metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 11| November 2008| Pages m1440-m1441

Tris(oxamide dioxime-κ2N,N′)nickel(II) sulfate penta­hydrate

aDepartment of Inorganic Chemistry, University of Yaounde I, POB 812 Yaounde, Cameroon, and bInstitut für Anorganische Chemie, RWTH Aachen University, D-52056 Aachen, Germany
*Correspondence e-mail: belombe2000@yahoo.fr

(Received 26 August 2008; accepted 13 October 2008; online 18 October 2008)

The asymmetric unit of the title compound, [Ni(C2H6N4O2)3]SO4·5H2O, contains two complex cations, two sulfate anions and ten lattice water mol­ecules. In both independent cations, the central NiII ion adopts a distorted octa­hedral coordination involving six imino N atoms of three bidentate oxamide dioxime ligands. The bulk structure is achieved by a three-dimensional network of O—H⋯O and N—H⋯O hydrogen bonds which inter­link the ionic partners and some water mol­ecules in such a manner that the lattice framework thus formed defines channels parallel to [100]. The other water mol­ecules are lodged inside these channels. Two of the ten water mol­ecules in the asymmetric unit are disordered over three sites, in 0.356 (3):0.324 (5):0.320 (5) and 0.247 (3):0.293 (6):0.460 (6) occupancy ratios, and one O atom of a sulfate ion is also disordered over two sites, with occupancies of 0.621 (5) and 0.379 (5).

Related literature

For general background, see: Akutsu-Sato et al. (2005[Akutsu-Sato, A., Akutsu, H., Turner, S. S. & Day, P. (2005). Angew. Chem. Int. Ed. 44, 292-295.]); Bélombé et al. (2007[Bélombé, M. M., Nenwa, J., Mbiangué, Y. A., Gouet, B., Majoumo-Mbé, F., Hey-Hawkins, E. & Lönnecke, P. (2007). Inorg. Chim. Acta, doi:10.1016/j.ica.2007.03.003.]); Ephraim (1889[Ephraim, J. (1889). Chem. Ber. 22, 2305-2306.]); Infantes & Motherwell (2002[Infantes, L. & Motherwell, S. (2002). CrystEngComm, 4, 454-461.]); Martin et al. (2007[Martin, L., Day, P., Clegg, W., Harrington, R. W., Horton, P. N., Bingham, A., Hursthouse, M. B., McMillan, P. & Firth, S. (2007). J. Mater. Chem. 17, 3324-3329.]); Nenwa (2004[Nenwa, J. (2004). PhD dissertation. University of Yaounde I, Cameroon.]); Rashid et al. (2001[Rashid, S., Turner, S. S., Day, P., Light, M. E., Hursthouse, M. B., Firth, S. & Clark, R. J. H. (2001). Chem. Commun. pp. 1462-1463.]). For related structures, see: Bélombé et al. (2006[Bélombé, M. M., Nenwa, J., Mbiangué, Y. A., Hey-Hawkins, E., Lönnecke, P. & Majoumo-Mbé, F. (2006). International Conference on Coordination Chemistry (37th ICCC), 13-18 August, Cape Town, South Africa. Poster Abstract 374.]); Bélombé et al. (2007[Belombe, M. M., Nenwa, J., Bebga, G., Fokwa, B. P. T. & Dronskowski, R. (2007). Acta Cryst. E63, m2037-m2038.]); Endres & Jannack (1980[Endres, H. & Jannack, T. (1980). Acta Cryst. B36, 2136-2138.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C2H6N4O2)3]SO4·5H2O

  • Mr = 599.17

  • Triclinic, [P \overline 1]

  • a = 12.3141 (16) Å

  • b = 14.0458 (17) Å

  • c = 14.7734 (18) Å

  • α = 86.077 (3)°

  • β = 77.769 (3)°

  • γ = 72.868 (3)°

  • V = 2386.4 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.99 mm−1

  • T = 293 (2) K

  • 0.25 × 0.15 × 0.10 mm

Data collection
  • Bruker APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.789, Tmax = 0.907

  • 33235 measured reflections

  • 11834 independent reflections

  • 9771 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.164

  • S = 1.12

  • 11834 reflections

  • 707 parameters

  • 23 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.48 e Å−3

  • Δρmin = −1.45 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O11—H11⋯O20 0.82 1.85 2.673 (4) 177
O12—H12⋯O2A 0.82 1.85 2.663 (7) 174
O13—H13⋯O10 0.82 1.88 2.698 (3) 174
O15—H15⋯O30 0.82 1.90 2.716 (3) 177
O16—H16⋯O2B 0.82 1.95 2.770 (5) 178
O16—H16⋯O4 0.82 2.37 2.857 (4) 119
O21—H21⋯O1 0.82 1.85 2.645 (4) 163
O23—H23⋯O3 0.82 1.94 2.744 (4) 165
O25—H25⋯O4 0.82 1.82 2.636 (5) 177
O22—H22⋯O4Wi 0.82 1.96 2.694 (4) 148
O24—H24⋯O5Wi 0.82 2.00 2.796 (5) 164
O26—H26⋯O4Wi 0.82 1.95 2.760 (4) 167
O1W—H1W1⋯O13 0.84 (2) 1.98 (3) 2.819 (3) 174 (5)
O2W—H2W2⋯O21 0.84 (3) 1.93 (3) 2.764 (4) 168 (4)
O4W—H2W4⋯O5W 0.83 (3) 1.98 (3) 2.783 (5) 160 (5)
O5W—H1W5⋯O7W 0.88 (3) 2.16 (6) 2.827 (7) 132 (6)
O7W—H7W1⋯O8W 0.85 1.93 2.782 (8) 175
O8W—H2W8⋯O3 0.91 (3) 1.92 (7) 2.720 (7) 147 (11)
O1W—H2W1⋯O10ii 0.82 (2) 2.13 (3) 2.944 (3) 172 (5)
O2W—H1W2⋯O40iii 0.86 (3) 1.91 (3) 2.764 (4) 175 (5)
O3W—H2W3⋯O20ii 0.86 (3) 2.29 (4) 3.045 (4) 146 (6)
O4W—H1W4⋯O2Wiv 0.85 (3) 1.98 (3) 2.825 (4) 170 (5)
O6W—H2W6⋯O24v 0.82 (3) 2.25 (4) 3.038 (4) 161 (7)
N17—H17B⋯O10ii 0.86 2.43 3.022 (4) 126
N18—H18A⋯O23vi 0.86 2.26 3.052 (3) 154
N19—H19A⋯O3vii 0.86 2.60 3.182 (4) 125
N19—H19B⋯O12vii 0.86 2.19 3.044 (4) 175
N50—H50A⋯O1Wvii 0.86 2.35 3.006 (4) 134
N50—H50B⋯O12vii 0.86 2.14 2.941 (3) 155
N51—H51B⋯O20viii 0.86 2.19 3.039 (4) 172
N112—H11A⋯O2Wix 0.86 2.45 3.096 (4) 132
N112—H11B⋯O20viii 0.86 2.03 2.846 (4) 158
N28—H28A⋯O16x 0.86 2.04 2.873 (4) 162
N29—H29A⋯O1Wvii 0.86 2.07 2.876 (4) 155
N29—H29B⋯O3Wvii 0.86 1.95 2.800 (4) 168
N70—H70A⋯O14xi 0.86 2.38 3.055 (4) 136
N70—H70B⋯O3Wvii 0.86 2.47 3.264 (5) 154
N71—H71A⋯O2Wix 0.86 2.36 3.155 (4) 154
N71—H71B⋯O1ix 0.86 2.17 2.999 (4) 163
N72—H72B⋯O1ix 0.86 2.33 3.153 (4) 161
Symmetry codes: (i) x, y+1, z; (ii) -x, -y+1, -z+1; (iii) x+1, y, z-1; (iv) -x+2, -y+1, -z; (v) x, y-1, z; (vi) x-1, y, z; (vii) -x+1, -y+1, -z+1; (viii) -x, -y+2, -z+1; (ix) -x+1, -y+2, -z; (x) x+1, y, z; (xi) -x+1, -y+2, -z+1.

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT (Bruker, 2000[Bruker (2000). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

We recently reported the CoIIIcomplex salt, [Co(H2oxado)3]2(C2O4)(SO4)2.12H2O (H2oxado is oxamide dioxime), which crystallizes with a channelled lattice network encapsulating infinite water tapes (Belombe et al., 2007). This compound was shown to be one of the few well documented examples of solid materials containing water cluster patterns of category T according to the classification of Infantes & Motherwell (2002). Most importantly, such nano-channelled frameworks enclosing infinite water tapes or water filaments (Martin et al., 2007) provide excellent template systems to probe the feasibility of the fascinating prospect of one dimensional proton conduction in solids (one-dimensional-PCS) (Bélombé et al., 2006, 2007; Rashid et al., 2001; Akutsu-Sato et al., 2005). Herein we report the crystal structure of the title compound, (I), as yet another example of a closely related solid material encapsulating water cluster patterns that fit into the Infantes–Motherwell classification.

Fig. 1 depicts the ionic constituents of (I). The helical pseudo-octahedral coordination geometry of the complex cation, [Ni(H2oxado)3]2+ (H2oxado iso xamide dioxime), is similar to the usual chiral geometries, and the bond lengths and angles compare within experimental error with those reported previously (Endres & Jannack, 1980; Bélombé et al., 2006). The asymmetric unit of (I) contains two complex cations, two sulfate anions and ten lattice water molecules. The skeletal lattice framework of (I) is constructed by the ionic partners, and by those of the crystal waters (dubbed "skeletal" waters), all of which are held together by a three-dimensional network of O—H···O and N—H···O hydrogen bonds as shown in Fig. 2. It is obvious from this figure that the major part of the crystal waters is concentrated along the elliptic nanochannels (ca 4.68 Å wide and 14.61 Å long). These "central" water molecules are linked via hydrogen bonds (Table 1) into discrete broken-line pentamers (Fig. 3) that fit into category D of the classification of Infantes & Motherwell (2002).

Fig. 2 reveals that all equivalent atoms of the three molecular partners in this crystal structure pile up on top of one another forming rectilinear homoatomic chains parallel to [100]. Thus, the [Ni(H2oxado)3]2+ complexes generate positively charged, and the SO42- anions negatively charged "linear stacks" with a Ni···Ni and an S···S regular spacing of a = 12.31 Å. In other words, these lattice components are ordered along the stacking direction strictly in an eclipsed sequence relative to one another, hence leading to an unusually short spacing of 2.0 Å between the O atoms of neighboring water molecules.

The geometric parameters within the coordination spheres of the crystallographically independent [Ni(H2oxado)3]2+ complexes are closely comparable. So are also those of the sulfate ions, despite the fact that one O atom, viz. O2, in the SO42- ion, is disordered (apparently along the bonding axis) over two sites. This disorder, obviously, leads to the observation of the two bond lengths, S2—O2A = 1.678 (7) Å and S2—O2B = 1.446 (4) Å, with an average of S2—O2 =1.562 Å.

As shown in Fig. 2, four of the twenty crystal waters in the unit cell of (I) are lodged inside the "walls" of the host or skeletal lattice, and are involved in O—H···O bridgings with the O atoms of the SO42- ions or with the –OH groups of the oxamide dioxime ligands. Hence, these water molecules (O1w and O3w) are called "skeletal" waters. The molecules of water containing the atoms O2W, O4W, O5W and O6W are positioned at the periphery of the channel walls, due to their involvement in hydrogen bonding with the "external" O atoms of the sulfate ions and with the amino groups of the organic ligands. They are, therefore, termed "peripheral" waters. Some of the water molecules containing the atoms O7W, O8W, O9W and O10W are lodged around the central axes of the lattice channels and dubbed "central" waters form together with the "skeletal" water molecules discrete linear pentamers and involve the disordered molecules mentioned above. All the water molecules in this structure lie with their molecular planes parallel to the bc plane, i.e. perpendicular to the [100] stacking direction. Within separate stacks, however, the group orientations of these molecules with respect to the improper axis of rotation (2) are different.

It is worth noting finally, that compound (I) represents a highly promising precursor system in the context of our ongoing metathetic syntheses of nanochannelled metal organic frameworks (MOFs) conceived as potential one dimensional proton conducting solids (one-dimensional-PCS) (Bélombé et al., 2006, 2007).

Related literature top

For general background, see: Akutsu-Sato et al. (2005); Bélombé et al. (2007); Ephraim (1889); Infantes & Motherwell (2002); Martin et al. (2007); Nenwa (2004); Rashid et al. (2001). For related structures, see: Bélombé et al. (2006); Belombe et al. (2007); Endres & Jannack (1980).

Experimental top

Commercial NiSO4.6H2O and freshly prepared oxamide dioxime (Ephraim, 1889; Nenwa, 2004) were mixed together in a ratio of 0.53 g (2 mmol): 0.71 g (6 mmol) and dissolved in warm H2O (323 K, 40 ml) acidified with 1 drop of concentrated H2SO4. The resulting indigo-blue solution was stirred for 2 h and filtered. The filtrate collected in an open dish was evaporated completely over a few days in a hood. Prismatic violet crystals were deposited, contaminated with a slight amount of starting NiSO4 which was washed off with H2O (3 ml) and separated by filtration. After drying for 48 h between filter papers at ambient temperature, 1.1 g (~92% yield) of crystalline material was obtained and used for X-ray analysis.

Refinement top

One of the sulfate O atoms, O2, is disordered over two positions (O2A and O2B), with refined occupancies of 0.621 (5) and 0.379 (5). Two water molecules are disordered over three sites (O9W/O10W/O11W and O12W/O13W/O14W) with refined occupancies of 0.356 (3)/0.324 (5)/0.320 (5) and 0.247 (3)/0.293 (6)/0.460 (6). All water H atoms were first located in a difference Fourier map and then refined with distance restraints of O—H = 0.85 (3) Å and H···H = 1.39 (3) Å, and with Uiso(H) = 1.5Ueq(O). The remaining H atoms were positioned geometrically (O—H = 0.82 Å and N—H = 0.86 Å) and refined as riding on their parent atoms, with Uiso(H) = 1.2Ueq(N) and 1.5Ueq(O). The highest peak and deepest hole in the final difference map are 1.47 Å from atom O12W and 1.45 Å from S1, respectively. The H atoms on the disordered water molecules could not be located.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Ionic constituents of the title compound. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Crystal sructure of the title compound, viewed down the a axis. Hydrogen bonds are shown as dashed lines.
[Figure 3] Fig. 3. A view of discrete hydrogen-bonded (dashed lines) water pentamers. Displacement ellipsoids are drawn at the 50% probability level.
Tris(oxamide dioxime-κ2N,N')nickel(II) sulfate pentahydrate top
Crystal data top
[Ni(C2H6N4O2)3]SO4·5H2OZ = 4
Mr = 599.17F(000) = 1248
Triclinic, P1Dx = 1.668 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 12.3141 (16) ÅCell parameters from 9771 reflections
b = 14.0458 (17) Åθ = 1.4–28.5°
c = 14.7734 (18) ŵ = 0.99 mm1
α = 86.077 (3)°T = 293 K
β = 77.769 (3)°Prism, violet
γ = 72.868 (3)°0.25 × 0.15 × 0.10 mm
V = 2386.4 (5) Å3
Data collection top
Bruker APEX CCD area-detector
diffractometer
11834 independent reflections
Radiation source: fine-focus sealed tube9771 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
ϕ and ω scansθmax = 28.5°, θmin = 1.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1616
Tmin = 0.789, Tmax = 0.907k = 1818
33235 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.164H atoms treated by a mixture of independent and constrained refinement
S = 1.12 w = 1/[σ2(Fo2) + (0.085P)2 + 2.9067P]
where P = (Fo2 + 2Fc2)/3
11834 reflections(Δ/σ)max = 0.001
707 parametersΔρmax = 1.48 e Å3
23 restraintsΔρmin = 1.45 e Å3
Crystal data top
[Ni(C2H6N4O2)3]SO4·5H2Oγ = 72.868 (3)°
Mr = 599.17V = 2386.4 (5) Å3
Triclinic, P1Z = 4
a = 12.3141 (16) ÅMo Kα radiation
b = 14.0458 (17) ŵ = 0.99 mm1
c = 14.7734 (18) ÅT = 293 K
α = 86.077 (3)°0.25 × 0.15 × 0.10 mm
β = 77.769 (3)°
Data collection top
Bruker APEX CCD area-detector
diffractometer
11834 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
9771 reflections with I > 2σ(I)
Tmin = 0.789, Tmax = 0.907Rint = 0.029
33235 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05323 restraints
wR(F2) = 0.164H atoms treated by a mixture of independent and constrained refinement
S = 1.12Δρmax = 1.48 e Å3
11834 reflectionsΔρmin = 1.45 e Å3
707 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ni10.22824 (3)0.70919 (3)0.43918 (3)0.01960 (10)
O110.03779 (18)0.75648 (17)0.42903 (17)0.0302 (5)
H110.05650.77320.48360.045*
O120.39957 (17)0.53631 (15)0.30737 (16)0.0258 (4)
H120.43310.56290.26360.039*
O130.17174 (19)0.53968 (16)0.58228 (18)0.0300 (5)
H130.10290.57090.59560.045*
O140.4687 (2)0.75163 (18)0.43870 (18)0.0330 (5)
H140.47710.76110.38260.050*
O150.1369 (2)0.84859 (17)0.61577 (15)0.0293 (5)
H150.10010.81110.64220.044*
O160.2531 (2)0.82103 (17)0.25043 (15)0.0288 (5)
H160.31180.77570.23190.043*
N110.0759 (2)0.69133 (18)0.41189 (18)0.0235 (5)
N120.2847 (2)0.59940 (18)0.33832 (19)0.0240 (5)
N130.2385 (2)0.60678 (18)0.54913 (18)0.0234 (5)
N140.3927 (2)0.69172 (18)0.46659 (18)0.0231 (5)
N150.1549 (2)0.83731 (18)0.51985 (17)0.0219 (5)
N160.2318 (2)0.82492 (18)0.34758 (17)0.0226 (5)
N170.2259 (2)0.4790 (2)0.2751 (2)0.0325 (6)
H17A0.29570.44380.25380.039*
H17B0.16830.46010.26680.039*
N180.0021 (2)0.6149 (2)0.3162 (2)0.0327 (6)
H18A0.07120.65370.33310.039*
H18B0.01130.56900.27620.039*
N190.3688 (3)0.5020 (2)0.6338 (2)0.0380 (7)
H19A0.32230.46710.65610.046*
H19B0.43580.48800.64830.046*
N500.5092 (2)0.6344 (2)0.5760 (2)0.0327 (6)
H50A0.55510.66970.55350.039*
H50B0.52120.59660.62340.039*
N510.1255 (2)1.01000 (19)0.51951 (19)0.0259 (5)
H51A0.10941.01350.57900.031*
H51B0.12501.06300.48660.031*
N1120.1564 (3)0.9958 (2)0.3233 (2)0.0320 (6)
H11A0.17430.99040.26390.038*
H11B0.12241.05330.34820.038*
C110.0851 (2)0.6260 (2)0.3521 (2)0.0223 (5)
C120.2069 (3)0.5620 (2)0.3206 (2)0.0217 (5)
C130.3367 (2)0.5783 (2)0.5762 (2)0.0235 (6)
C140.4192 (2)0.6382 (2)0.5373 (2)0.0232 (6)
C150.1513 (2)0.9220 (2)0.4781 (2)0.0209 (5)
C160.1813 (2)0.9149 (2)0.3766 (2)0.0213 (5)
Ni20.74507 (3)0.93920 (3)0.18804 (3)0.02347 (11)
O210.7713 (2)0.7911 (2)0.02902 (16)0.0394 (6)
H210.70260.79560.04890.059*
O220.9726 (2)0.92640 (18)0.25835 (17)0.0319 (5)
H220.97090.98500.24950.048*
O230.7535 (2)0.74561 (16)0.30809 (15)0.0278 (5)
H230.73450.71990.26810.042*
O240.6378 (2)1.14404 (17)0.29771 (19)0.0357 (5)
H240.68881.16910.27210.054*
O250.4745 (2)0.9706 (2)0.20188 (18)0.0405 (6)
H250.48200.91220.21750.061*
O260.8624 (2)1.0583 (2)0.02780 (17)0.0379 (6)
H260.90361.06710.06150.057*
N210.8177 (2)0.8203 (2)0.09796 (18)0.0282 (6)
N220.9191 (2)0.8971 (2)0.19356 (18)0.0264 (5)
N230.7122 (2)0.85047 (19)0.30099 (17)0.0244 (5)
N240.6833 (2)1.0389 (2)0.29737 (19)0.0283 (5)
N250.5823 (2)0.9807 (2)0.15110 (19)0.0303 (6)
N260.7602 (2)1.0431 (2)0.08268 (18)0.0282 (5)
N270.9930 (3)0.7204 (3)0.0169 (2)0.0479 (8)
H27A0.96030.70050.02120.057*
H27B1.06700.69910.01170.057*
N281.0966 (2)0.7732 (2)0.1539 (2)0.0341 (6)
H28A1.12940.79510.19050.041*
H28B1.13460.72140.12070.041*
N290.6902 (2)0.8415 (2)0.46124 (18)0.0279 (5)
H29A0.71010.77750.46190.034*
H29B0.67220.87380.51230.034*
N700.5991 (2)1.0539 (2)0.45455 (19)0.0304 (6)
H70A0.57871.11790.45250.037*
H70B0.58331.02350.50600.037*
N710.4611 (3)1.1035 (2)0.0738 (2)0.0366 (7)
H71A0.39931.08970.10290.044*
H71B0.45661.15050.03300.044*
N720.6752 (3)1.1231 (3)0.0394 (2)0.0483 (9)
H72A0.73801.13550.06840.058*
H72B0.61381.14200.06270.058*
C210.9295 (3)0.7833 (2)0.0833 (2)0.0279 (6)
C220.9857 (3)0.8199 (2)0.1486 (2)0.0250 (6)
C230.6871 (2)0.8908 (2)0.3812 (2)0.0241 (6)
C240.6552 (2)1.0017 (2)0.3779 (2)0.0245 (6)
C250.5645 (3)1.0519 (2)0.0922 (2)0.0245 (6)
C260.6730 (3)1.0746 (2)0.0417 (2)0.0270 (6)
S10.54943 (9)0.71047 (11)0.18146 (9)0.0654 (4)
O10.5649 (3)0.7641 (3)0.0930 (2)0.0628 (10)
O2B0.4535 (4)0.6686 (3)0.1908 (3)0.0363 (8)0.621 (5)
O2A0.5035 (6)0.6156 (5)0.1573 (5)0.0363 (8)0.379 (5)
O30.6619 (3)0.6507 (2)0.2002 (2)0.0468 (7)
O40.4917 (3)0.7854 (3)0.2578 (3)0.0838 (15)
S20.08243 (7)0.72405 (6)0.67222 (6)0.02780 (17)
O100.0585 (2)0.63057 (16)0.62249 (18)0.0322 (5)
O200.1067 (3)0.80865 (18)0.60729 (19)0.0422 (6)
O300.0196 (2)0.72385 (18)0.70916 (18)0.0352 (5)
O400.1855 (3)0.7347 (2)0.7468 (2)0.0541 (8)
O1W0.2423 (2)0.36282 (18)0.47889 (18)0.0332 (5)
H1W10.225 (4)0.417 (3)0.507 (3)0.050*
H2W10.189 (3)0.361 (3)0.455 (3)0.050*
O2W0.8027 (2)0.8875 (2)0.13981 (18)0.0373 (6)
H1W20.804 (4)0.843 (3)0.177 (2)0.056*
H2W20.788 (4)0.866 (3)0.0850 (18)0.056*
O3W0.3647 (3)0.0814 (4)0.3596 (2)0.0728 (12)
H1W30.410 (5)0.053 (5)0.311 (3)0.109*
H2W30.302 (4)0.118 (5)0.344 (5)0.109*
O4W0.9698 (2)0.0965 (2)0.1617 (2)0.0414 (6)
H1W41.039 (2)0.102 (4)0.148 (4)0.062*
H2W40.922 (3)0.153 (3)0.166 (4)0.062*
O5W0.7762 (4)0.2610 (3)0.2056 (3)0.0689 (10)
H1W50.738 (6)0.271 (5)0.160 (4)0.103*
H2W50.795 (6)0.313 (4)0.212 (5)0.103*
O6W0.4198 (3)0.2840 (3)0.2453 (3)0.0759 (12)
H1W60.417 (6)0.308 (5)0.193 (3)0.114*
H2W60.475 (5)0.236 (4)0.253 (5)0.114*
O7W0.7536 (4)0.3573 (3)0.0333 (4)0.1086 (18)
H7W10.77060.40880.04570.163*
H7W20.68930.37500.01540.163*
O8W0.8211 (6)0.5178 (5)0.0779 (5)0.131 (2)
H1W80.860 (9)0.483 (7)0.124 (6)0.197*
H2W80.788 (9)0.576 (4)0.109 (6)0.197*
O9W0.5490 (7)0.4195 (6)0.0320 (5)0.0457 (11)0.356 (3)
O10W0.5124 (8)0.3663 (7)0.0475 (6)0.0457 (11)0.324 (5)
O11W0.3927 (8)0.3266 (7)0.0828 (6)0.0457 (11)0.320 (5)
O12W0.9444 (16)0.5729 (10)0.1176 (11)0.0641 (17)0.247 (3)
O13W0.8574 (13)0.6098 (9)0.0713 (9)0.0641 (17)0.293 (6)
O14W1.0291 (8)0.5305 (5)0.1952 (5)0.0641 (17)0.460 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.01604 (18)0.01608 (17)0.0279 (2)0.00461 (13)0.00771 (14)0.00212 (13)
O110.0170 (10)0.0300 (11)0.0385 (12)0.0027 (8)0.0067 (9)0.0037 (10)
O120.0168 (10)0.0200 (10)0.0362 (12)0.0023 (8)0.0018 (8)0.0043 (8)
O130.0192 (10)0.0201 (10)0.0508 (14)0.0084 (8)0.0059 (10)0.0078 (9)
O140.0314 (12)0.0328 (12)0.0446 (14)0.0214 (10)0.0161 (11)0.0150 (10)
O150.0381 (13)0.0318 (12)0.0234 (10)0.0187 (10)0.0059 (9)0.0022 (9)
O160.0266 (11)0.0313 (12)0.0235 (10)0.0019 (9)0.0084 (8)0.0010 (9)
N110.0131 (11)0.0220 (12)0.0337 (13)0.0013 (9)0.0058 (9)0.0014 (10)
N120.0149 (11)0.0209 (11)0.0352 (14)0.0037 (9)0.0044 (10)0.0010 (10)
N130.0186 (11)0.0171 (11)0.0354 (14)0.0075 (9)0.0057 (10)0.0044 (10)
N140.0179 (11)0.0199 (11)0.0338 (13)0.0082 (9)0.0077 (10)0.0051 (10)
N150.0238 (12)0.0219 (11)0.0220 (11)0.0090 (9)0.0060 (9)0.0016 (9)
N160.0221 (12)0.0235 (12)0.0214 (11)0.0044 (9)0.0063 (9)0.0014 (9)
N170.0261 (13)0.0258 (13)0.0479 (17)0.0073 (11)0.0104 (12)0.0082 (12)
N180.0245 (13)0.0303 (14)0.0473 (17)0.0067 (11)0.0159 (12)0.0054 (12)
N190.0282 (14)0.0362 (16)0.0521 (18)0.0121 (12)0.0171 (13)0.0226 (14)
N500.0284 (14)0.0373 (15)0.0393 (15)0.0151 (12)0.0182 (12)0.0140 (12)
N510.0300 (13)0.0198 (11)0.0299 (13)0.0077 (10)0.0093 (10)0.0001 (10)
N1120.0444 (16)0.0207 (12)0.0321 (14)0.0069 (11)0.0155 (12)0.0055 (10)
C110.0196 (13)0.0201 (13)0.0290 (14)0.0083 (10)0.0073 (11)0.0056 (11)
C120.0232 (14)0.0179 (12)0.0245 (13)0.0069 (10)0.0054 (11)0.0025 (10)
C130.0201 (13)0.0198 (13)0.0297 (14)0.0041 (10)0.0061 (11)0.0021 (11)
C140.0187 (13)0.0206 (13)0.0302 (15)0.0049 (10)0.0063 (11)0.0015 (11)
C150.0151 (12)0.0198 (12)0.0294 (14)0.0045 (10)0.0092 (10)0.0017 (11)
C160.0183 (13)0.0197 (13)0.0280 (14)0.0062 (10)0.0097 (11)0.0037 (11)
Ni20.01747 (19)0.0306 (2)0.02196 (19)0.00640 (15)0.00600 (14)0.00652 (15)
O210.0372 (14)0.0701 (18)0.0243 (11)0.0338 (13)0.0104 (10)0.0040 (11)
O220.0314 (12)0.0339 (12)0.0366 (12)0.0116 (10)0.0172 (10)0.0002 (10)
O230.0298 (11)0.0237 (10)0.0297 (11)0.0027 (9)0.0135 (9)0.0020 (8)
O240.0307 (12)0.0252 (11)0.0460 (14)0.0040 (9)0.0049 (10)0.0080 (10)
O250.0190 (11)0.0626 (17)0.0356 (13)0.0116 (11)0.0021 (9)0.0185 (12)
O260.0262 (12)0.0592 (16)0.0315 (12)0.0197 (11)0.0066 (9)0.0153 (11)
N210.0260 (13)0.0424 (15)0.0223 (12)0.0176 (12)0.0076 (10)0.0025 (11)
N220.0215 (12)0.0339 (14)0.0280 (13)0.0101 (10)0.0113 (10)0.0003 (11)
N230.0229 (12)0.0233 (12)0.0248 (12)0.0028 (10)0.0067 (10)0.0046 (10)
N240.0258 (13)0.0240 (12)0.0316 (14)0.0027 (10)0.0062 (10)0.0050 (10)
N250.0166 (12)0.0442 (16)0.0280 (13)0.0090 (11)0.0038 (10)0.0127 (12)
N260.0223 (12)0.0377 (14)0.0259 (12)0.0117 (11)0.0056 (10)0.0077 (11)
N270.0390 (18)0.057 (2)0.0458 (19)0.0105 (16)0.0035 (14)0.0215 (16)
N280.0219 (13)0.0362 (15)0.0429 (16)0.0039 (11)0.0087 (11)0.0038 (12)
N290.0292 (13)0.0281 (13)0.0235 (12)0.0045 (11)0.0053 (10)0.0036 (10)
N700.0267 (13)0.0301 (14)0.0303 (14)0.0038 (11)0.0025 (11)0.0014 (11)
N710.0261 (14)0.0346 (15)0.0498 (18)0.0071 (12)0.0165 (12)0.0163 (13)
N720.0368 (17)0.073 (2)0.0435 (18)0.0267 (17)0.0216 (14)0.0350 (17)
C210.0264 (15)0.0311 (16)0.0265 (15)0.0116 (12)0.0018 (12)0.0000 (12)
C220.0200 (13)0.0277 (14)0.0281 (14)0.0093 (11)0.0040 (11)0.0032 (12)
C230.0149 (12)0.0298 (15)0.0261 (14)0.0040 (11)0.0057 (10)0.0046 (11)
C240.0151 (12)0.0289 (15)0.0282 (14)0.0029 (11)0.0068 (11)0.0012 (12)
C250.0221 (14)0.0277 (14)0.0246 (14)0.0065 (11)0.0084 (11)0.0025 (11)
C260.0278 (15)0.0287 (15)0.0257 (14)0.0095 (12)0.0085 (12)0.0079 (12)
S10.0390 (5)0.1017 (10)0.0765 (8)0.0486 (6)0.0389 (6)0.0710 (8)
O10.0446 (16)0.096 (3)0.068 (2)0.0469 (17)0.0350 (15)0.0597 (19)
O2B0.032 (2)0.037 (2)0.045 (2)0.0197 (16)0.0063 (16)0.0074 (16)
O2A0.032 (2)0.037 (2)0.045 (2)0.0197 (16)0.0063 (16)0.0074 (16)
O30.0505 (17)0.0438 (15)0.0553 (17)0.0146 (13)0.0335 (14)0.0150 (13)
O40.0345 (16)0.115 (3)0.064 (2)0.0070 (18)0.0118 (15)0.060 (2)
S20.0260 (4)0.0218 (3)0.0372 (4)0.0098 (3)0.0053 (3)0.0005 (3)
O100.0263 (11)0.0222 (10)0.0496 (14)0.0084 (9)0.0075 (10)0.0039 (10)
O200.0579 (17)0.0223 (11)0.0469 (15)0.0038 (11)0.0224 (13)0.0006 (10)
O300.0382 (13)0.0337 (12)0.0410 (13)0.0179 (10)0.0148 (11)0.0058 (10)
O400.0426 (16)0.0634 (19)0.0584 (18)0.0302 (15)0.0133 (13)0.0214 (15)
O1W0.0303 (12)0.0305 (12)0.0419 (14)0.0096 (10)0.0138 (10)0.0021 (10)
O2W0.0401 (14)0.0443 (15)0.0294 (12)0.0156 (12)0.0069 (11)0.0021 (11)
O3W0.0364 (16)0.128 (4)0.0477 (18)0.0053 (19)0.0114 (14)0.032 (2)
O4W0.0399 (14)0.0454 (15)0.0444 (15)0.0215 (12)0.0095 (12)0.0063 (12)
O5W0.067 (2)0.062 (2)0.077 (3)0.0253 (19)0.0048 (19)0.0059 (19)
O6W0.052 (2)0.0450 (19)0.132 (4)0.0006 (16)0.037 (2)0.016 (2)
O7W0.059 (3)0.063 (3)0.188 (6)0.005 (2)0.004 (3)0.021 (3)
O8W0.122 (5)0.086 (4)0.185 (7)0.003 (3)0.056 (5)0.038 (4)
O9W0.055 (3)0.047 (3)0.031 (2)0.002 (2)0.016 (2)0.0087 (19)
O10W0.055 (3)0.047 (3)0.031 (2)0.002 (2)0.016 (2)0.0087 (19)
O11W0.055 (3)0.047 (3)0.031 (2)0.002 (2)0.016 (2)0.0087 (19)
O12W0.099 (5)0.047 (3)0.062 (4)0.024 (3)0.052 (3)0.019 (3)
O13W0.099 (5)0.047 (3)0.062 (4)0.024 (3)0.052 (3)0.019 (3)
O14W0.099 (5)0.047 (3)0.062 (4)0.024 (3)0.052 (3)0.019 (3)
Geometric parameters (Å, º) top
Ni1—N162.047 (2)O24—H240.82
Ni1—N122.080 (3)O25—N251.422 (3)
Ni1—N152.087 (2)O25—H250.82
Ni1—N112.087 (2)O26—N261.411 (3)
Ni1—N142.089 (2)O26—H260.82
Ni1—N132.094 (3)N21—C211.296 (4)
O11—N111.410 (3)N22—C221.278 (4)
O11—H110.82N23—C231.286 (4)
O12—N121.428 (3)N24—C241.287 (4)
O12—H120.82N25—C251.280 (4)
O13—N131.424 (3)N26—C261.294 (4)
O13—H130.82N27—C211.320 (4)
O14—N141.417 (3)N27—H27A0.86
O14—H140.82N27—H27B0.86
O15—N151.400 (3)N28—C221.346 (4)
O15—H150.82N28—H28A0.86
O16—N161.405 (3)N28—H28B0.86
O16—H160.82N29—C231.330 (4)
N11—C111.282 (4)N29—H29A0.86
N12—C121.297 (4)N29—H29B0.86
N13—C131.296 (4)N70—C241.334 (4)
N14—C141.287 (4)N70—H70A0.86
N15—C151.295 (4)N70—H70B0.86
N16—C161.290 (4)N71—C251.340 (4)
N17—C121.322 (4)N71—H71A0.86
N17—H17A0.86N71—H71B0.86
N17—H17B0.86N72—C261.337 (4)
N18—C111.345 (4)N72—H72A0.86
N18—H18A0.86N72—H72B0.86
N18—H18B0.86C21—C221.495 (4)
N19—C131.340 (4)C23—C241.491 (4)
N19—H19A0.86C25—C261.496 (4)
N19—H19B0.86S1—O2B1.446 (4)
N50—C141.337 (4)S1—O31.465 (3)
N50—H50A0.86S1—O11.468 (3)
N50—H50B0.86S1—O41.506 (5)
N51—C151.339 (4)S1—O2A1.678 (7)
N51—H51A0.86S2—O101.471 (2)
N51—H51B0.86S2—O301.471 (3)
N112—C161.335 (4)S2—O401.472 (3)
N112—H11A0.86S2—O201.476 (3)
N112—H11B0.86O1W—H1W10.84 (2)
C11—C121.497 (4)O1W—H2W10.82 (2)
C13—C141.503 (4)O2W—H1W20.86 (3)
C15—C161.470 (4)O2W—H2W20.84 (3)
Ni2—N232.056 (3)O3W—H1W30.85 (3)
Ni2—N222.066 (3)O3W—H2W30.86 (3)
Ni2—N212.068 (3)O4W—H1W40.85 (3)
Ni2—N242.076 (3)O4W—H2W40.83 (3)
Ni2—N262.077 (3)O5W—H1W50.88 (3)
Ni2—N252.095 (3)O5W—H2W50.84 (3)
O21—N211.405 (3)O6W—H1W60.83 (3)
O21—H210.82O6W—H2W60.82 (3)
O22—N221.414 (3)O7W—H7W10.85
O22—H220.82O7W—H7W20.85
O23—N231.414 (3)O8W—H1W80.95 (3)
O23—H230.82O8W—H2W80.91 (3)
O24—N241.416 (3)
N16—Ni1—N1295.16 (10)N21—Ni2—N2595.71 (11)
N16—Ni1—N1575.08 (10)N24—Ni2—N2591.10 (11)
N12—Ni1—N15168.23 (10)N26—Ni2—N2576.44 (10)
N16—Ni1—N1194.49 (10)N21—O21—H21109.5
N12—Ni1—N1175.53 (10)N22—O22—H22109.5
N15—Ni1—N1198.36 (10)N23—O23—H23109.5
N16—Ni1—N1495.36 (10)N24—O24—H24109.5
N12—Ni1—N1495.08 (10)N25—O25—H25109.5
N15—Ni1—N1492.42 (10)N26—O26—H26109.5
N11—Ni1—N14166.96 (10)C21—N21—O21111.2 (3)
N16—Ni1—N13168.20 (10)C21—N21—Ni2117.0 (2)
N12—Ni1—N1393.84 (10)O21—N21—Ni2128.9 (2)
N15—Ni1—N1396.75 (10)C22—N22—O22111.7 (2)
N11—Ni1—N1395.14 (10)C22—N22—Ni2118.3 (2)
N14—Ni1—N1376.23 (10)O22—N22—Ni2128.0 (2)
N11—O11—H11109.5C23—N23—O23110.7 (2)
N12—O12—H12109.5C23—N23—Ni2116.9 (2)
N13—O13—H13109.5O23—N23—Ni2127.93 (18)
N14—O14—H14109.5C24—N24—O24111.2 (3)
N15—O15—H15109.5C24—N24—Ni2116.0 (2)
N16—O16—H16109.5O24—N24—Ni2130.5 (2)
C11—N11—O11109.9 (2)C25—N25—O25109.8 (2)
C11—N11—Ni1117.98 (19)C25—N25—Ni2116.4 (2)
O11—N11—Ni1129.75 (19)O25—N25—Ni2129.53 (19)
C12—N12—O12112.0 (2)C26—N26—O26111.9 (2)
C12—N12—Ni1116.5 (2)C26—N26—Ni2115.9 (2)
O12—N12—Ni1128.10 (18)O26—N26—Ni2128.2 (2)
C13—N13—O13110.4 (2)C21—N27—H27A120.0
C13—N13—Ni1116.1 (2)C21—N27—H27B120.0
O13—N13—Ni1130.52 (18)H27A—N27—H27B120.0
C14—N14—O14110.0 (2)C22—N28—H28A120.0
C14—N14—Ni1117.3 (2)C22—N28—H28B120.0
O14—N14—Ni1129.70 (18)H28A—N28—H28B120.0
C15—N15—O15110.4 (2)C23—N29—H29A120.0
C15—N15—Ni1117.2 (2)C23—N29—H29B120.0
O15—N15—Ni1129.94 (18)H29A—N29—H29B120.0
C16—N16—O16111.1 (2)C24—N70—H70A120.0
C16—N16—Ni1118.9 (2)C24—N70—H70B120.0
O16—N16—Ni1127.38 (18)H70A—N70—H70B120.0
C12—N17—H17A120.0C25—N71—H71A120.0
C12—N17—H17B120.0C25—N71—H71B120.0
H17A—N17—H17B120.0H71A—N71—H71B120.0
C11—N18—H18A120.0C26—N72—H72A120.0
C11—N18—H18B120.0C26—N72—H72B120.0
H18A—N18—H18B120.0H72A—N72—H72B120.0
C13—N19—H19A120.0N21—C21—N27125.6 (3)
C13—N19—H19B120.0N21—C21—C22113.9 (3)
H19A—N19—H19B120.0N27—C21—C22120.4 (3)
C14—N50—H50A120.0N22—C22—N28126.8 (3)
C14—N50—H50B120.0N22—C22—C21113.2 (3)
H50A—N50—H50B120.0N28—C22—C21120.0 (3)
C15—N51—H51A120.0N23—C23—N29125.3 (3)
C15—N51—H51B120.0N23—C23—C24113.6 (3)
H51A—N51—H51B120.0N29—C23—C24121.1 (3)
C16—N112—H11A120.0N24—C24—N70125.5 (3)
C16—N112—H11B120.0N24—C24—C23114.7 (3)
H11A—N112—H11B120.0N70—C24—C23119.8 (3)
N11—C11—N18125.7 (3)N25—C25—N71125.8 (3)
N11—C11—C12113.4 (2)N25—C25—C26113.6 (3)
N18—C11—C12120.9 (3)N71—C25—C26120.6 (3)
N12—C12—N17126.8 (3)N26—C26—N72124.9 (3)
N12—C12—C11113.6 (2)N26—C26—C25114.6 (3)
N17—C12—C11119.5 (3)N72—C26—C25120.4 (3)
N13—C13—N19125.8 (3)O2B—S1—O3121.3 (2)
N13—C13—C14114.9 (3)O2B—S1—O1110.8 (2)
N19—C13—C14119.3 (3)O3—S1—O1110.49 (19)
N14—C14—N50125.5 (3)O2B—S1—O495.4 (3)
N14—C14—C13113.5 (3)O3—S1—O4108.7 (2)
N50—C14—C13121.0 (3)O1—S1—O4108.7 (2)
N15—C15—N51125.8 (3)O3—S1—O2A97.2 (3)
N15—C15—C16113.8 (3)O1—S1—O2A104.2 (3)
N51—C15—C16120.4 (3)O4—S1—O2A126.7 (3)
N16—C16—N112125.8 (3)O10—S2—O30109.54 (14)
N16—C16—C15113.1 (2)O10—S2—O40109.32 (16)
N112—C16—C15121.1 (3)O30—S2—O40111.26 (18)
N23—Ni2—N2290.48 (10)O10—S2—O20109.14 (15)
N23—Ni2—N2193.75 (10)O30—S2—O20109.04 (15)
N22—Ni2—N2175.89 (10)O40—S2—O20108.51 (19)
N23—Ni2—N2476.68 (10)H1W1—O1W—H2W1111 (3)
N22—Ni2—N2498.66 (11)H1W2—O2W—H2W2108 (3)
N21—Ni2—N24169.08 (10)H1W3—O3W—H2W3108 (4)
N23—Ni2—N26172.62 (11)H1W4—O4W—H2W4110 (4)
N22—Ni2—N2694.45 (10)H1W5—O5W—H2W5108 (4)
N21—Ni2—N2692.77 (11)H1W6—O6W—H2W6119 (5)
N24—Ni2—N2697.12 (11)H7W1—O7W—H7W2109.5
N23—Ni2—N2599.46 (10)H1W8—O8W—H2W897 (3)
N22—Ni2—N25167.46 (11)
N16—Ni1—N11—C1195.2 (2)N15—C15—C16—N112164.4 (3)
N12—Ni1—N11—C111.0 (2)N51—C15—C16—N11216.8 (4)
N15—Ni1—N11—C11170.7 (2)N23—Ni2—N21—C2194.2 (2)
N14—Ni1—N11—C1143.8 (6)N22—Ni2—N21—C214.6 (2)
N13—Ni1—N11—C1191.7 (2)N24—Ni2—N21—C2165.7 (6)
N16—Ni1—N11—O1165.5 (3)N26—Ni2—N21—C2189.3 (2)
N12—Ni1—N11—O11159.7 (3)N25—Ni2—N21—C21165.9 (2)
N15—Ni1—N11—O1110.0 (3)N23—Ni2—N21—O21106.9 (2)
N14—Ni1—N11—O11155.5 (4)N22—Ni2—N21—O21163.5 (3)
N13—Ni1—N11—O11107.6 (2)N24—Ni2—N21—O21135.4 (5)
N16—Ni1—N12—C12104.9 (2)N26—Ni2—N21—O2169.6 (2)
N15—Ni1—N12—C1271.4 (5)N25—Ni2—N21—O217.0 (3)
N11—Ni1—N12—C1211.6 (2)N23—Ni2—N22—C2289.3 (2)
N14—Ni1—N12—C12159.2 (2)N21—Ni2—N22—C224.5 (2)
N13—Ni1—N12—C1282.7 (2)N24—Ni2—N22—C22165.9 (2)
N16—Ni1—N12—O1297.8 (2)N26—Ni2—N22—C2296.2 (2)
N15—Ni1—N12—O12131.3 (4)N25—Ni2—N22—C2253.4 (6)
N11—Ni1—N12—O12168.9 (2)N23—Ni2—N22—O2273.3 (2)
N14—Ni1—N12—O121.9 (2)N21—Ni2—N22—O22167.1 (3)
N13—Ni1—N12—O1274.6 (2)N24—Ni2—N22—O223.3 (3)
N16—Ni1—N13—C1349.3 (6)N26—Ni2—N22—O22101.2 (2)
N12—Ni1—N13—C1390.4 (2)N25—Ni2—N22—O22144.1 (5)
N15—Ni1—N13—C1394.8 (2)N22—Ni2—N23—C2389.8 (2)
N11—Ni1—N13—C13166.1 (2)N21—Ni2—N23—C23165.6 (2)
N14—Ni1—N13—C133.9 (2)N24—Ni2—N23—C239.0 (2)
N16—Ni1—N13—O13152.2 (4)N25—Ni2—N23—C2397.9 (2)
N12—Ni1—N13—O1368.1 (2)N22—Ni2—N23—O2364.0 (2)
N15—Ni1—N13—O13106.8 (2)N21—Ni2—N23—O2311.9 (2)
N11—Ni1—N13—O137.7 (2)N24—Ni2—N23—O23162.8 (2)
N14—Ni1—N13—O13162.4 (3)N25—Ni2—N23—O23108.3 (2)
N16—Ni1—N14—C14165.9 (2)N23—Ni2—N24—C240.3 (2)
N12—Ni1—N14—C1498.4 (2)N22—Ni2—N24—C2488.7 (2)
N15—Ni1—N14—C1490.7 (2)N21—Ni2—N24—C2429.6 (7)
N11—Ni1—N14—C1455.2 (6)N26—Ni2—N24—C24175.6 (2)
N13—Ni1—N14—C145.7 (2)N25—Ni2—N24—C2499.2 (2)
N16—Ni1—N14—O147.6 (3)N23—Ni2—N24—O24161.4 (3)
N12—Ni1—N14—O14103.3 (3)N22—Ni2—N24—O24110.2 (3)
N15—Ni1—N14—O1467.7 (3)N21—Ni2—N24—O24169.3 (4)
N11—Ni1—N14—O14146.5 (4)N26—Ni2—N24—O2414.5 (3)
N13—Ni1—N14—O14164.0 (3)N25—Ni2—N24—O2461.9 (3)
N16—Ni1—N15—C152.7 (2)N23—Ni2—N25—C25167.6 (2)
N12—Ni1—N15—C1537.4 (6)N22—Ni2—N25—C2550.4 (7)
N11—Ni1—N15—C1595.2 (2)N21—Ni2—N25—C2597.6 (3)
N14—Ni1—N15—C1592.2 (2)N24—Ni2—N25—C2590.9 (3)
N13—Ni1—N15—C15168.6 (2)N26—Ni2—N25—C256.1 (2)
N16—Ni1—N15—O15162.8 (2)N23—Ni2—N25—O2513.4 (3)
N12—Ni1—N15—O15162.5 (4)N22—Ni2—N25—O25155.4 (4)
N11—Ni1—N15—O15104.8 (2)N21—Ni2—N25—O25108.2 (3)
N14—Ni1—N15—O1567.9 (2)N24—Ni2—N25—O2563.3 (3)
N13—Ni1—N15—O158.5 (2)N26—Ni2—N25—O25160.4 (3)
N12—Ni1—N16—C16166.6 (2)N22—Ni2—N26—C26165.5 (3)
N15—Ni1—N16—C166.7 (2)N21—Ni2—N26—C2689.5 (3)
N11—Ni1—N16—C1690.8 (2)N24—Ni2—N26—C2695.2 (3)
N14—Ni1—N16—C1697.8 (2)N25—Ni2—N26—C265.8 (2)
N13—Ni1—N16—C1653.8 (6)N22—Ni2—N26—O2610.2 (3)
N12—Ni1—N16—O166.7 (2)N21—Ni2—N26—O2665.8 (3)
N15—Ni1—N16—O16166.6 (2)N24—Ni2—N26—O26109.5 (3)
N11—Ni1—N16—O1669.2 (2)N25—Ni2—N26—O26161.1 (3)
N14—Ni1—N16—O16102.3 (2)O21—N21—C21—N274.7 (5)
N13—Ni1—N16—O16146.2 (4)Ni2—N21—C21—N27167.2 (3)
O11—N11—C11—N185.1 (4)O21—N21—C21—C22174.1 (3)
Ni1—N11—C11—N18169.4 (2)Ni2—N21—C21—C2211.6 (4)
O11—N11—C11—C12172.4 (2)O22—N22—C22—N284.7 (5)
Ni1—N11—C11—C128.1 (3)Ni2—N22—C22—N28170.0 (3)
O12—N12—C12—N173.7 (4)O22—N22—C22—C21176.7 (2)
Ni1—N12—C12—N17164.6 (3)Ni2—N22—C22—C2111.4 (3)
O12—N12—C12—C11179.9 (2)N21—C21—C22—N2215.0 (4)
Ni1—N12—C12—C1119.1 (3)N27—C21—C22—N22163.9 (3)
N11—C11—C12—N1217.8 (4)N21—C21—C22—N28166.3 (3)
N18—C11—C12—N12159.9 (3)N27—C21—C22—N2814.8 (5)
N11—C11—C12—N17165.6 (3)O23—N23—C23—N295.1 (4)
N18—C11—C12—N1716.7 (4)Ni2—N23—C23—N29163.2 (2)
O13—N13—C13—N195.4 (4)O23—N23—C23—C24173.7 (2)
Ni1—N13—C13—N19168.1 (3)Ni2—N23—C23—C2415.6 (3)
O13—N13—C13—C14174.2 (2)O24—N24—C24—N705.4 (4)
Ni1—N13—C13—C1411.6 (3)Ni2—N24—C24—N70170.1 (2)
O14—N14—C14—N503.8 (4)O24—N24—C24—C23172.9 (2)
Ni1—N14—C14—N50166.2 (3)Ni2—N24—C24—C238.2 (3)
O14—N14—C14—C13175.3 (2)N23—C23—C24—N2415.7 (4)
Ni1—N14—C14—C1312.9 (3)N29—C23—C24—N24163.2 (3)
N13—C13—C14—N1416.2 (4)N23—C23—C24—N70162.6 (3)
N19—C13—C14—N14163.5 (3)N29—C23—C24—N7018.5 (4)
N13—C13—C14—N50162.9 (3)O25—N25—C25—N716.0 (5)
N19—C13—C14—N5017.4 (5)Ni2—N25—C25—N71165.1 (3)
O15—N15—C15—N514.7 (4)O25—N25—C25—C26174.4 (3)
Ni1—N15—C15—N51168.5 (2)Ni2—N25—C25—C2615.3 (4)
O15—N15—C15—C16174.1 (2)O26—N26—C26—N725.0 (5)
Ni1—N15—C15—C1610.3 (3)Ni2—N26—C26—N72164.3 (3)
O16—N16—C16—N1123.1 (4)O26—N26—C26—C25174.4 (3)
Ni1—N16—C16—N112166.1 (2)Ni2—N26—C26—C2515.1 (4)
O16—N16—C16—C15176.7 (2)N25—C25—C26—N2620.3 (4)
Ni1—N16—C16—C1513.7 (3)N71—C25—C26—N26160.2 (3)
N15—C15—C16—N1615.4 (4)N25—C25—C26—N72159.2 (3)
N51—C15—C16—N16163.4 (3)N71—C25—C26—N7220.4 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O11—H11···O200.821.852.673 (4)177
O12—H12···O2A0.821.852.663 (7)174
O13—H13···O100.821.882.698 (3)174
O15—H15···O300.821.902.716 (3)177
O16—H16···O2B0.821.952.770 (5)178
O16—H16···O40.822.372.857 (4)119
O21—H21···O10.821.852.645 (4)163
O23—H23···O30.821.942.744 (4)165
O25—H25···O40.821.822.636 (5)177
O22—H22···O4Wi0.821.962.694 (4)148
O24—H24···O5Wi0.822.002.796 (5)164
O26—H26···O4Wi0.821.952.760 (4)167
O1W—H1W1···O130.84 (2)1.98 (3)2.819 (3)174 (5)
O2W—H2W2···O210.84 (3)1.93 (3)2.764 (4)168 (4)
O4W—H2W4···O5W0.83 (3)1.98 (3)2.783 (5)160 (5)
O5W—H1W5···O7W0.88 (3)2.16 (6)2.827 (7)132 (6)
O7W—H7W1···O8W0.851.932.782 (8)175
O8W—H2W8···O30.91 (3)1.92 (7)2.720 (7)147 (11)
O1W—H2W1···O10ii0.82 (2)2.13 (3)2.944 (3)172 (5)
O2W—H1W2···O40iii0.86 (3)1.91 (3)2.764 (4)175 (5)
O3W—H2W3···O20ii0.86 (3)2.29 (4)3.045 (4)146 (6)
O4W—H1W4···O2Wiv0.85 (3)1.98 (3)2.825 (4)170 (5)
O6W—H2W6···O24v0.82 (3)2.25 (4)3.038 (4)161 (7)
N17—H17B···O10ii0.862.433.022 (4)126
N18—H18A···O23vi0.862.263.052 (3)154
N19—H19A···O3vii0.862.603.182 (4)125
N19—H19B···O12vii0.862.193.044 (4)175
N50—H50A···O1Wvii0.862.353.006 (4)134
N50—H50B···O12vii0.862.142.941 (3)155
N51—H51B···O20viii0.862.193.039 (4)172
N112—H11A···O2Wix0.862.453.096 (4)132
N112—H11B···O20viii0.862.032.846 (4)158
N28—H28A···O16x0.862.042.873 (4)162
N29—H29A···O1Wvii0.862.072.876 (4)155
N29—H29B···O3Wvii0.861.952.800 (4)168
N70—H70A···O14xi0.862.383.055 (4)136
N70—H70B···O3Wvii0.862.473.264 (5)154
N71—H71A···O2Wix0.862.363.155 (4)154
N71—H71B···O1ix0.862.172.999 (4)163
N72—H72B···O1ix0.862.333.153 (4)161
Symmetry codes: (i) x, y+1, z; (ii) x, y+1, z+1; (iii) x+1, y, z1; (iv) x+2, y+1, z; (v) x, y1, z; (vi) x1, y, z; (vii) x+1, y+1, z+1; (viii) x, y+2, z+1; (ix) x+1, y+2, z; (x) x+1, y, z; (xi) x+1, y+2, z+1.

Experimental details

Crystal data
Chemical formula[Ni(C2H6N4O2)3]SO4·5H2O
Mr599.17
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)12.3141 (16), 14.0458 (17), 14.7734 (18)
α, β, γ (°)86.077 (3), 77.769 (3), 72.868 (3)
V3)2386.4 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.99
Crystal size (mm)0.25 × 0.15 × 0.10
Data collection
DiffractometerBruker APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.789, 0.907
No. of measured, independent and
observed [I > 2σ(I)] reflections
33235, 11834, 9771
Rint0.029
(sin θ/λ)max1)0.672
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.164, 1.12
No. of reflections11834
No. of parameters707
No. of restraints23
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.48, 1.45

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 1999), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O11—H11···O200.821.852.673 (4)177
O12—H12···O2A0.821.852.663 (7)174
O13—H13···O100.821.882.698 (3)174
O15—H15···O300.821.902.716 (3)177
O16—H16···O2B0.821.952.770 (5)178
O16—H16···O40.822.372.857 (4)119
O21—H21···O10.821.852.645 (4)163
O23—H23···O30.821.942.744 (4)165
O25—H25···O40.821.822.636 (5)177
O22—H22···O4Wi0.821.962.694 (4)148
O24—H24···O5Wi0.822.002.796 (5)164
O26—H26···O4Wi0.821.952.760 (4)167
O1W—H1W1···O130.84 (2)1.98 (3)2.819 (3)174 (5)
O2W—H2W2···O210.84 (3)1.93 (3)2.764 (4)168 (4)
O4W—H2W4···O5W0.83 (3)1.98 (3)2.783 (5)160 (5)
O5W—H1W5···O7W0.88 (3)2.16 (6)2.827 (7)132 (6)
O7W—H7W1···O8W0.851.932.782 (8)175
O8W—H2W8···O30.91 (3)1.92 (7)2.720 (7)147 (11)
O1W—H2W1···O10ii0.82 (2)2.13 (3)2.944 (3)172 (5)
O2W—H1W2···O40iii0.86 (3)1.91 (3)2.764 (4)175 (5)
O3W—H2W3···O20ii0.86 (3)2.29 (4)3.045 (4)146 (6)
O4W—H1W4···O2Wiv0.85 (3)1.98 (3)2.825 (4)170 (5)
O6W—H2W6···O24v0.82 (3)2.25 (4)3.038 (4)161 (7)
N17—H17B···O10ii0.862.433.022 (4)126
N18—H18A···O23vi0.862.263.052 (3)154
N19—H19A···O3vii0.862.603.182 (4)125
N19—H19B···O12vii0.862.193.044 (4)175
N50—H50A···O1Wvii0.862.353.006 (4)134
N50—H50B···O12vii0.862.142.941 (3)155
N51—H51B···O20viii0.862.193.039 (4)172
N112—H11A···O2Wix0.862.453.096 (4)132
N112—H11B···O20viii0.862.032.846 (4)158
N28—H28A···O16x0.862.042.873 (4)162
N29—H29A···O1Wvii0.862.072.876 (4)155
N29—H29B···O3Wvii0.861.952.800 (4)168
N70—H70A···O14xi0.862.383.055 (4)136
N70—H70B···O3Wvii0.862.473.264 (5)154
N71—H71A···O2Wix0.862.363.155 (4)154
N71—H71B···O1ix0.862.172.999 (4)163
N72—H72B···O1ix0.862.333.153 (4)161
Symmetry codes: (i) x, y+1, z; (ii) x, y+1, z+1; (iii) x+1, y, z1; (iv) x+2, y+1, z; (v) x, y1, z; (vi) x1, y, z; (vii) x+1, y+1, z+1; (viii) x, y+2, z+1; (ix) x+1, y+2, z; (x) x+1, y, z; (xi) x+1, y+2, z+1.
 

Acknowledgements

The authors thank Klaus Kruse (RWTH Aachen) for his technical support during the X-ray experiments.

References

First citationAkutsu-Sato, A., Akutsu, H., Turner, S. S. & Day, P. (2005). Angew. Chem. Int. Ed. 44, 292–295.  Web of Science CSD CrossRef CAS Google Scholar
First citationBelombe, M. M., Nenwa, J., Bebga, G., Fokwa, B. P. T. & Dronskowski, R. (2007). Acta Cryst. E63, m2037–m2038.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBélombé, M. M., Nenwa, J., Mbiangué, Y. A., Gouet, B., Majoumo-Mbé, F., Hey-Hawkins, E. & Lönnecke, P. (2007). Inorg. Chim. Acta, doi:10.1016/j.ica.2007.03.003.  Google Scholar
First citationBélombé, M. M., Nenwa, J., Mbiangué, Y. A., Hey-Hawkins, E., Lönnecke, P. & Majoumo-Mbé, F. (2006). International Conference on Coordination Chemistry (37th ICCC), 13–18 August, Cape Town, South Africa. Poster Abstract 374.  Google Scholar
First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2000). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEndres, H. & Jannack, T. (1980). Acta Cryst. B36, 2136–2138.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationEphraim, J. (1889). Chem. Ber. 22, 2305–2306.  CrossRef Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationInfantes, L. & Motherwell, S. (2002). CrystEngComm, 4, 454–461.  Web of Science CrossRef CAS Google Scholar
First citationMartin, L., Day, P., Clegg, W., Harrington, R. W., Horton, P. N., Bingham, A., Hursthouse, M. B., McMillan, P. & Firth, S. (2007). J. Mater. Chem. 17, 3324–3329.  Web of Science CSD CrossRef CAS Google Scholar
First citationNenwa, J. (2004). PhD dissertation. University of Yaounde I, Cameroon.  Google Scholar
First citationRashid, S., Turner, S. S., Day, P., Light, M. E., Hursthouse, M. B., Firth, S. & Clark, R. J. H. (2001). Chem. Commun. pp. 1462–1463.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 11| November 2008| Pages m1440-m1441
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds