organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-Methyl N′-(2-furylmethyl­ene)­hydrazine­carboxyl­ate

aDepartment of Chemical Engineering, Hangzhou Vocational and Technical College, Hangzhou 310018, People's Republic of China, bZhejiang Xinan Chemical Industrial Group Co. Ltd., Jiande 311604, People's Republic of China, and cResearch Center of Analysis and Measurement, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
*Correspondence e-mail: zgdhxc@126.com

(Received 15 October 2008; accepted 16 October 2008; online 22 October 2008)

The title compound, C7H8N2O3, crystallizes with two independent but essentially identical mol­ecules in the asymmetric unit. Each mol­ecule adopts a trans configuration with respect to the C=N bond. The hydrazinecarboxyl­ate group is twisted from the furan ring by 7.78 (13)° in one mol­ecule and by 7.01 (17)° in the other. In the crystal structure, mol­ecules are linked into chains running along [010] by bifurcated N—H⋯(N,O) and N—H⋯O hydrogen bonds. In addition, weak C—H⋯O inter­actions and an O⋯C short contact [2.896 (3) Å] are observed.

Related literature

For general background, see: Parashar et al. (1988[Parashar, R. K., Sharma, R. C., Kumar, A. & Mohanm, G. (1988). Inorg. Chim. Acta, 151, 201-208.]); Hadjoudis et al. (1987[Hadjoudis, E., Vittorakis, M. & Moustakali-Mavridis, J. (1987). Tetrahedron, 43, 1345-1360.]); Borg et al. (1999[Borg, S., Vollinga, R. C., Labarre, M., Payza, K., Terenius, L. & Luthman, K. (1999). J. Med. Chem. 42, 4331-4342.]); Kahwa et al. (1986[Kahwa, I. A., Selbin, J., Hsieh, T. Y. & Laine, R. A. (1986). Inorg. Chim. Acta, 151, 201-208.]); Santos et al. (2001[Santos, M. L. P., Bagatin, I. A., Pereira, E. M. & Ferreira, A. M. D. C. (2001). J. Chem. Soc. Dalton Trans. pp. 838-844.]). For a related structure, see: Shang et al. (2007[Shang, Z.-H., Zhang, H.-L. & Ding, Y. (2007). Acta Cryst. E63, o3394.]).

[Scheme 1]

Experimental

Crystal data
  • C7H8N2O3

  • Mr = 168.15

  • Monoclinic, C 2

  • a = 14.9185 (17) Å

  • b = 7.8124 (9) Å

  • c = 15.1299 (19) Å

  • β = 105.251 (7)°

  • V = 1701.3 (4) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 193 (2) K

  • 0.19 × 0.17 × 0.16 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2002[Bruker (2002). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.978, Tmax = 0.982

  • 4679 measured reflections

  • 1601 independent reflections

  • 1399 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.085

  • S = 1.07

  • 1601 reflections

  • 218 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.10 e Å−3

  • Δρmin = −0.09 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O5 0.86 2.36 3.138 (3) 151
N2—H2A⋯N3 0.86 2.52 3.242 (3) 141
N4—H4⋯O2i 0.86 2.11 2.913 (3) 156
C2—H2⋯O5ii 0.93 2.60 3.521 (4) 172
C10—H10⋯O5iii 0.93 2.59 3.508 (4) 171
Symmetry codes: (i) x, y-1, z; (ii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z]; (iii) [x-{\script{1\over 2}}, y-{\script{1\over 2}}, z].

Data collection: SMART (Bruker, 2002[Bruker (2002). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Benzaldehydehydrazone derivatives have attracted much attention due to their pharmacological activity (Parashar et al., 1988) and their photochromic properties (Hadjoudis et al., 1987). They are important intermidiates of 1,3,4-oxadiazoles, which have been reported to be versatile compounds with many interesting properties (Borg et al., 1999). Metal complexes based on Schiff bases have received considerable attention because they can be utilized as model compounds of active centres in various proteins and enzymes (Kahwa et al., 1986; Santos et al., 2001). We report here the crystal structure of the title compound (Fig. 1).

The title compound contains two independent, but essentially identical molecules in the asymmetric unit. Each independent molecule adopts a trans configuration with respect to the CN bond. The N1/N2/O2/O3/C6/C7 and N3/N4/O5/O6/C13/C14 planes form dihedral angles of 7.78 (13) and 7.01 (17)°, respectively, with the O1/C1–C4 and O4/C8–C11 planes. The dihedral angle between the two independent furan rings is 85.17 (11)°. The bond lengths and angles are comparable to those observed for methyl N'-[(E)-4-methoxybenzylidene]hydrazinecarboxylate (Shang et al., 2007).

In the crystal structure, the molecules are linked into chains running along the [010] by N—H···O and N—H···N hydrogen bonds (Table 1 and Fig.2). In addition, weak C—H···O interactions and an O4···C5 short contact [2.896 (3) Å] are also observed.

Related literature top

For general background, see: Parashar et al. (1988); Hadjoudis et al. (1987); Borg et al. (1999); Kahwa et al. (1986); Santos et al. (2001). For a related structure, see: Shang et al. (2007).

Experimental top

Furfuraldehyde (0.96 g, 0.01 mol) and methyl hydrazinecarboxylate (0.90 g, 0.01 mol) were dissolved in stirred methanol (20 ml) and left for 3 h at room temperature. The resulting solid was filtered off and recrystallized from ethanol to give the title compound in 85% yield. Single crystals suitable for X-ray analysis were obtained by slow evaporation of an ethanol solution at room temperature (m.p. 408–413 K).

Refinement top

H atoms were positioned geometrically (N—H = 0.86 Å and C—H = 0.93 or 0.96 Å) and refined using a riding model, with Uiso(H) = 1.2Ueq(C,N) and 1.5Ueq(Cmethyl). In the absence of significant anomalous scattering effects, Friedel pairs were averaged.

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 50% probability level. Dashed lines indicate hydrogen bonds.
[Figure 2] Fig. 2. Crystal packing of the title compound. Hydrogen bonds are shown as dashed lines.
(E)-Methyl N'-(2-furylmethylene)hydrazinecarboxylate top
Crystal data top
C7H8N2O3F(000) = 704
Mr = 168.15Dx = 1.313 Mg m3
Monoclinic, C2Mo Kα radiation, λ = 0.71073 Å
Hall symbol: C 2yCell parameters from 1601 reflections
a = 14.9185 (17) Åθ = 1.4–25.0°
b = 7.8124 (9) ŵ = 0.10 mm1
c = 15.1299 (19) ÅT = 193 K
β = 105.251 (7)°Block, colourless
V = 1701.3 (4) Å30.19 × 0.17 × 0.16 mm
Z = 8
Data collection top
Bruker SMART CCD area-detector
diffractometer
1601 independent reflections
Radiation source: fine-focus sealed tube1399 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
ϕ and ω scansθmax = 25.0°, θmin = 1.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 1717
Tmin = 0.978, Tmax = 0.982k = 98
4679 measured reflectionsl = 1716
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.031H-atom parameters constrained
wR(F2) = 0.085 w = 1/[σ2(Fo2) + (0.0464P)2 + 0.2178P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
1601 reflectionsΔρmax = 0.10 e Å3
218 parametersΔρmin = 0.09 e Å3
1 restraintExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0051 (9)
Crystal data top
C7H8N2O3V = 1701.3 (4) Å3
Mr = 168.15Z = 8
Monoclinic, C2Mo Kα radiation
a = 14.9185 (17) ŵ = 0.10 mm1
b = 7.8124 (9) ÅT = 193 K
c = 15.1299 (19) Å0.19 × 0.17 × 0.16 mm
β = 105.251 (7)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
1601 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
1399 reflections with I > 2σ(I)
Tmin = 0.978, Tmax = 0.982Rint = 0.020
4679 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0311 restraint
wR(F2) = 0.085H-atom parameters constrained
S = 1.07Δρmax = 0.10 e Å3
1601 reflectionsΔρmin = 0.09 e Å3
218 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6802 (2)0.5242 (5)0.0094 (2)0.0834 (9)
H10.69850.42410.03300.100*
C20.6239 (2)0.6570 (6)0.0595 (2)0.0971 (12)
H20.59690.65900.12230.117*
C30.6170 (2)0.7771 (6)0.0000 (2)0.1020 (12)
H30.58500.87970.01520.122*
C40.70165 (17)0.5730 (4)0.07936 (17)0.0617 (7)
C50.75360 (16)0.4883 (3)0.16066 (17)0.0583 (6)
H50.77690.37920.15610.070*
C60.83278 (17)0.5270 (4)0.39638 (18)0.0600 (6)
C70.8972 (3)0.4683 (6)0.5526 (2)0.1191 (15)
H7A0.92690.37730.59220.179*
H7B0.84110.50100.56810.179*
H7C0.93830.56480.56000.179*
C80.5302 (2)0.2842 (6)0.1389 (3)0.1233 (17)
H80.51390.38840.10930.148*
C90.4711 (2)0.1714 (5)0.1540 (3)0.0977 (11)
H90.40670.18010.13680.117*
C100.52379 (19)0.0344 (5)0.2012 (2)0.0786 (8)
H100.50060.06420.22160.094*
C110.61376 (17)0.0724 (3)0.21148 (18)0.0615 (7)
C120.69799 (17)0.0134 (3)0.25482 (16)0.0586 (6)
H120.69520.12480.27560.070*
C130.93793 (17)0.0282 (4)0.32608 (17)0.0609 (6)
C141.0967 (2)0.0296 (6)0.3959 (3)0.1240 (16)
H14A1.13510.11780.43070.186*
H14B1.10470.07430.43110.186*
H14C1.11430.01050.34000.186*
N10.76861 (13)0.5587 (3)0.23906 (14)0.0552 (5)
N20.81642 (15)0.4606 (3)0.31122 (14)0.0652 (6)
H2A0.83550.35970.30250.078*
N30.77726 (14)0.0577 (3)0.26606 (14)0.0596 (5)
N40.85235 (15)0.0392 (3)0.31071 (16)0.0692 (6)
H40.84470.14140.32860.083*
O10.66343 (14)0.7290 (3)0.08659 (13)0.0860 (7)
O20.81342 (12)0.6698 (2)0.41521 (12)0.0673 (5)
O30.87484 (17)0.4105 (3)0.45826 (13)0.0932 (7)
O40.61942 (13)0.2275 (3)0.17282 (18)0.1027 (8)
O50.95630 (12)0.1665 (2)0.30007 (12)0.0699 (5)
O60.99994 (13)0.0822 (3)0.37459 (16)0.0895 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0933 (19)0.090 (2)0.0653 (18)0.024 (2)0.0181 (15)0.0164 (18)
C20.090 (2)0.131 (3)0.0597 (19)0.034 (2)0.0009 (16)0.004 (2)
C30.097 (2)0.118 (3)0.080 (2)0.012 (2)0.0033 (18)0.024 (2)
C40.0599 (13)0.0630 (19)0.0627 (17)0.0120 (13)0.0170 (11)0.0070 (14)
C50.0606 (12)0.0503 (16)0.0669 (16)0.0080 (11)0.0217 (11)0.0033 (13)
C60.0688 (14)0.0525 (16)0.0598 (16)0.0034 (12)0.0191 (11)0.0131 (13)
C70.186 (4)0.101 (3)0.063 (2)0.045 (3)0.021 (2)0.022 (2)
C80.0559 (16)0.103 (3)0.200 (4)0.0057 (19)0.014 (2)0.072 (3)
C90.0562 (15)0.102 (3)0.129 (3)0.0063 (18)0.0139 (16)0.034 (3)
C100.0716 (16)0.0723 (18)0.088 (2)0.0234 (16)0.0139 (14)0.0125 (16)
C110.0673 (15)0.0484 (16)0.0684 (16)0.0082 (12)0.0168 (12)0.0072 (13)
C120.0711 (15)0.0428 (14)0.0618 (15)0.0042 (12)0.0172 (11)0.0016 (11)
C130.0668 (15)0.0493 (15)0.0629 (15)0.0061 (13)0.0108 (11)0.0055 (13)
C140.0683 (19)0.096 (3)0.185 (4)0.0045 (19)0.007 (2)0.036 (3)
N10.0628 (11)0.0452 (12)0.0577 (13)0.0017 (9)0.0159 (9)0.0039 (10)
N20.0882 (15)0.0433 (11)0.0659 (14)0.0111 (11)0.0237 (11)0.0071 (11)
N30.0637 (12)0.0448 (12)0.0693 (13)0.0024 (10)0.0158 (10)0.0078 (10)
N40.0663 (12)0.0437 (11)0.0940 (16)0.0038 (10)0.0148 (11)0.0182 (12)
O10.0971 (14)0.0878 (16)0.0700 (13)0.0182 (12)0.0162 (10)0.0062 (11)
O20.0868 (12)0.0485 (11)0.0639 (11)0.0061 (10)0.0154 (9)0.0031 (9)
O30.1460 (19)0.0685 (15)0.0641 (12)0.0357 (14)0.0256 (12)0.0230 (11)
O40.0575 (10)0.0748 (14)0.171 (2)0.0016 (10)0.0218 (12)0.0520 (15)
O50.0733 (10)0.0521 (11)0.0783 (12)0.0049 (10)0.0092 (9)0.0131 (10)
O60.0698 (11)0.0645 (14)0.1240 (17)0.0081 (10)0.0075 (11)0.0283 (13)
Geometric parameters (Å, º) top
C1—C41.351 (4)C8—H80.93
C1—C21.421 (6)C9—C101.406 (5)
C1—H10.93C9—H90.93
C2—C31.322 (6)C10—C111.343 (4)
C2—H20.93C10—H100.93
C3—O11.364 (4)C11—O41.357 (3)
C3—H30.93C11—C121.423 (3)
C4—O11.362 (4)C12—N31.277 (3)
C4—C51.432 (4)C12—H120.93
C5—N11.273 (3)C13—O51.206 (3)
C5—H50.93C13—O61.334 (3)
C6—O21.206 (4)C13—N41.344 (3)
C6—O31.337 (3)C14—O61.454 (4)
C6—N21.350 (3)C14—H14A0.96
C7—O31.450 (4)C14—H14B0.96
C7—H7A0.96C14—H14C0.96
C7—H7B0.96N1—N21.370 (3)
C7—H7C0.96N2—H2A0.86
C8—C91.309 (5)N3—N41.373 (3)
C8—O41.368 (4)N4—H40.86
C4—C1—C2106.0 (3)C11—C10—C9107.4 (3)
C4—C1—H1127.0C11—C10—H10126.3
C2—C1—H1127.0C9—C10—H10126.3
C3—C2—C1107.2 (3)C10—C11—O4108.7 (3)
C3—C2—H2126.4C10—C11—C12133.1 (3)
C1—C2—H2126.4O4—C11—C12118.1 (2)
C2—C3—O1110.3 (4)N3—C12—C11122.1 (2)
C2—C3—H3124.8N3—C12—H12119.0
O1—C3—H3124.8C11—C12—H12119.0
C1—C4—O1109.7 (3)O5—C13—O6125.1 (2)
C1—C4—C5131.0 (3)O5—C13—N4125.6 (2)
O1—C4—C5119.2 (2)O6—C13—N4109.4 (2)
N1—C5—C4121.6 (2)O6—C14—H14A109.5
N1—C5—H5119.2O6—C14—H14B109.5
C4—C5—H5119.2H14A—C14—H14B109.5
O2—C6—O3124.2 (3)O6—C14—H14C109.5
O2—C6—N2125.9 (2)H14A—C14—H14C109.5
O3—C6—N2109.9 (3)H14B—C14—H14C109.5
O3—C7—H7A109.5C5—N1—N2115.3 (2)
O3—C7—H7B109.5C6—N2—N1118.1 (2)
H7A—C7—H7B109.5C6—N2—H2A120.9
O3—C7—H7C109.5N1—N2—H2A120.9
H7A—C7—H7C109.5C12—N3—N4115.6 (2)
H7B—C7—H7C109.5C13—N4—N3118.9 (2)
C9—C8—O4110.5 (3)C13—N4—H4120.5
C9—C8—H8124.8N3—N4—H4120.5
O4—C8—H8124.8C4—O1—C3106.7 (3)
C8—C9—C10106.8 (3)C6—O3—C7114.9 (3)
C8—C9—H9126.6C11—O4—C8106.6 (2)
C10—C9—H9126.6C13—O6—C14116.3 (2)
C4—C1—C2—C31.7 (4)C5—N1—N2—C6178.6 (2)
C1—C2—C3—O11.6 (4)C11—C12—N3—N4178.7 (2)
C2—C1—C4—O11.1 (3)O5—C13—N4—N33.8 (4)
C2—C1—C4—C5177.6 (3)O6—C13—N4—N3176.4 (2)
C1—C4—C5—N1178.0 (3)C12—N3—N4—C13179.1 (2)
O1—C4—C5—N13.3 (3)C1—C4—O1—C30.2 (3)
O4—C8—C9—C100.8 (6)C5—C4—O1—C3178.8 (2)
C8—C9—C10—C110.6 (5)C2—C3—O1—C40.9 (4)
C9—C10—C11—O40.1 (4)O2—C6—O3—C70.4 (4)
C9—C10—C11—C12178.3 (3)N2—C6—O3—C7179.2 (3)
C10—C11—C12—N3171.0 (3)C10—C11—O4—C80.3 (4)
O4—C11—C12—N37.0 (4)C12—C11—O4—C8178.1 (3)
C4—C5—N1—N2177.8 (2)C9—C8—O4—C110.7 (5)
O2—C6—N2—N14.2 (4)O5—C13—O6—C140.8 (5)
O3—C6—N2—N1176.2 (2)N4—C13—O6—C14179.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O50.862.363.138 (3)151
N2—H2A···N30.862.523.242 (3)141
N4—H4···O2i0.862.112.913 (3)156
C2—H2···O5ii0.932.603.521 (4)172
C10—H10···O5iii0.932.593.508 (4)171
Symmetry codes: (i) x, y1, z; (ii) x+3/2, y+1/2, z; (iii) x1/2, y1/2, z.

Experimental details

Crystal data
Chemical formulaC7H8N2O3
Mr168.15
Crystal system, space groupMonoclinic, C2
Temperature (K)193
a, b, c (Å)14.9185 (17), 7.8124 (9), 15.1299 (19)
β (°) 105.251 (7)
V3)1701.3 (4)
Z8
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.19 × 0.17 × 0.16
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2002)
Tmin, Tmax0.978, 0.982
No. of measured, independent and
observed [I > 2σ(I)] reflections
4679, 1601, 1399
Rint0.020
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.085, 1.07
No. of reflections1601
No. of parameters218
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.10, 0.09

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O50.862.363.138 (3)151
N2—H2A···N30.862.523.242 (3)141
N4—H4···O2i0.862.112.913 (3)156
C2—H2···O5ii0.932.603.521 (4)172
C10—H10···O5iii0.932.593.508 (4)171
Symmetry codes: (i) x, y1, z; (ii) x+3/2, y+1/2, z; (iii) x1/2, y1/2, z.
 

Acknowledgements

The authors thank Hangzhou Vocational and Technical College, China, for financial support.

References

First citationBorg, S., Vollinga, R. C., Labarre, M., Payza, K., Terenius, L. & Luthman, K. (1999). J. Med. Chem. 42, 4331–4342.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2002). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHadjoudis, E., Vittorakis, M. & Moustakali-Mavridis, J. (1987). Tetrahedron, 43, 1345–1360.  CrossRef CAS Web of Science Google Scholar
First citationKahwa, I. A., Selbin, J., Hsieh, T. Y. & Laine, R. A. (1986). Inorg. Chim. Acta, 151, 201–208.  Google Scholar
First citationParashar, R. K., Sharma, R. C., Kumar, A. & Mohanm, G. (1988). Inorg. Chim. Acta, 151, 201–208.  CrossRef CAS Web of Science Google Scholar
First citationSantos, M. L. P., Bagatin, I. A., Pereira, E. M. & Ferreira, A. M. D. C. (2001). J. Chem. Soc. Dalton Trans. pp. 838–844.  Web of Science CrossRef Google Scholar
First citationShang, Z.-H., Zhang, H.-L. & Ding, Y. (2007). Acta Cryst. E63, o3394.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds