organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

6-(2-Fluoro­phen­yl)-5,6-di­hydro­benzimidazolo[1,2-c]quinazoline

aCollege of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, People's Republic of China
*Correspondence e-mail: jxchen-1964@163.com

(Received 8 September 2008; accepted 3 October 2008; online 11 October 2008)

In the title compound, C20H14FN3, the pyrimidine ring adopts a half-chair conformation. The dihedral angle between the benzimidazole ring system and the fluoro­phenyl ring is 84.18 (10)°. In the crystal structure, mol­ecules are linked into a two-dimensional network parallel to the bc plane by N—H⋯N and C—H⋯F hydrogen bonds.

Related literature

For related structures, see: Elgemeie et al. (1998[Elgemeie, G. E. H., Fathy, N. M., Hopf, H. & Jones, P. G. (1998). Acta Cryst. C54, 1109-1111.]); Jayalakshmi et al. (2004[Jayalakshmi, K., Devarajegowda, H. C., Anandalwar, S. M., Bheemanna, H. G., Gayathri, V., Gowda, N. M. N., Begum, N. S., Rangappa, K. S. & Prasad, J. S. (2004). Anal. Sci. 20, x87-x88.]); Low et al. (2003[Low, J. N., Insuasty, B., Torres, H. & Cobo, J. (2003). Acta Cryst. E59, o1801-o1803.]); Mahendra et al. (2005[Mahendra, M., Gayathri, V., Jayalakshmi, K., Rangappa, K. S., Sridhar, M. A. & Shashidhara Prasad, J. (2005). Acta Cryst. E61, o3249-o3251.]). For related literature, see: Alexandre et al. (2003[Alexandre, F., Berecibar, A., Wrigglesworth, R. & Besson, T. (2003). Tetrahedron, 59, 1413-1419.]); Bandurco et al. (1981[Bandurco, V. T., Wong, E. M., Levine, S. D. & Hajos, Z. G. (1981). J. Med. Chem. 24, 1455-1460.]); Chern et al. (1993[Chern, J. W., Tao, P. L., Yen, M. H., Lu, G. Y., Shiau, C. Y., Lai, Y. J., Chien, S. L. & Chan, C. H. (1993). J. Med. Chem. 36, 2196-2207.]); Fatmi et al. (1984[Fatmi, A. A., Vaidya, N. A., Iturrian, W. B. & Blanton, C. D. W. (1984). J. Med. Chem. 27, 772-778.]).

[Scheme 1]

Experimental

Crystal data
  • C20H14FN3

  • Mr = 315.34

  • Monoclinic, P 21 /c

  • a = 8.7344 (17) Å

  • b = 13.623 (3) Å

  • c = 13.356 (3) Å

  • β = 99.78 (3)°

  • V = 1566.1 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 298 (2) K

  • 0.23 × 0.21 × 0.15 mm

Data collection
  • Rigaku R-AXIS RAPID IP diffractometer

  • Absorption correction: multi-scan (RAPID-AUTO; Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.899, Tmax = 0.991

  • 15171 measured reflections

  • 3591 independent reflections

  • 2286 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.160

  • S = 1.06

  • 3591 reflections

  • 217 parameters

  • H-atom parameters constrained

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯N3i 0.86 2.31 2.995 (2) 136
C11—H11A⋯F1ii 0.93 2.43 3.264 (3) 149
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL/PC (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

A variety of compounds containing the quinazoline skeleton has been found to exhibit antihypertensive, antimalarial and bronchodilator activities (Alexandre et al., 2003; Bandurco et al., 1981; Chern et al., 1993; Fatmi et al., 1984) and crystal structures of some of these compounds have been reported (Elgemeie et al., 1998; Low et al., 2003; Jayalakshmi et al., 2004; Mahendra et al., 2005). In view of the above importance, the title compound, (I), was prepared from ο-aminophenylbenzimidazole and ο-fluorobenzaldehyde and its crystal structure is reported here (Fig. 1).

Most of the bond lengths and angles have normal values and are comparable to those observed in related structures (Low et al., 2003; Mahendra et al., 2005). The benzimidazole ring system is planar. The pyrimidine ring adopts a half-chair conformation, with atoms N1 and C14 deviate from the N2/C1/C8/C9 plane by 0.178 (3) and -0.222 (3) Å, respectively. The dihedral angle between the benzimidazole ring system and the fluorophenyl ring is 84.18 (10)°.

In the crystal structure, the molecules are linked into a two-dimensional network parallel to the bc plane (Fig.2) by N—H···N and C—H···F hydrogen bonds (Table 1).

Related literature top

For related structures, see: Elgemeie et al. (1998); Jayalakshmi et al. (2004); Low et al. (2003); Mahendra et al. (2005). For related literature, see: Alexandre et al. (2003); Bandurco et al. (1981); Chern et al. (1993); Fatmi et al. (1984).

Experimental top

All reagents were of AR grade available commercially and used without further purification. A solution of ο-aminophenylbenzimidazole (5 mmol) and ο-fluorobenzaldehyde (5 mmol) in ethanol (12 ml) was treated with acetic acid (0.2 ml) for 5 h. The resulting solution was concentrated under reduced pressure to a small volume to obtain a creamy compound. The solid was recrystallized from ethanol to give a brown crystalline compound (I) (yield 70%; m.p. 521 K). Single crystals suitable for X-ray diffraction analysis were obtained by slow evaporation of an ethanol solution.

Refinement top

All H atoms were placed in calculated positions with N—H = 0.86 Å and C—H = 0.93–0.98 Å, and refined using a riding model with Uiso(H) = 1.2Ueq(C,N).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: RAPID-AUTO (Rigaku, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL/PC (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed along the c axis. Hydrogen bonds are shown as dashed lines.
6-(2-Fluorophenyl)-5,6-dihydrobenzimidazolo[1,2-c]quinazoline top
Crystal data top
C20H14FN3F(000) = 656
Mr = 315.34Dx = 1.337 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3589 reflections
a = 8.7344 (17) Åθ = 3.0–27.5°
b = 13.623 (3) ŵ = 0.09 mm1
c = 13.356 (3) ÅT = 298 K
β = 99.78 (3)°Chunk, brown
V = 1566.1 (6) Å30.23 × 0.21 × 0.15 mm
Z = 4
Data collection top
Rigaku Weissenberg IP
diffractometer
3591 independent reflections
Radiation source: sealed tube2286 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
ϕ and ω scansθmax = 27.5°, θmin = 3.0°
Absorption correction: multi-scan
(RAPID-AUTO; Rigaku, 1998)
h = 1111
Tmin = 0.899, Tmax = 0.991k = 1716
15171 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.160H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0751P)2 + 0.2459P]
where P = (Fo2 + 2Fc2)/3
3591 reflections(Δ/σ)max = 0.001
217 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.31 e Å3
Crystal data top
C20H14FN3V = 1566.1 (6) Å3
Mr = 315.34Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.7344 (17) ŵ = 0.09 mm1
b = 13.623 (3) ÅT = 298 K
c = 13.356 (3) Å0.23 × 0.21 × 0.15 mm
β = 99.78 (3)°
Data collection top
Rigaku Weissenberg IP
diffractometer
3591 independent reflections
Absorption correction: multi-scan
(RAPID-AUTO; Rigaku, 1998)
2286 reflections with I > 2σ(I)
Tmin = 0.899, Tmax = 0.991Rint = 0.035
15171 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0540 restraints
wR(F2) = 0.160H-atom parameters constrained
S = 1.06Δρmax = 0.33 e Å3
3591 reflectionsΔρmin = 0.31 e Å3
217 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.22484 (19)0.16127 (14)0.15884 (10)0.1072 (6)
N10.51477 (19)0.25468 (13)0.34079 (11)0.0606 (5)
H1A0.54980.25530.28440.073*
N20.41799 (18)0.15511 (12)0.45924 (10)0.0519 (4)
N30.4822 (2)0.16940 (12)0.62780 (11)0.0571 (4)
C10.4941 (2)0.20758 (14)0.53935 (12)0.0500 (4)
C20.3860 (2)0.08770 (15)0.60402 (14)0.0553 (5)
C30.3286 (3)0.02189 (17)0.66787 (16)0.0698 (6)
H3B0.35640.02680.73810.084*
C40.2299 (3)0.05068 (18)0.62477 (19)0.0769 (6)
H4A0.18940.09490.66640.092*
C50.1893 (3)0.05921 (18)0.5196 (2)0.0793 (7)
H5A0.12320.10950.49240.095*
C60.2453 (3)0.00545 (16)0.45505 (17)0.0671 (6)
H6A0.21800.00030.38480.081*
C70.3436 (2)0.07804 (14)0.49963 (14)0.0541 (5)
C80.5723 (2)0.29641 (14)0.51872 (13)0.0517 (4)
C90.5753 (2)0.31982 (15)0.41612 (13)0.0523 (5)
C100.6471 (3)0.40634 (17)0.39484 (16)0.0646 (6)
H10A0.64760.42390.32760.077*
C110.7168 (3)0.46590 (18)0.47110 (19)0.0747 (6)
H11A0.76600.52300.45510.090*
C120.7158 (3)0.44306 (17)0.57132 (18)0.0736 (6)
H12A0.76460.48420.62250.088*
C130.6429 (3)0.35968 (15)0.59553 (15)0.0621 (5)
H13A0.64010.34500.66320.075*
C140.3936 (2)0.18490 (15)0.35345 (12)0.0528 (5)
H14A0.40500.12700.31190.063*
C150.2318 (2)0.22592 (14)0.32082 (13)0.0522 (5)
C160.1535 (3)0.21340 (17)0.22401 (16)0.0668 (6)
C170.0088 (3)0.2507 (2)0.1890 (2)0.0894 (8)
H17A0.04000.23980.12240.107*
C180.0614 (3)0.3038 (2)0.2538 (3)0.0944 (8)
H18A0.15980.32970.23170.113*
C190.0113 (3)0.3198 (2)0.3516 (2)0.0937 (8)
H19A0.03730.35700.39550.112*
C200.1567 (3)0.28070 (19)0.38496 (18)0.0762 (7)
H20A0.20510.29130.45170.091*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.1146 (12)0.1504 (14)0.0498 (8)0.0203 (11)0.0054 (7)0.0329 (8)
N10.0651 (10)0.0853 (12)0.0328 (7)0.0036 (9)0.0128 (7)0.0029 (7)
N20.0612 (9)0.0631 (9)0.0304 (7)0.0075 (8)0.0047 (6)0.0008 (6)
N30.0700 (10)0.0691 (10)0.0320 (8)0.0019 (9)0.0081 (7)0.0012 (7)
C10.0579 (10)0.0610 (11)0.0305 (8)0.0078 (9)0.0056 (7)0.0013 (7)
C20.0646 (12)0.0598 (11)0.0414 (10)0.0055 (10)0.0088 (8)0.0028 (8)
C30.0853 (15)0.0752 (14)0.0496 (11)0.0042 (12)0.0131 (10)0.0088 (10)
C40.0859 (16)0.0714 (14)0.0734 (15)0.0053 (13)0.0136 (12)0.0156 (12)
C50.0819 (16)0.0672 (13)0.0852 (18)0.0053 (12)0.0033 (13)0.0018 (13)
C60.0759 (14)0.0694 (13)0.0521 (11)0.0037 (11)0.0002 (10)0.0035 (10)
C70.0595 (11)0.0560 (10)0.0456 (10)0.0079 (9)0.0057 (8)0.0000 (8)
C80.0566 (10)0.0591 (11)0.0406 (9)0.0083 (9)0.0113 (8)0.0024 (8)
C90.0507 (10)0.0679 (12)0.0391 (9)0.0131 (9)0.0100 (8)0.0030 (8)
C100.0688 (13)0.0753 (13)0.0530 (12)0.0096 (11)0.0205 (10)0.0159 (10)
C110.0840 (16)0.0704 (14)0.0751 (15)0.0008 (12)0.0290 (13)0.0086 (12)
C120.0897 (16)0.0698 (13)0.0639 (14)0.0097 (13)0.0202 (12)0.0090 (11)
C130.0754 (13)0.0693 (13)0.0427 (10)0.0020 (11)0.0131 (9)0.0044 (9)
C140.0653 (11)0.0648 (11)0.0270 (8)0.0133 (10)0.0041 (7)0.0026 (8)
C150.0587 (11)0.0567 (10)0.0392 (9)0.0054 (9)0.0026 (8)0.0002 (8)
C160.0716 (14)0.0800 (14)0.0444 (10)0.0017 (11)0.0027 (9)0.0029 (10)
C170.0748 (16)0.114 (2)0.0674 (15)0.0012 (15)0.0206 (13)0.0111 (15)
C180.0635 (15)0.103 (2)0.110 (2)0.0173 (15)0.0057 (15)0.0153 (18)
C190.0721 (16)0.106 (2)0.101 (2)0.0296 (15)0.0072 (15)0.0133 (16)
C200.0701 (14)0.0927 (16)0.0630 (14)0.0226 (13)0.0031 (11)0.0155 (12)
Geometric parameters (Å, º) top
F1—C161.354 (3)C8—C91.412 (2)
N1—C91.378 (3)C9—C101.387 (3)
N1—C141.454 (3)C10—C111.362 (3)
N1—H1A0.8600C10—H10A0.93
N2—C11.362 (2)C11—C121.376 (3)
N2—C71.391 (2)C11—H11A0.93
N2—C141.451 (2)C12—C131.368 (3)
N3—C11.311 (2)C12—H12A0.93
N3—C21.398 (3)C13—H13A0.93
C1—C81.439 (3)C14—C151.514 (3)
C2—C71.387 (3)C14—H14A0.98
C2—C31.388 (3)C15—C161.367 (3)
C3—C41.372 (3)C15—C201.382 (3)
C3—H3B0.93C16—C171.369 (3)
C4—C51.394 (3)C17—C181.352 (4)
C4—H4A0.93C17—H17A0.93
C5—C61.378 (3)C18—C191.370 (4)
C5—H5A0.93C18—H18A0.93
C6—C71.377 (3)C19—C201.380 (3)
C6—H6A0.93C19—H19A0.93
C8—C131.400 (3)C20—H20A0.93
C9—N1—C14122.21 (14)C11—C10—H10A119.6
C9—N1—H1A118.9C9—C10—H10A119.6
C14—N1—H1A118.9C10—C11—C12121.1 (2)
C1—N2—C7106.81 (14)C10—C11—H11A119.4
C1—N2—C14126.12 (16)C12—C11—H11A119.4
C7—N2—C14126.01 (16)C13—C12—C11119.9 (2)
C1—N3—C2104.34 (15)C13—C12—H12A120.1
N3—C1—N2113.37 (17)C11—C12—H12A120.1
N3—C1—C8128.24 (17)C12—C13—C8120.18 (19)
N2—C1—C8118.36 (15)C12—C13—H13A119.9
C7—C2—C3119.58 (19)C8—C13—H13A119.9
C7—C2—N3110.58 (16)N2—C14—N1107.87 (15)
C3—C2—N3129.82 (18)N2—C14—C15111.05 (14)
C4—C3—C2118.3 (2)N1—C14—C15112.81 (16)
C4—C3—H3B120.8N2—C14—H14A108.3
C2—C3—H3B120.8N1—C14—H14A108.3
C3—C4—C5121.1 (2)C15—C14—H14A108.3
C3—C4—H4A119.4C16—C15—C20116.13 (19)
C5—C4—H4A119.4C16—C15—C14121.23 (17)
C6—C5—C4121.4 (2)C20—C15—C14122.60 (17)
C6—C5—H5A119.3F1—C16—C15117.59 (19)
C4—C5—H5A119.3F1—C16—C17118.3 (2)
C7—C6—C5116.7 (2)C15—C16—C17124.1 (2)
C7—C6—H6A121.6C18—C17—C16118.2 (2)
C5—C6—H6A121.6C18—C17—H17A120.9
C6—C7—C2122.92 (19)C16—C17—H17A120.9
C6—C7—N2132.26 (18)C17—C18—C19120.6 (2)
C2—C7—N2104.81 (17)C17—C18—H18A119.7
C13—C8—C9119.59 (19)C19—C18—H18A119.7
C13—C8—C1122.78 (16)C18—C19—C20119.9 (3)
C9—C8—C1117.62 (17)C18—C19—H19A120.1
N1—C9—C10121.90 (17)C20—C19—H19A120.1
N1—C9—C8119.68 (18)C19—C20—C15121.1 (2)
C10—C9—C8118.33 (19)C19—C20—H20A119.5
C11—C10—C9120.87 (19)C15—C20—H20A119.5
C2—N3—C1—N22.4 (2)C13—C8—C9—C100.8 (3)
C2—N3—C1—C8176.00 (18)C1—C8—C9—C10178.52 (16)
C7—N2—C1—N33.0 (2)N1—C9—C10—C11174.8 (2)
C14—N2—C1—N3171.79 (16)C8—C9—C10—C111.8 (3)
C7—N2—C1—C8175.55 (15)C9—C10—C11—C121.2 (4)
C14—N2—C1—C86.8 (3)C10—C11—C12—C130.5 (4)
C1—N3—C2—C70.9 (2)C11—C12—C13—C81.4 (3)
C1—N3—C2—C3177.1 (2)C9—C8—C13—C120.8 (3)
C7—C2—C3—C40.5 (3)C1—C8—C13—C12179.9 (2)
N3—C2—C3—C4177.4 (2)C1—N2—C14—N124.3 (2)
C2—C3—C4—C50.8 (4)C7—N2—C14—N1168.98 (16)
C3—C4—C5—C60.7 (4)C1—N2—C14—C1599.8 (2)
C4—C5—C6—C70.4 (3)C7—N2—C14—C1566.9 (2)
C5—C6—C7—C20.2 (3)C9—N1—C14—N233.8 (2)
C5—C6—C7—N2178.7 (2)C9—N1—C14—C1589.2 (2)
C3—C2—C7—C60.2 (3)N2—C14—C15—C16146.77 (19)
N3—C2—C7—C6178.02 (19)N1—C14—C15—C1692.0 (2)
C3—C2—C7—N2179.11 (18)N2—C14—C15—C2035.6 (3)
N3—C2—C7—N20.9 (2)N1—C14—C15—C2085.7 (2)
C1—N2—C7—C6176.5 (2)C20—C15—C16—F1179.1 (2)
C14—N2—C7—C67.7 (3)C14—C15—C16—F11.3 (3)
C1—N2—C7—C22.2 (2)C20—C15—C16—C170.5 (4)
C14—N2—C7—C2171.00 (16)C14—C15—C16—C17178.3 (2)
N3—C1—C8—C133.7 (3)F1—C16—C17—C18179.1 (2)
N2—C1—C8—C13174.62 (18)C15—C16—C17—C180.4 (4)
N3—C1—C8—C9176.94 (18)C16—C17—C18—C190.2 (4)
N2—C1—C8—C94.7 (3)C17—C18—C19—C200.7 (5)
C14—N1—C9—C10157.02 (18)C18—C19—C20—C150.6 (4)
C14—N1—C9—C826.4 (3)C16—C15—C20—C190.0 (4)
C13—C8—C9—N1175.87 (18)C14—C15—C20—C19177.7 (2)
C1—C8—C9—N14.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···N3i0.862.312.995 (2)136
C11—H11A···F1ii0.932.433.264 (3)149
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC20H14FN3
Mr315.34
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)8.7344 (17), 13.623 (3), 13.356 (3)
β (°) 99.78 (3)
V3)1566.1 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.23 × 0.21 × 0.15
Data collection
DiffractometerRigaku Weissenberg IP
diffractometer
Absorption correctionMulti-scan
(RAPID-AUTO; Rigaku, 1998)
Tmin, Tmax0.899, 0.991
No. of measured, independent and
observed [I > 2σ(I)] reflections
15171, 3591, 2286
Rint0.035
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.160, 1.06
No. of reflections3591
No. of parameters217
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.33, 0.31

Computer programs: RAPID-AUTO (Rigaku, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL/PC (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···N3i0.862.312.995 (2)136
C11—H11A···F1ii0.932.433.264 (3)149
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+1, y+1/2, z+1/2.
 

Acknowledgements

The authors are grateful to the Natural Science Foundation of Fujian Province, China (grant Nos. 2007 J0216 and U0750004), the Ministry of Education of China (grant No. 208066), the Education Department of Fujian Province, China (grant No. JA07029) and the State Key Laboratory of Structural Chemistry, China (grant No. 20080053), for financial support.

References

First citationAlexandre, F., Berecibar, A., Wrigglesworth, R. & Besson, T. (2003). Tetrahedron, 59, 1413–1419.  Web of Science CrossRef CAS Google Scholar
First citationBandurco, V. T., Wong, E. M., Levine, S. D. & Hajos, Z. G. (1981). J. Med. Chem. 24, 1455–1460.  CrossRef CAS PubMed Web of Science Google Scholar
First citationChern, J. W., Tao, P. L., Yen, M. H., Lu, G. Y., Shiau, C. Y., Lai, Y. J., Chien, S. L. & Chan, C. H. (1993). J. Med. Chem. 36, 2196–2207.  CrossRef CAS PubMed Web of Science Google Scholar
First citationElgemeie, G. E. H., Fathy, N. M., Hopf, H. & Jones, P. G. (1998). Acta Cryst. C54, 1109–1111.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFatmi, A. A., Vaidya, N. A., Iturrian, W. B. & Blanton, C. D. W. (1984). J. Med. Chem. 27, 772–778.  CrossRef CAS PubMed Web of Science Google Scholar
First citationJayalakshmi, K., Devarajegowda, H. C., Anandalwar, S. M., Bheemanna, H. G., Gayathri, V., Gowda, N. M. N., Begum, N. S., Rangappa, K. S. & Prasad, J. S. (2004). Anal. Sci. 20, x87–x88.  CSD CrossRef CAS Google Scholar
First citationLow, J. N., Insuasty, B., Torres, H. & Cobo, J. (2003). Acta Cryst. E59, o1801–o1803.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMahendra, M., Gayathri, V., Jayalakshmi, K., Rangappa, K. S., Sridhar, M. A. & Shashidhara Prasad, J. (2005). Acta Cryst. E61, o3249–o3251.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds