the a axis. Hydrogen bonds are drawn as dashed lines.
(E)-3-Bromo-N'-(5-bromo-2-hydroxybenzylidene)benzohydrazide top
Crystal data top
C14H10Br2N2O2F(000) = 776
Mr = 398.06Dx = 1.858 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 5.657 (5) ÅCell parameters from 1979 reflections
b = 32.08 (3) Åθ = 2.5–25.3°
c = 7.856 (7) ŵ = 5.70 mm1
β = 93.217 (13)°T = 298 K
V = 1423 (2) Å3Block, colorless
Z = 40.13 × 0.08 × 0.07 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3227 independent reflections
Radiation source: fine-focus sealed tube1830 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
ω scansθmax = 27.5°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 75
Tmin = 0.525, Tmax = 0.691k = 4040
8526 measured reflectionsl = 108
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.108H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0261P)2 + 2.1967P]
where P = (Fo2 + 2Fc2)/3
3227 reflections(Δ/σ)max = 0.001
185 parametersΔρmax = 0.36 e Å3
1 restraintΔρmin = 0.63 e Å3
Crystal data top
C14H10Br2N2O2V = 1423 (2) Å3
Mr = 398.06Z = 4
Monoclinic, P21/nMo Kα radiation
a = 5.657 (5) ŵ = 5.70 mm1
b = 32.08 (3) ÅT = 298 K
c = 7.856 (7) Å0.13 × 0.08 × 0.07 mm
β = 93.217 (13)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3227 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
1830 reflections with I > 2σ(I)
Tmin = 0.525, Tmax = 0.691Rint = 0.044
8526 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0481 restraint
wR(F2) = 0.108H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.36 e Å3
3227 reflectionsΔρmin = 0.63 e Å3
185 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.52024 (14)0.488709 (18)0.25097 (9)0.0871 (3)
Br20.48529 (11)0.059801 (15)0.43970 (8)0.0683 (2)
O10.9846 (6)0.33095 (11)0.5203 (5)0.0569 (9)
H10.89270.31120.51170.085*
O20.6434 (6)0.22201 (10)0.6015 (4)0.0607 (10)
N10.5896 (7)0.29247 (11)0.4185 (5)0.0451 (9)
N20.4480 (7)0.25766 (12)0.3888 (5)0.0482 (10)
C10.6522 (8)0.36456 (14)0.3700 (5)0.0398 (10)
C20.8762 (8)0.36571 (15)0.4560 (6)0.0455 (11)
C30.9919 (10)0.40362 (17)0.4777 (7)0.0596 (14)
H31.14090.40450.53390.072*
C40.8888 (11)0.43984 (17)0.4170 (7)0.0655 (15)
H40.96870.46500.43170.079*
C50.6659 (10)0.43900 (15)0.3338 (6)0.0572 (13)
C60.5510 (9)0.40199 (14)0.3089 (6)0.0485 (12)
H60.40340.40150.25050.058*
C70.5168 (8)0.32626 (14)0.3474 (6)0.0437 (11)
H70.37580.32640.28060.052*
C80.4901 (8)0.22345 (14)0.4857 (6)0.0431 (11)
C90.3421 (8)0.18595 (14)0.4356 (5)0.0398 (10)
C100.4437 (8)0.14749 (13)0.4676 (5)0.0419 (11)
H100.59080.14560.52610.050*
C110.3267 (9)0.11187 (14)0.4127 (6)0.0472 (12)
C120.1049 (9)0.11408 (17)0.3310 (6)0.0568 (14)
H120.02700.08990.29390.068*
C130.0001 (9)0.15246 (17)0.3051 (6)0.0547 (13)
H130.15130.15420.25300.066*
C140.1181 (8)0.18839 (15)0.3557 (6)0.0471 (12)
H140.04720.21420.33620.057*
H20.339 (7)0.2580 (16)0.301 (5)0.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.1139 (6)0.0458 (3)0.1014 (5)0.0013 (3)0.0025 (4)0.0130 (3)
Br20.0836 (4)0.0420 (3)0.0786 (4)0.0039 (3)0.0013 (3)0.0049 (3)
O10.038 (2)0.064 (2)0.067 (2)0.0044 (17)0.0141 (17)0.0082 (19)
O20.068 (2)0.0479 (19)0.062 (2)0.0009 (17)0.0422 (19)0.0007 (16)
N10.049 (2)0.039 (2)0.045 (2)0.0038 (18)0.0151 (18)0.0009 (17)
N20.051 (3)0.040 (2)0.051 (2)0.0048 (19)0.027 (2)0.0026 (18)
C10.034 (3)0.050 (3)0.035 (2)0.002 (2)0.002 (2)0.006 (2)
C20.040 (3)0.052 (3)0.044 (3)0.007 (2)0.001 (2)0.001 (2)
C30.050 (3)0.069 (4)0.058 (3)0.013 (3)0.007 (3)0.010 (3)
C40.073 (4)0.057 (3)0.065 (4)0.027 (3)0.001 (3)0.006 (3)
C50.070 (4)0.047 (3)0.055 (3)0.007 (3)0.006 (3)0.002 (2)
C60.060 (3)0.046 (3)0.039 (3)0.002 (2)0.002 (2)0.001 (2)
C70.039 (3)0.052 (3)0.039 (3)0.003 (2)0.009 (2)0.002 (2)
C80.043 (3)0.043 (3)0.042 (3)0.004 (2)0.011 (2)0.001 (2)
C90.042 (3)0.049 (3)0.027 (2)0.002 (2)0.009 (2)0.0001 (19)
C100.039 (3)0.049 (3)0.037 (3)0.000 (2)0.007 (2)0.001 (2)
C110.057 (3)0.046 (3)0.039 (3)0.005 (2)0.003 (2)0.001 (2)
C120.053 (3)0.061 (3)0.056 (3)0.022 (3)0.002 (3)0.002 (3)
C130.039 (3)0.072 (4)0.052 (3)0.011 (3)0.008 (2)0.004 (3)
C140.038 (3)0.059 (3)0.043 (3)0.000 (2)0.001 (2)0.001 (2)
Geometric parameters (Å, º) top
Br1—C51.893 (5)C4—H40.9300
Br2—C111.902 (5)C5—C61.362 (6)
O1—C21.356 (5)C6—H60.9300
O1—H10.8200C7—H70.9300
O2—C81.222 (5)C8—C91.505 (6)
N1—C71.277 (5)C9—C101.378 (6)
N1—N21.386 (5)C9—C141.385 (6)
N2—C81.349 (6)C10—C111.377 (6)
N2—H20.90 (4)C10—H100.9300
C1—C21.402 (6)C11—C121.379 (7)
C1—C61.403 (6)C12—C131.376 (7)
C1—C71.453 (6)C12—H120.9300
C2—C31.387 (6)C13—C141.379 (6)
C3—C41.373 (7)C13—H130.9300
C3—H30.9300C14—H140.9300
C4—C51.387 (7)
C2—O1—H1109.5N1—C7—H7119.7
C7—N1—N2116.2 (4)C1—C7—H7119.7
C8—N2—N1118.6 (3)O2—C8—N2123.1 (4)
C8—N2—H2122 (4)O2—C8—C9121.7 (4)
N1—N2—H2119 (4)N2—C8—C9115.1 (4)
C2—C1—C6118.9 (4)C10—C9—C14119.7 (4)
C2—C1—C7122.5 (4)C10—C9—C8116.6 (4)
C6—C1—C7118.6 (4)C14—C9—C8123.7 (4)
O1—C2—C3118.3 (4)C11—C10—C9119.8 (4)
O1—C2—C1122.3 (4)C11—C10—H10120.1
C3—C2—C1119.3 (5)C9—C10—H10120.1
C4—C3—C2120.7 (5)C10—C11—C12120.8 (5)
C4—C3—H3119.6C10—C11—Br2118.6 (4)
C2—C3—H3119.6C12—C11—Br2120.6 (4)
C3—C4—C5120.3 (5)C13—C12—C11119.2 (5)
C3—C4—H4119.9C13—C12—H12120.4
C5—C4—H4119.9C11—C12—H12120.4
C6—C5—C4119.9 (5)C12—C13—C14120.5 (5)
C6—C5—Br1119.3 (4)C12—C13—H13119.8
C4—C5—Br1120.8 (4)C14—C13—H13119.8
C5—C6—C1120.9 (5)C13—C14—C9119.9 (5)
C5—C6—H6119.5C13—C14—H14120.0
C1—C6—H6119.5C9—C14—H14120.0
N1—C7—C1120.6 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.922.638 (5)145
N2—H2···O2i0.90 (4)1.98 (2)2.838 (5)160 (5)
Symmetry code: (i) x1/2, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC14H10Br2N2O2
Mr398.06
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)5.657 (5), 32.08 (3), 7.856 (7)
β (°) 93.217 (13)
V3)1423 (2)
Z4
Radiation typeMo Kα
µ (mm1)5.70
Crystal size (mm)0.13 × 0.08 × 0.07
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.525, 0.691
No. of measured, independent and
observed [I > 2σ(I)] reflections
8526, 3227, 1830
Rint0.044
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.108, 1.06
No. of reflections3227
No. of parameters185
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.36, 0.63

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.922.638 (5)145
N2—H2···O2i0.90 (4)1.98 (2)2.838 (5)160 (5)
Symmetry code: (i) x1/2, y+1/2, z1/2.
 

Acknowledgements

The Natural Scientific Research Foundation of the Education Office of Shanxi Province (project No. 07 J K177) is acknowledged.

References

First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCao, G.-B. (2007a). Synth. React. Inorg. Met.-Org. Nano-Met. Chem. 37, 639–642.  CAS Google Scholar
First citationCao, G.-B. (2007b). Acta Cryst. E63, m1149–m1150.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPeng, S.-J. & Hou, H.-Y. (2008). Acta Cryst. E64, o1864.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSalhin, A., Tameem, A. A., Saad, B., Ng, S.-L. & Fun, H.-K. (2007). Acta Cryst. E63, o2880.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTang, C.-B. (2008). Acta Cryst. E64, o1382.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYang, T., Cao, G.-B., Xiang, J.-M. & Zhang, L.-H. (2008). Acta Cryst. E64, o1186.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYathirajan, H. S., Sarojini, B. K., Narayana, B., Sunil, K. & Bolte, M. (2007). Acta Cryst. E63, o2719.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhen, X.-L. & Han, J.-R. (2005). Acta Cryst. E61, o4360–o4361.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds