organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-Ethyl N′-[1-(4-meth­oxy­phen­yl)ethyl­­idene]hydrazine­carboxyl­ate

aDepartment of Chemical Engineering, Hangzhou Vocational and Technical College, Hangzhou 310018, People's Republic of China, and bResearch Center of Analysis and Measurement, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
*Correspondence e-mail: zgdhxc@126.com

(Received 26 September 2008; accepted 29 September 2008; online 4 October 2008)

The mol­ecule of the title compound, C12H16N2O3, adopts a trans configuration with respect to the C=N bond. The dihedral angle between the benzene ring and the hydrazinecarboxyl­ate plane is 13.82 (6)°. In the crystal structure, mol­ecules are linked into centrosymmetric dimers by N—H⋯O and C—H⋯O hydrogen bonds, and the dimers are linked together by C—H⋯π inter­actions.

Related literature

For general background, see: Parashar et al. (1988[Parashar, R. K., Sharma, R. C., Kumar, A. & Mohanm, G. (1988). Inorg. Chim. Acta, 151, 201-208.]); Hadjoudis et al. (1987[Hadjoudis, E., Vittorakis, M. & Moustakali-Mavridis, J. (1987). Tetrahedron, 43, 1345-1360.]); Borg et al. (1999[Borg, S., Vollinga, R. C., Labarre, M., Payza, K., Terenius, L. & Luthman, K. (1999). J. Med. Chem. 42, 4331-4342.]). For a related structure, see: Lv et al. (2008[Lv, L.-P., Yu, W.-P., Yu, W.-B., Zhou, X.-F. & Hu, X.-C. (2008). Acta Cryst. E64, o1676.]).

[Scheme 1]

Experimental

Crystal data
  • C12H16N2O3

  • Mr = 236.27

  • Orthorhombic, P b c a

  • a = 12.1020 (11) Å

  • b = 8.1727 (7) Å

  • c = 25.476 (2) Å

  • V = 2519.8 (4) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 123 (2) K

  • 0.27 × 0.23 × 0.22 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS, Bruker, 2002[Bruker (2002). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.973, Tmax = 0.981

  • 12848 measured reflections

  • 2222 independent reflections

  • 1845 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.127

  • S = 1.07

  • 2222 reflections

  • 158 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.14 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C2–C7 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O2i 0.86 2.10 2.914 (2) 157
C12—H12C⋯O2i 0.96 2.52 3.250 (2) 133
C1—H1CCg1ii 0.96 2.76 3.637 (2) 153
Symmetry codes: (i) -x+1, -y, -z+1; (ii) [x, -y-{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 2002[Bruker (2002). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Benzaldehydehydrazone derivatives have received considerable attention for a long time, due to their pharmacological activities (Parashar et al., 1988) and their photochromic properties (Hadjoudis et al., 1987). They are important intermidiates for 1,3,4-oxadiazoles, which have been reported to be versatile compounds with many properties (Borg et al., 1999). As a further investigation of this type of derivatives, we report herein the crystal structure of the title compound.

The title molecule (Fig. 1) adopts a trans configuration with respect to the CN double bond. The bond lengths and angles are comparable to those observed for (E)-methyl N'-[1-(4-methoxyphenyl)ethylidene]hydrazinecarboxylate (Lv et al., 2008). Atoms C11 and C12 deviate from the O2/O3/N1/N2/C7-C10 plane by 0.406 (2) and 0.175 (2) Å, respectively. The dihedral angle between benzene (C2-C7) and O2/O3/N1/N2/C7-C10 planes is 13.82 (6)°.

In the crystal structure, intermolecular N—H···O and C–H···O hydrogen bonds (Table 1) link the molecules into centrosymmetric dimers (Fig. 2). A C—H···π contact (Table 1) between benzene ring (centroid Cg1) and C1-methyl group further stabilizes the structure.

Related literature top

For general background, see: Parashar et al. (1988); Hadjoudis et al. (1987); Borg et al. (1999). For a related structure, see: Lv et al. (2008).

Experimental top

4-Methoxy-acetophenone (1.50 g, 0.01 mol) and ethyl hydrazinecarboxylate (1.04 g, 0.01 mol) were dissolved in stirred methanol (25 ml) and left for 3.5 h at room temperature. The resulting solid was filtered off and recrystallized from ethanol to give the title compound (yield 83%, m.p. 465-468 K). Single crystals of the title compound suitable for X-ray analysis were obtained by slow evaporation of an ethanol solution.

Refinement top

H atoms were positioned geometrically, with N-H = 0.86 Å and C-H = 0.93, 0.97 and 0.96 Å for aromatic, methylene and methyl H, respectively, and constrained to ride on their parent atoms with Uiso(H) = xUeq(C,N), where x = 1.5 for methyl H and x = 1.2 for all other H atoms. A rotating group model was used for the methyl groups.

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed approximately down the c axis. Hydrogen bonds are shown as dashed lines.
(E)-Ethyl N'-[1-(4-methoxyphenyl)ethylidene]hydrazinecarboxylate top
Crystal data top
C12H16N2O3F(000) = 1008
Mr = 236.27Dx = 1.246 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 2222 reflections
a = 12.1020 (11) Åθ = 1.6–25.0°
b = 8.1727 (7) ŵ = 0.09 mm1
c = 25.476 (2) ÅT = 123 K
V = 2519.8 (4) Å3Block, colourless
Z = 80.27 × 0.23 × 0.22 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
2222 independent reflections
Radiation source: fine-focus sealed tube1845 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ϕ and ω scansθmax = 25.0°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS, Bruker, 2002)
h = 1214
Tmin = 0.973, Tmax = 0.981k = 99
12848 measured reflectionsl = 3030
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.127 w = 1/[σ2(Fo2) + (0.0637P)2 + 0.6384P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.002
2222 reflectionsΔρmax = 0.19 e Å3
158 parametersΔρmin = 0.14 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0115 (13)
Crystal data top
C12H16N2O3V = 2519.8 (4) Å3
Mr = 236.27Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 12.1020 (11) ŵ = 0.09 mm1
b = 8.1727 (7) ÅT = 123 K
c = 25.476 (2) Å0.27 × 0.23 × 0.22 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
2222 independent reflections
Absorption correction: multi-scan
(SADABS, Bruker, 2002)
1845 reflections with I > 2σ(I)
Tmin = 0.973, Tmax = 0.981Rint = 0.026
12848 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.127H-atom parameters constrained
S = 1.07Δρmax = 0.19 e Å3
2222 reflectionsΔρmin = 0.14 e Å3
158 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C70.42346 (13)0.5640 (2)0.60487 (6)0.0490 (4)
C80.43416 (13)0.4210 (2)0.56947 (6)0.0501 (4)
C30.40760 (13)0.8369 (2)0.67166 (6)0.0525 (4)
C20.37209 (14)0.8477 (2)0.62024 (7)0.0570 (4)
H20.34300.94530.60750.068*
C90.59258 (14)0.0586 (2)0.56465 (7)0.0542 (4)
C50.45905 (15)0.5568 (2)0.65717 (7)0.0580 (5)
H50.48900.46000.67000.070*
C60.38006 (15)0.7122 (2)0.58781 (6)0.0561 (4)
H60.35550.72070.55330.067*
C40.45058 (16)0.6900 (2)0.68974 (7)0.0613 (5)
H40.47400.68160.72440.074*
C10.35816 (19)1.1125 (2)0.69025 (8)0.0733 (6)
H1A0.40391.15770.66310.110*
H1B0.35501.18720.71930.110*
H1C0.28501.09480.67690.110*
C110.7327 (2)0.0352 (3)0.68377 (9)0.0932 (7)
H11A0.76560.06940.69080.140*
H11B0.78150.12040.69540.140*
H11C0.66370.04350.70210.140*
C100.7136 (2)0.0522 (3)0.62760 (9)0.0894 (8)
H10A0.68030.15760.62010.107*
H10B0.78310.04510.60870.107*
O30.63987 (11)0.07917 (16)0.61102 (5)0.0677 (4)
O20.61004 (11)0.05717 (16)0.53593 (5)0.0701 (4)
O10.40315 (12)0.96202 (16)0.70721 (5)0.0673 (4)
N20.52061 (12)0.17888 (17)0.55187 (5)0.0571 (4)
H2A0.48350.17130.52320.068*
N10.50534 (12)0.31305 (17)0.58366 (5)0.0532 (4)
C120.36482 (15)0.4117 (2)0.52056 (7)0.0621 (5)
H12A0.40980.43610.49050.093*
H12B0.30560.48960.52280.093*
H12C0.33470.30360.51710.093*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C70.0429 (8)0.0533 (9)0.0509 (9)0.0002 (7)0.0003 (7)0.0052 (7)
C80.0451 (9)0.0546 (10)0.0505 (9)0.0011 (7)0.0025 (7)0.0067 (7)
C30.0468 (9)0.0571 (10)0.0536 (9)0.0019 (8)0.0000 (7)0.0028 (7)
C20.0595 (10)0.0542 (10)0.0572 (9)0.0087 (8)0.0028 (8)0.0067 (8)
C90.0501 (9)0.0571 (10)0.0555 (9)0.0012 (8)0.0014 (7)0.0050 (8)
C50.0597 (10)0.0560 (10)0.0584 (10)0.0046 (8)0.0103 (8)0.0079 (8)
C60.0606 (10)0.0615 (11)0.0461 (8)0.0065 (8)0.0038 (7)0.0049 (8)
C40.0642 (11)0.0664 (11)0.0532 (9)0.0029 (9)0.0134 (8)0.0029 (8)
C10.0867 (14)0.0597 (12)0.0736 (12)0.0091 (10)0.0031 (10)0.0111 (10)
C110.1006 (18)0.0890 (16)0.0900 (15)0.0101 (14)0.0275 (13)0.0137 (13)
C100.0913 (17)0.0877 (16)0.0894 (15)0.0396 (13)0.0261 (12)0.0145 (12)
O30.0734 (9)0.0651 (8)0.0646 (8)0.0184 (6)0.0172 (6)0.0106 (6)
O20.0664 (8)0.0722 (9)0.0715 (8)0.0159 (7)0.0101 (6)0.0200 (7)
O10.0760 (9)0.0648 (8)0.0611 (7)0.0067 (6)0.0071 (6)0.0088 (6)
N20.0598 (8)0.0592 (9)0.0522 (8)0.0075 (7)0.0079 (6)0.0035 (6)
N10.0563 (8)0.0512 (8)0.0520 (8)0.0021 (6)0.0004 (6)0.0005 (6)
C120.0575 (10)0.0676 (12)0.0613 (10)0.0027 (9)0.0066 (8)0.0046 (9)
Geometric parameters (Å, º) top
C7—C61.390 (2)C1—O11.412 (2)
C7—C51.401 (2)C1—H1A0.96
C7—C81.482 (2)C1—H1B0.96
C8—N11.285 (2)C1—H1C0.96
C8—C121.504 (2)C11—C101.456 (3)
C3—O11.367 (2)C11—H11A0.96
C3—C21.382 (2)C11—H11B0.96
C3—C41.387 (2)C11—H11C0.96
C2—C61.385 (2)C10—O31.458 (2)
C2—H20.93C10—H10A0.97
C9—O21.215 (2)C10—H10B0.97
C9—O31.323 (2)N2—N11.376 (2)
C9—N21.353 (2)N2—H2A0.86
C5—C41.372 (2)C12—H12A0.96
C5—H50.93C12—H12B0.96
C6—H60.93C12—H12C0.96
C4—H40.93
C6—C7—C5116.71 (15)O1—C1—H1C109.5
C6—C7—C8122.01 (14)H1A—C1—H1C109.5
C5—C7—C8121.27 (15)H1B—C1—H1C109.5
N1—C8—C7115.38 (14)C10—C11—H11A109.5
N1—C8—C12124.94 (15)C10—C11—H11B109.5
C7—C8—C12119.67 (14)H11A—C11—H11B109.5
O1—C3—C2124.64 (16)C10—C11—H11C109.5
O1—C3—C4116.25 (15)H11A—C11—H11C109.5
C2—C3—C4119.11 (16)H11B—C11—H11C109.5
C3—C2—C6119.53 (16)C11—C10—O3108.19 (18)
C3—C2—H2120.2C11—C10—H10A110.1
C6—C2—H2120.2O3—C10—H10A110.1
O2—C9—O3124.14 (16)C11—C10—H10B110.1
O2—C9—N2122.21 (16)O3—C10—H10B110.1
O3—C9—N2113.64 (14)H10A—C10—H10B108.4
C4—C5—C7121.26 (16)C9—O3—C10115.45 (14)
C4—C5—H5119.4C3—O1—C1117.62 (14)
C7—C5—H5119.4C9—N2—N1121.58 (14)
C2—C6—C7122.46 (15)C9—N2—H2A119.2
C2—C6—H6118.8N1—N2—H2A119.2
C7—C6—H6118.8C8—N1—N2118.13 (14)
C5—C4—C3120.91 (16)C8—C12—H12A109.5
C5—C4—H4119.5C8—C12—H12B109.5
C3—C4—H4119.5H12A—C12—H12B109.5
O1—C1—H1A109.5C8—C12—H12C109.5
O1—C1—H1B109.5H12A—C12—H12C109.5
H1A—C1—H1B109.5H12B—C12—H12C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O2i0.862.102.914 (2)157
C12—H12C···O2i0.962.523.250 (2)133
C1—H1C···Cg1ii0.962.763.637 (2)153
Symmetry codes: (i) x+1, y, z+1; (ii) x, y3/2, z1/2.

Experimental details

Crystal data
Chemical formulaC12H16N2O3
Mr236.27
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)123
a, b, c (Å)12.1020 (11), 8.1727 (7), 25.476 (2)
V3)2519.8 (4)
Z8
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.27 × 0.23 × 0.22
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS, Bruker, 2002)
Tmin, Tmax0.973, 0.981
No. of measured, independent and
observed [I > 2σ(I)] reflections
12848, 2222, 1845
Rint0.026
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.127, 1.07
No. of reflections2222
No. of parameters158
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.14

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O2i0.862.102.914 (2)157
C12—H12C···O2i0.962.523.250 (2)133
C1—H1C···Cg1ii0.962.763.637 (2)153
Symmetry codes: (i) x+1, y, z+1; (ii) x, y3/2, z1/2.
 

Acknowledgements

The authors thank Hangzhou Vocational and Technical College, China, for financial support.

References

First citationBorg, S., Vollinga, R. C., Labarre, M., Payza, K., Terenius, L. & Luthman, K. (1999). J. Med. Chem. 42, 4331–4342.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2002). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHadjoudis, E., Vittorakis, M. & Moustakali-Mavridis, J. (1987). Tetrahedron, 43, 1345–1360.  CrossRef CAS Web of Science Google Scholar
First citationLv, L.-P., Yu, W.-P., Yu, W.-B., Zhou, X.-F. & Hu, X.-C. (2008). Acta Cryst. E64, o1676.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationParashar, R. K., Sharma, R. C., Kumar, A. & Mohanm, G. (1988). Inorg. Chim. Acta, 151, 201–208.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds