organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 11| November 2008| Pages o2052-o2053

Ethyl 4′-ethenyl-2′-oxo-4-phenyl-2-(3,4,5-tri­meth­oxy­phen­yl)spiro­[pyrrolidine-3,3′-indoline]-5-carboxyl­ate monohydrate

aPG & Research Department of Physics, A. M. Jain College, Meenambakkam, Chennai 600 114, India, bDepartment of Physics, Presidency College (Autonomous), Chennai 600 005, India, cDepartment of Analytical Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India, and dCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India
*Correspondence e-mail: mnpsy2004@yahoo.com

(Received 4 August 2008; accepted 26 September 2008; online 4 October 2008)

In the title compound, C31H32N2O6·H2O, the pyrrolidine ring adopts an envelope conformation. The ethyl C atoms of the ethoxy­cabonyl group are disordered over two positions with occupancies of ca 0.80 and 0.20. Intra­molecular N—H⋯O hydrogen bonds form S(5) and S(6) ring motifs. Mol­ecules are linked into a three-dimensional framework by O—H⋯O, N—H⋯O and C—H⋯O hydrogen bonds, and by C—H⋯π inter­actions.

Related literature

For related literature, see: Amalraj et al. (2003[Amalraj, A., Raghunathan, R., Sridevi Kumari, M. R. & Raman, N. (2003). Bioorg. Med. Chem. 11, 407-419.]); Beddoes et al. (1986[Beddoes, R. L., Dalton, L., Joule, T. A., Mills, O. S., Street, J. D. & Watt, C. I. F. (1986). J. Chem. Soc. Perkin Trans. 2, pp. 787-797.]); Cordell (1981[Cordell, G. (1981). Introduction to Alkaloids: A Biogenic Approach. New York: Wiley International.]); Suzuki et al. (1994[Suzuki, H., Aoyagi, S. & Kibayashi, C. (1994). Tetrahedron Lett. 35, 6119-6122.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For ring conformational analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]); Nardelli (1983[Nardelli, M. (1983). Acta Cryst. C39, 1141-1142.]).

[Scheme 1]

Experimental

Crystal data
  • C31H32N2O6·H2O

  • Mr = 546.60

  • Hexagonal, [R \overline 3]

  • a = 38.8029 (10) Å

  • c = 11.0307 (3) Å

  • V = 14383.4 (7) Å3

  • Z = 18

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 (2) K

  • 0.23 × 0.21 × 0.17 mm

Data collection
  • Bruker Kappa APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS, Sheldrick, 2001[Sheldrick, G. M. (2001). SADABS. University of Göttingen, Germany.]) Tmin = 0.982, Tmax = 0.986

  • 111058 measured reflections

  • 7909 independent reflections

  • 5572 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.141

  • S = 1.05

  • 7909 reflections

  • 399 parameters

  • 29 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1 0.86 (2) 2.419 (18) 2.8088 (18) 108 (1)
N1—H1⋯O3 0.86 (2) 2.376 (18) 2.9395 (17) 123 (1)
O4—H4B⋯O1i 0.85 (3) 2.142 (18) 2.909 (2) 150 (3)
N16—H16⋯O3ii 0.87 (2) 1.99 (2) 2.8449 (17) 166 (2)
C5—H5⋯O5iii 0.98 2.45 3.3197 (18) 147
C18—H18⋯O4iv 0.93 2.46 3.357 (2) 162
C24—H24BCg1iii 0.93 2.93 3.776 (2) 153
Symmetry codes: (i) [y+{\script{1\over 3}}, -x+y+{\script{2\over 3}}, -z+{\script{2\over 3}}]; (ii) -x+1, -y, -z+1; (iii) [-y+{\script{1\over 3}}, x-y-{\script{1\over 3}}, z-{\script{1\over 3}}]; (iv) [-x+y+{\script{2\over 3}}, -x+{\script{1\over 3}}, z+{\script{1\over 3}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

Substituted pyrrolidine compounds possess antimicrobial and antifungal activity against various pathogens (Amalraj et al., 2003). Several optically active pyrrolidine compounds are used as intermediates in controlled asymmetric synthesis (Suzuki et al., 1994). The spiro-indole-pyrrolidine ring system is a frequently encountered structural motif in many biologically important and pharmacologically relevant alkaloids, e.g. vincrinstine, vinblastine and spirotypostatins (Cordell, 1981). Against this background and to ascertain the detailed information on its molecular conformation, the structure determination of the title compound has been carried out.

The pyrrolidine ring (N1—C5) adopts an envelope conformation, with puckering (Cremer & Pople, 1975) and asymmetry (Nardelli, 1983) parameters q2 = 0.416 (2) Å, ϕ = 137.5 (2)° and Δs(C5) = 2.8 (2)°. The indoline ring system is planar and the keto atom O3 lies on the plane. The sum of angles at atom N1 of the pyrrolidine ring (323.3°) is in accordance with sp3 hybridization (Beddoes et al., 1986). The ethoxycarbonyl group is in an extended conformation as evidenced by torsion angles C2—C6—O2—C7 of -170.3 (3)° and C6—O2—C7—C8 of 170.3 (3)°.

Intramolecular N1—H1···O1 and N1—H1···O3 hydrogen bonds generate S(5) and S(6) ring motifs (Bernstein et al. 1995), respectively. The crystal packing is stabilized by O—H···O, O—H···N, N—H···O and C—H···O hydrogen bonds, and C—H···π intermolecular interactions (Table 1) which link the molecules into a three-dimensional framework.

Related literature top

For related literature, see: Amalraj et al. (2003); Beddoes et al. (1986); Cordell (1981); Suzuki et al. (1994). For hydrogen-bond motifs, see: Bernstein et al. (1995). For ring conformational analysis, see: Cremer & Pople (1975); Nardelli (1983).

Experimental top

3-Arylidene-4-vinylindoline-2-one (0.5 g, 1.0 mol) and (E)-ethyl-2-(3,4,5-trimethoxybenzylideneamino)acetate (0.15 g, 1.0 mol) in acetonitrile (10 ml) was stirred in the presence of catalytic amount of AgOAc and triethylamine. The obtained crude product was recrystallized in n-hexane-acetone (8:2 v/v).

Refinement top

The ethyl C atoms of the ethoxycarbonyl group are disordered over two positions (C7/C7A and C8/C8A) with refined occupancies of 0.797 (8) and 0.203 (8). The corresponding bond distances involving the disordered atoms were restrained to 1.54 (5) Å, and also the Uij parameters of atoms C7, C7A, C8 and C8A were restrained to an approximate isotropic behaviour. The O– and N-bound H atoms were located in a difference map and refined with O—H and H···H distances restrained to 0.84 (1) and 1.37 (1) Å, respectively. The remaining H atoms were positioned geometrically (C—H = 0.93–0.98 Å) and allowed to ride on their parent atoms, with Uiso(H) = 1.2–1.5(methyl) Ueq(C). A search for solvent-accessible voids in the crystal structure using PLATON showed a potential solvent volume of 2189.3 Å3 and subsequent application of SQUEEZE procedures showed three relevant voids each with a solvent-accessible volume of 730 Å3. However, this procedure showed no electrons in the voids. This indicates that the crystal lost nearly all of its solvent of crystallization by the time it was used for data collection, without collapse of the structure.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids. Both disorder components are shown.
Ethyl 4'-ethenyl-2'-oxo-4-phenyl-2-(3,4,5- trimethoxyphenyl)spiro[pyrrolidine-3,3'-indoline]-5-carboxylate monohydrate top
Crystal data top
C31H32N2O6·H2ODx = 1.136 Mg m3
Mr = 546.60Mo Kα radiation, λ = 0.71073 Å
Hexagonal, R3Cell parameters from 5683 reflections
Hall symbol: -R 3θ = 1.1–28.2°
a = 38.8029 (10) ŵ = 0.08 mm1
c = 11.0307 (3) ÅT = 293 K
V = 14383.4 (7) Å3Block, colourless
Z = 180.23 × 0.21 × 0.17 mm
F(000) = 5220
Data collection top
Bruker Kappa APEXII area-detector
diffractometer
7909 independent reflections
Radiation source: fine-focus sealed tube5572 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
ω and ϕ scansθmax = 28.2°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS, Sheldrick, 2001)
h = 5151
Tmin = 0.982, Tmax = 0.986k = 5151
111058 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.142H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0548P)2 + 16.9913P]
where P = (Fo2 + 2Fc2)/3
7909 reflections(Δ/σ)max = 0.001
399 parametersΔρmax = 0.26 e Å3
29 restraintsΔρmin = 0.21 e Å3
Crystal data top
C31H32N2O6·H2OZ = 18
Mr = 546.60Mo Kα radiation
Hexagonal, R3µ = 0.08 mm1
a = 38.8029 (10) ÅT = 293 K
c = 11.0307 (3) Å0.23 × 0.21 × 0.17 mm
V = 14383.4 (7) Å3
Data collection top
Bruker Kappa APEXII area-detector
diffractometer
7909 independent reflections
Absorption correction: multi-scan
(SADABS, Sheldrick, 2001)
5572 reflections with I > 2σ(I)
Tmin = 0.982, Tmax = 0.986Rint = 0.035
111058 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04629 restraints
wR(F2) = 0.142H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0548P)2 + 16.9913P]
where P = (Fo2 + 2Fc2)/3
7909 reflectionsΔρmax = 0.26 e Å3
399 parametersΔρmin = 0.21 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.56007 (4)0.06180 (4)0.10291 (14)0.0633 (4)
O20.56908 (4)0.12184 (4)0.05914 (13)0.0619 (4)
O30.50835 (3)0.01984 (3)0.34955 (10)0.0412 (3)
O50.31168 (3)0.07849 (4)0.31585 (11)0.0499 (3)
O60.33393 (4)0.13259 (3)0.34016 (11)0.0501 (3)
O70.40791 (4)0.11581 (4)0.28214 (13)0.0556 (3)
N10.47767 (4)0.03182 (4)0.11926 (11)0.0385 (3)
H10.4898 (5)0.0196 (5)0.1441 (16)0.041 (5)*
N160.47798 (4)0.03293 (4)0.50612 (12)0.0400 (3)
H160.4835 (5)0.0200 (6)0.5595 (18)0.048 (5)*
C20.50558 (5)0.07457 (5)0.12126 (13)0.0392 (3)
H20.49750.08660.05720.047*
C30.50071 (4)0.09151 (5)0.24589 (13)0.0376 (3)
H30.48670.10590.22620.045*
C40.46974 (4)0.05359 (4)0.31510 (12)0.0326 (3)
C50.44655 (4)0.02552 (4)0.20623 (12)0.0337 (3)
H50.43090.03620.16900.040*
C60.54749 (5)0.08427 (6)0.09354 (15)0.0467 (4)
C70.61222 (16)0.13632 (13)0.0495 (5)0.0722 (13)0.797 (8)
H7A0.61780.12420.01890.087*0.797 (8)
H7B0.62210.13050.12290.087*0.797 (8)
C80.63069 (12)0.18077 (11)0.0316 (6)0.121 (2)0.797 (8)
H8A0.62590.18600.04990.182*0.797 (8)
H8B0.65880.19350.04560.182*0.797 (8)
H8C0.61910.19100.08760.182*0.797 (8)
C7A0.6071 (7)0.1388 (7)0.0101 (16)0.068 (5)0.203 (8)
H7C0.61020.15680.05540.081*0.203 (8)
H7D0.61210.11840.02120.081*0.203 (8)
C8A0.6359 (5)0.1615 (6)0.1138 (16)0.109 (6)0.203 (8)
H8D0.63240.14340.17800.163*0.203 (8)
H8E0.63050.18160.14390.163*0.203 (8)
H8F0.66280.17390.08460.163*0.203 (8)
C90.53732 (5)0.12089 (5)0.31560 (16)0.0463 (4)
C100.54234 (7)0.15785 (7)0.3395 (3)0.0837 (8)
H100.52330.16400.31280.100*
C110.57526 (10)0.18618 (9)0.4028 (4)0.1240 (13)
H110.57820.21110.41770.149*
C120.60336 (9)0.17751 (10)0.4432 (3)0.1093 (11)
H120.62550.19650.48550.131*
C130.59885 (7)0.14127 (8)0.4215 (2)0.0780 (7)
H130.61780.13530.44960.094*
C140.56632 (5)0.11301 (6)0.35802 (17)0.0554 (5)
H140.56380.08820.34340.066*
C150.48836 (4)0.03372 (4)0.38989 (13)0.0345 (3)
C170.45453 (4)0.05069 (5)0.52273 (13)0.0370 (3)
C180.44120 (5)0.05730 (5)0.63084 (14)0.0469 (4)
H180.44680.04950.70440.056*
C190.41904 (5)0.07617 (6)0.62473 (15)0.0507 (4)
H190.40990.08160.69600.061*
C200.41024 (5)0.08710 (5)0.51543 (15)0.0446 (4)
H200.39510.09960.51480.054*
C210.42347 (4)0.07994 (4)0.40474 (13)0.0366 (3)
C220.44694 (4)0.06215 (4)0.41045 (12)0.0329 (3)
C230.41162 (5)0.09042 (5)0.28964 (15)0.0430 (4)
H230.42490.08980.22020.052*
C240.38483 (8)0.10039 (9)0.2753 (2)0.0826 (8)
H24A0.37070.10150.34190.099*
H24B0.37960.10650.19840.099*
C250.41775 (4)0.01738 (4)0.23731 (12)0.0344 (3)
C260.37872 (4)0.02733 (5)0.26238 (13)0.0363 (3)
H260.37140.00790.25880.044*
C270.35070 (4)0.06595 (5)0.29254 (13)0.0377 (3)
C280.36146 (5)0.09500 (5)0.30097 (14)0.0392 (3)
C290.40046 (5)0.08511 (5)0.27477 (14)0.0401 (3)
C300.42853 (5)0.04645 (5)0.24184 (14)0.0396 (3)
H300.45440.04010.22300.048*
C310.29816 (5)0.05142 (6)0.29070 (19)0.0546 (5)
H31A0.27010.06400.30620.082*
H31B0.30320.04350.20720.082*
H31C0.31200.02840.34160.082*
C320.31732 (7)0.16139 (7)0.2477 (2)0.0876 (9)
H32A0.29830.18650.28220.131*
H32B0.33800.16390.20850.131*
H32C0.30440.15330.18940.131*
C330.44799 (6)0.10687 (6)0.2791 (2)0.0670 (6)
H33A0.44900.13090.28890.100*
H33B0.46250.08880.34370.100*
H33C0.45970.09480.20280.100*
O40.31014 (5)0.11716 (5)0.52433 (13)0.0667 (4)
H4A0.3088 (8)0.1132 (9)0.6004 (10)0.110 (11)*
H4B0.3348 (4)0.1306 (9)0.507 (2)0.122 (12)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0469 (7)0.0699 (9)0.0813 (10)0.0354 (7)0.0131 (7)0.0068 (7)
O20.0454 (7)0.0612 (8)0.0703 (9)0.0201 (6)0.0217 (6)0.0187 (7)
O30.0417 (6)0.0510 (7)0.0404 (6)0.0303 (5)0.0012 (5)0.0064 (5)
O50.0351 (6)0.0546 (7)0.0608 (7)0.0231 (6)0.0113 (5)0.0135 (6)
O60.0465 (7)0.0408 (6)0.0553 (7)0.0161 (5)0.0091 (5)0.0048 (5)
O70.0459 (7)0.0424 (7)0.0841 (9)0.0262 (6)0.0031 (6)0.0014 (6)
N10.0389 (7)0.0463 (8)0.0349 (6)0.0247 (6)0.0067 (5)0.0077 (5)
N160.0442 (7)0.0492 (8)0.0330 (6)0.0281 (7)0.0007 (5)0.0077 (6)
C20.0381 (8)0.0459 (9)0.0357 (7)0.0226 (7)0.0052 (6)0.0112 (6)
C30.0355 (8)0.0409 (8)0.0398 (8)0.0218 (7)0.0056 (6)0.0095 (6)
C40.0295 (7)0.0374 (8)0.0331 (7)0.0184 (6)0.0013 (5)0.0054 (6)
C50.0321 (7)0.0427 (8)0.0307 (7)0.0219 (7)0.0010 (5)0.0049 (6)
C60.0409 (9)0.0566 (11)0.0407 (8)0.0231 (8)0.0088 (7)0.0068 (7)
C70.043 (2)0.079 (2)0.078 (3)0.0183 (18)0.019 (2)0.013 (2)
C80.073 (2)0.080 (3)0.164 (5)0.0039 (19)0.033 (3)0.003 (3)
C7A0.050 (7)0.077 (8)0.069 (8)0.026 (5)0.003 (6)0.024 (6)
C8A0.089 (8)0.114 (10)0.111 (10)0.042 (7)0.006 (7)0.015 (7)
C90.0394 (9)0.0424 (9)0.0493 (9)0.0146 (7)0.0091 (7)0.0039 (7)
C100.0583 (13)0.0541 (13)0.134 (2)0.0244 (11)0.0018 (14)0.0212 (14)
C110.085 (2)0.0677 (18)0.199 (4)0.0227 (16)0.010 (2)0.057 (2)
C120.0620 (16)0.101 (2)0.129 (3)0.0137 (16)0.0146 (16)0.050 (2)
C130.0464 (12)0.0876 (18)0.0723 (14)0.0127 (11)0.0080 (10)0.0029 (12)
C140.0428 (10)0.0570 (11)0.0559 (10)0.0170 (9)0.0032 (8)0.0038 (8)
C150.0306 (7)0.0368 (8)0.0356 (7)0.0165 (6)0.0016 (5)0.0049 (6)
C170.0352 (8)0.0393 (8)0.0357 (7)0.0181 (7)0.0010 (6)0.0039 (6)
C180.0512 (10)0.0565 (10)0.0331 (7)0.0271 (8)0.0021 (7)0.0032 (7)
C190.0534 (10)0.0622 (11)0.0385 (8)0.0304 (9)0.0083 (7)0.0018 (7)
C200.0424 (9)0.0494 (9)0.0472 (9)0.0268 (8)0.0073 (7)0.0005 (7)
C210.0333 (7)0.0380 (8)0.0387 (7)0.0180 (6)0.0038 (6)0.0037 (6)
C220.0305 (7)0.0347 (7)0.0322 (7)0.0154 (6)0.0020 (5)0.0036 (5)
C230.0446 (9)0.0526 (10)0.0425 (8)0.0324 (8)0.0042 (7)0.0052 (7)
C240.0934 (17)0.149 (2)0.0544 (12)0.0973 (19)0.0075 (11)0.0120 (13)
C250.0329 (7)0.0418 (8)0.0292 (6)0.0193 (6)0.0002 (5)0.0013 (6)
C260.0367 (8)0.0432 (8)0.0340 (7)0.0236 (7)0.0018 (6)0.0034 (6)
C270.0317 (7)0.0483 (9)0.0321 (7)0.0194 (7)0.0031 (5)0.0020 (6)
C280.0381 (8)0.0400 (8)0.0355 (7)0.0164 (7)0.0023 (6)0.0005 (6)
C290.0406 (8)0.0410 (8)0.0418 (8)0.0226 (7)0.0008 (6)0.0028 (6)
C300.0334 (8)0.0447 (9)0.0432 (8)0.0213 (7)0.0017 (6)0.0012 (6)
C310.0411 (9)0.0628 (12)0.0665 (11)0.0310 (9)0.0115 (8)0.0136 (9)
C320.0689 (15)0.0558 (13)0.0984 (18)0.0013 (11)0.0245 (13)0.0236 (12)
C330.0528 (12)0.0571 (12)0.1029 (17)0.0365 (10)0.0078 (11)0.0063 (11)
O40.0785 (11)0.0625 (9)0.0496 (8)0.0280 (8)0.0013 (7)0.0025 (7)
Geometric parameters (Å, º) top
O1—C61.198 (2)C10—C111.387 (4)
O2—C61.323 (2)C10—H100.93
O2—C7A1.39 (2)C11—C121.367 (5)
O2—C71.479 (6)C11—H110.93
O3—C151.2281 (18)C12—C131.349 (4)
O5—C271.3632 (18)C12—H120.93
O5—C311.417 (2)C13—C141.379 (3)
O6—C281.3774 (19)C13—H130.93
O6—C321.409 (3)C14—H140.93
O7—C291.3618 (19)C17—C181.374 (2)
O7—C331.414 (2)C17—C221.396 (2)
N1—C21.459 (2)C18—C191.382 (3)
N1—C51.4639 (18)C18—H180.93
N1—H10.864 (19)C19—C201.377 (2)
N16—C151.3397 (19)C19—H190.93
N16—C171.401 (2)C20—C211.405 (2)
N16—H160.87 (2)C20—H200.93
C2—C61.506 (2)C21—C221.392 (2)
C2—C31.575 (2)C21—C231.475 (2)
C2—H20.98C23—C241.288 (3)
C3—C91.513 (2)C23—H230.93
C3—C41.557 (2)C24—H24A0.93
C3—H30.98C24—H24B0.93
C4—C221.514 (2)C25—C301.386 (2)
C4—C151.5344 (19)C25—C261.391 (2)
C4—C51.568 (2)C26—C271.382 (2)
C5—C251.509 (2)C26—H260.93
C5—H50.98C27—C281.387 (2)
C7—C81.514 (4)C28—C291.393 (2)
C7—H7A0.97C29—C301.391 (2)
C7—H7B0.97C30—H300.93
C8—H8A0.96C31—H31A0.96
C8—H8B0.96C31—H31B0.96
C8—H8C0.96C31—H31C0.96
C7A—C8A1.532 (5)C32—H32A0.96
C7A—H7C0.97C32—H32B0.96
C7A—H7D0.97C32—H32C0.96
C8A—H8D0.96C33—H33A0.96
C8A—H8E0.96C33—H33B0.96
C8A—H8F0.96C33—H33C0.96
C9—C101.373 (3)O4—H4A0.850 (10)
C9—C141.387 (3)O4—H4B0.85 (3)
C6—O2—C7A124.8 (11)C13—C12—H12120.2
C6—O2—C7114.3 (2)C11—C12—H12120.2
C7A—O2—C720.0 (6)C12—C13—C14120.6 (3)
C27—O5—C31117.10 (13)C12—C13—H13119.7
C28—O6—C32114.69 (15)C14—C13—H13119.7
C29—O7—C33118.19 (14)C13—C14—C9121.1 (2)
C2—N1—C5105.16 (12)C13—C14—H14119.4
C2—N1—H1108.6 (12)C9—C14—H14119.4
C5—N1—H1109.4 (12)O3—C15—N16125.83 (13)
C15—N16—C17112.06 (12)O3—C15—C4125.81 (13)
C15—N16—H16120.3 (13)N16—C15—C4108.32 (12)
C17—N16—H16127.2 (13)C18—C17—C22123.46 (15)
N1—C2—C6112.10 (14)C18—C17—N16127.07 (14)
N1—C2—C3108.17 (11)C22—C17—N16109.45 (13)
C6—C2—C3114.37 (13)C17—C18—C19116.65 (15)
N1—C2—H2107.3C17—C18—H18121.7
C6—C2—H2107.3C19—C18—H18121.7
C3—C2—H2107.3C20—C19—C18121.46 (15)
C9—C3—C4116.95 (12)C20—C19—H19119.3
C9—C3—C2119.65 (13)C18—C19—H19119.3
C4—C3—C2103.33 (12)C19—C20—C21121.92 (16)
C9—C3—H3105.2C19—C20—H20119.0
C4—C3—H3105.2C21—C20—H20119.0
C2—C3—H3105.2C22—C21—C20116.93 (14)
C22—C4—C15102.14 (11)C22—C21—C23123.17 (13)
C22—C4—C3113.14 (12)C20—C21—C23119.89 (14)
C15—C4—C3113.80 (12)C21—C22—C17119.51 (13)
C22—C4—C5119.27 (12)C21—C22—C4132.54 (13)
C15—C4—C5108.28 (12)C17—C22—C4107.86 (12)
C3—C4—C5100.64 (11)C24—C23—C21126.75 (17)
N1—C5—C25115.29 (12)C24—C23—H23116.6
N1—C5—C4104.29 (11)C21—C23—H23116.6
C25—C5—C4116.34 (11)C23—C24—H24A120.0
N1—C5—H5106.8C23—C24—H24B120.0
C25—C5—H5106.8H24A—C24—H24B120.0
C4—C5—H5106.8C30—C25—C26119.79 (14)
O1—C6—O2124.28 (16)C30—C25—C5123.19 (13)
O1—C6—C2125.63 (16)C26—C25—C5117.02 (13)
O2—C6—C2110.08 (15)C27—C26—C25120.38 (14)
O2—C7—C8104.1 (4)C27—C26—H26119.8
O2—C7—H7A110.9C25—C26—H26119.8
C8—C7—H7A110.9O5—C27—C26124.30 (14)
O2—C7—H7B110.9O5—C27—C28115.41 (14)
C8—C7—H7B110.9C26—C27—C28120.29 (14)
H7A—C7—H7B109.0O6—C28—C27119.52 (14)
C7—C8—H8A109.5O6—C28—C29121.14 (15)
C7—C8—H8B109.5C27—C28—C29119.28 (14)
H8A—C8—H8B109.5O7—C29—C30124.38 (14)
C7—C8—H8C109.5O7—C29—C28115.04 (14)
H8A—C8—H8C109.5C30—C29—C28120.56 (14)
H8B—C8—H8C109.5C25—C30—C29119.65 (14)
O2—C7A—C8A106.2 (15)C25—C30—H30120.2
O2—C7A—H7C110.5C29—C30—H30120.2
C8A—C7A—H7C110.5O5—C31—H31A109.5
O2—C7A—H7D110.5O5—C31—H31B109.5
C8A—C7A—H7D110.5H31A—C31—H31B109.5
H7C—C7A—H7D108.7O5—C31—H31C109.5
C7A—C8A—H8D109.5H31A—C31—H31C109.5
C7A—C8A—H8E109.5H31B—C31—H31C109.5
H8D—C8A—H8E109.5O6—C32—H32A109.5
C7A—C8A—H8F109.5O6—C32—H32B109.5
H8D—C8A—H8F109.5H32A—C32—H32B109.5
H8E—C8A—H8F109.5O6—C32—H32C109.5
C10—C9—C14117.30 (19)H32A—C32—H32C109.5
C10—C9—C3118.31 (18)H32B—C32—H32C109.5
C14—C9—C3124.39 (16)O7—C33—H33A109.5
C9—C10—C11121.2 (3)O7—C33—H33B109.5
C9—C10—H10119.4H33A—C33—H33B109.5
C11—C10—H10119.4O7—C33—H33C109.5
C12—C11—C10120.1 (3)H33A—C33—H33C109.5
C12—C11—H11120.0H33B—C33—H33C109.5
C10—C11—H11120.0H4A—O4—H4B106.1 (15)
C13—C12—C11119.7 (3)
C5—N1—C2—C6149.93 (13)C5—C4—C15—N16128.16 (13)
C5—N1—C2—C322.92 (15)C15—N16—C17—C18175.19 (16)
N1—C2—C3—C9135.98 (14)C15—N16—C17—C223.36 (18)
C6—C2—C3—C910.3 (2)C22—C17—C18—C190.3 (3)
N1—C2—C3—C43.84 (15)N16—C17—C18—C19178.67 (16)
C6—C2—C3—C4121.84 (14)C17—C18—C19—C201.1 (3)
C9—C3—C4—C2271.14 (17)C18—C19—C20—C210.4 (3)
C2—C3—C4—C22155.16 (12)C19—C20—C21—C221.7 (2)
C9—C3—C4—C1544.87 (18)C19—C20—C21—C23177.00 (16)
C2—C3—C4—C1588.82 (14)C20—C21—C22—C173.0 (2)
C9—C3—C4—C5160.45 (13)C23—C21—C22—C17175.60 (15)
C2—C3—C4—C526.75 (13)C20—C21—C22—C4172.97 (15)
C2—N1—C5—C25169.62 (12)C23—C21—C22—C48.4 (3)
C2—N1—C5—C440.81 (14)C18—C17—C22—C212.5 (2)
C22—C4—C5—N1166.34 (12)N16—C17—C22—C21178.91 (13)
C15—C4—C5—N177.61 (13)C18—C17—C22—C4174.44 (15)
C3—C4—C5—N142.03 (13)N16—C17—C22—C44.17 (17)
C22—C4—C5—C2565.48 (17)C15—C4—C22—C21179.73 (16)
C15—C4—C5—C2550.57 (16)C3—C4—C22—C2157.0 (2)
C3—C4—C5—C25170.21 (12)C5—C4—C22—C2161.0 (2)
C7A—O2—C6—O111.2 (8)C15—C4—C22—C173.37 (15)
C7—O2—C6—O18.5 (4)C3—C4—C22—C17119.37 (13)
C7A—O2—C6—C2170.0 (7)C5—C4—C22—C17122.61 (14)
C7—O2—C6—C2170.3 (3)C22—C21—C23—C24167.1 (2)
N1—C2—C6—O120.7 (2)C20—C21—C23—C2411.5 (3)
C3—C2—C6—O1102.9 (2)N1—C5—C25—C3033.13 (19)
N1—C2—C6—O2160.55 (14)C4—C5—C25—C3089.46 (17)
C3—C2—C6—O275.85 (17)N1—C5—C25—C26146.98 (13)
C6—O2—C7—C8170.3 (4)C4—C5—C25—C2690.44 (16)
C7A—O2—C7—C864 (3)C30—C25—C26—C270.4 (2)
C6—O2—C7A—C8A100.1 (19)C5—C25—C26—C27179.48 (13)
C7—O2—C7A—C8A36 (2)C31—O5—C27—C269.3 (2)
C4—C3—C9—C10113.8 (2)C31—O5—C27—C28170.80 (15)
C2—C3—C9—C10120.2 (2)C25—C26—C27—O5178.51 (14)
C4—C3—C9—C1465.8 (2)C25—C26—C27—C281.6 (2)
C2—C3—C9—C1460.2 (2)C32—O6—C28—C27103.6 (2)
C14—C9—C10—C110.5 (4)C32—O6—C28—C2979.3 (2)
C3—C9—C10—C11179.9 (3)O5—C27—C28—O64.9 (2)
C9—C10—C11—C120.4 (5)C26—C27—C28—O6175.03 (14)
C10—C11—C12—C130.2 (6)O5—C27—C28—C29177.94 (14)
C11—C12—C13—C140.6 (5)C26—C27—C28—C292.1 (2)
C12—C13—C14—C90.4 (4)C33—O7—C29—C3012.7 (3)
C10—C9—C14—C130.1 (3)C33—O7—C29—C28168.46 (17)
C3—C9—C14—C13179.70 (18)O6—C28—C29—O74.7 (2)
C17—N16—C15—O3179.00 (15)C27—C28—C29—O7178.19 (14)
C17—N16—C15—C41.03 (17)O6—C28—C29—C30176.37 (14)
C22—C4—C15—O3176.54 (14)C27—C28—C29—C300.7 (2)
C3—C4—C15—O361.2 (2)C26—C25—C30—C291.8 (2)
C5—C4—C15—O349.82 (19)C5—C25—C30—C29178.09 (14)
C22—C4—C15—N161.44 (15)O7—C29—C30—C25179.95 (15)
C3—C4—C15—N16120.85 (14)C28—C29—C30—C251.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O10.86 (2)2.419 (18)2.8088 (18)108 (1)
N1—H1···O30.86 (2)2.376 (18)2.9395 (17)123 (1)
O4—H4B···O1i0.85 (3)2.14 (2)2.909 (2)150 (3)
N16—H16···O3ii0.87 (2)1.99 (2)2.8449 (17)166 (2)
C5—H5···O5iii0.982.453.3197 (18)147
C18—H18···O4iv0.932.463.357 (2)162
C24—H24B···Cg1iii0.932.933.776 (2)153
Symmetry codes: (i) y+1/3, x+y+2/3, z+2/3; (ii) x+1, y, z+1; (iii) y+1/3, xy1/3, z1/3; (iv) x+y+2/3, x+1/3, z+1/3.

Experimental details

Crystal data
Chemical formulaC31H32N2O6·H2O
Mr546.60
Crystal system, space groupHexagonal, R3
Temperature (K)293
a, c (Å)38.8029 (10), 11.0307 (3)
V3)14383.4 (7)
Z18
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.23 × 0.21 × 0.17
Data collection
DiffractometerBruker Kappa APEXII area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS, Sheldrick, 2001)
Tmin, Tmax0.982, 0.986
No. of measured, independent and
observed [I > 2σ(I)] reflections
111058, 7909, 5572
Rint0.035
(sin θ/λ)max1)0.666
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.142, 1.05
No. of reflections7909
No. of parameters399
No. of restraints29
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
w = 1/[σ2(Fo2) + (0.0548P)2 + 16.9913P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)0.26, 0.21

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O10.86 (2)2.419 (18)2.8088 (18)108 (1)
N1—H1···O30.86 (2)2.376 (18)2.9395 (17)123 (1)
O4—H4B···O1i0.85 (3)2.142 (18)2.909 (2)150 (3)
N16—H16···O3ii0.87 (2)1.99 (2)2.8449 (17)166 (2)
C5—H5···O5iii0.982.453.3197 (18)147
C18—H18···O4iv0.932.463.357 (2)162
C24—H24B···Cg1iii0.932.933.776 (2)153
Symmetry codes: (i) y+1/3, x+y+2/3, z+2/3; (ii) x+1, y, z+1; (iii) y+1/3, xy1/3, z1/3; (iv) x+y+2/3, x+1/3, z+1/3.
 

Acknowledgements

MS thanks Dr Babu Varghese, SAIF, IIT-Madras, India, for his help with the data collection.

References

First citationAmalraj, A., Raghunathan, R., Sridevi Kumari, M. R. & Raman, N. (2003). Bioorg. Med. Chem. 11, 407–419.  Web of Science PubMed Google Scholar
First citationBeddoes, R. L., Dalton, L., Joule, T. A., Mills, O. S., Street, J. D. & Watt, C. I. F. (1986). J. Chem. Soc. Perkin Trans. 2, pp. 787–797.  CSD CrossRef Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCordell, G. (1981). Introduction to Alkaloids: A Biogenic Approach. New York: Wiley International.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationNardelli, M. (1983). Acta Cryst. C39, 1141–1142.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2001). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSuzuki, H., Aoyagi, S. & Kibayashi, C. (1994). Tetrahedron Lett. 35, 6119–6122.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 11| November 2008| Pages o2052-o2053
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds