organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-Cyclo­hexyl-3-fluoro­benzamide

aDepartment of Chemistry, Quaid-I-Azam University, Islamabad 45320, Pakistan, and bDepartment Chemie, Fakultät für Naturwissenschaften, Universität Paderborn, Warburgerstrasse 100, D-33098 Paderborn, Germany
*Correspondence e-mail: aamersaeed@yahoo.com

(Received 15 October 2008; accepted 22 October 2008; online 25 October 2008)

In the title mol­ecule, C13H16FNO, the amide (N—C=O) plane is oriented at an angle of 29.9 (2)° with respect to the aromatic ring. The cyclo­hexane ring adopts the usual chair conformation. In the crystal structure, inter­molecular N—H⋯O hydrogen bonds link the mol­ecules into chains along [100]. A weak C—H⋯F inter­action is also observed. The F atom is disordered over two positions with occupancy factors of 0.873 (3) and 0.127 (3).

Related literature

For related structures, see: Chopra & Guru Row (2005[Chopra, D. & Guru Row, T. N. (2005). Cryst. Growth Des. 5, 1679-1681.]); Saeed et al. (2008a[Saeed, A., Abbas, N., Hussain, S. & Flörke, U. (2008a). Acta Cryst. E64, o773.],b[Saeed, A., Khera, R. A., Batool, M., Shaheen, U. & Flörke, U. (2008b). Acta Cryst. E64, o1625.]).

[Scheme 1]

Experimental

Crystal data
  • C13H16FNO

  • Mr = 221.27

  • Monoclinic, P 21

  • a = 5.267 (3) Å

  • b = 6.599 (4) Å

  • c = 16.755 (9) Å

  • β = 90.090 (17)°

  • V = 582.4 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 120 (2) K

  • 0.45 × 0.40 × 0.21 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.962, Tmax = 0.978

  • 5071 measured reflections

  • 1492 independent reflections

  • 1420 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.098

  • S = 1.05

  • 1492 reflections

  • 150 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1i 0.88 2.25 3.050 (2) 152
C5—H5A⋯F1ii 0.95 2.58 3.310 (3) 134
Symmetry codes: (i) x+1, y, z; (ii) [-x+2, y+{\script{1\over 2}}, -z+1].

Data collection: SMART (Bruker, 2002[Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The background to this study has been described in an earlier paper (Saeed et al., 2008b).

The molecular structure of the title compound is related to that of the 2,4-dichloro compound (Saeed et al., 2008a). The cyclohexane ring is in the most stable chair conformation. In general, bond lengths and angles are within normal ranges. The aromatic ring C2–C7 is oriented with respect to the N1/O1/C1 plane at a dihedral angle of 29.9 (2)°. The N1–C1–C2–C7 torsion angle is 150.37 (15)°, for the reported dichloro compound the corresponding angle is 130.16 (18)°.

In the crystal structure, intermolecular N—H···O hydrogen bonds (Table 1) link the molecules into infinite chains along the [100] direction (Fig. 2), in which they may be effective in the stabilization of the structure. Another intermolecular interaction is C—H···F (Table 1), as found in 4-fluoro-N-(2-fluorophenyl)benzamide (Chopra & Row, 2005).

Related literature top

For related structures, see: Chopra & Row (2005); Saeed et al. (2008a,b).

Experimental top

3,5-Difluorobenzoyl chloride (5.4 mmol) in CHCl3 was treated with cyclohexylamine (21.6 mmol) under a nitrogen atmosphere at reflux for 4 h. Upon cooling, the reaction mixture was diluted with CHCl3 and washed consecutively with aq 1 M HCl and saturated aq NaHCO3. The organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure. Crystallization of the residue in CHCl3 afforded the title compound (84%). Analysis calculated for C13H15F2NO: C 65.26, H 6.32, N 5.85%; found: C 65.31, H 6.39, N 5.77%.

Refinement top

The F atom is disordered over two positions (F1 and F2) with site occupation factors of 0.873 (3) for F1 and 0.127 (3) for F2. H atoms were initially located in difference syntheses, but were then included in the refinement, at calculated positions, in the riding-model approximation, with N—H = 0.88 Å and C—H = 0.95–1.00 Å. The isotropic displacement parameters were set equal to 1.2Ueq of the carrier atom. In the absence of significant anomalous scattering effects, the Friedel pairs were merged.

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of title compound, showing the rotational disorder of the fluorophenyl ring. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Crystal packing viewed along [100] with intermolecular N–H···O hydrogen bonding pattern indicated as dashed lines. H-atoms not involved in hydrogen bonding are omitted.
N-Cyclohexyl-3-fluorobenzamide top
Crystal data top
C13H16FNOF(000) = 236
Mr = 221.27Dx = 1.262 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 796 reflections
a = 5.267 (3) Åθ = 2.4–28.3°
b = 6.599 (4) ŵ = 0.09 mm1
c = 16.755 (9) ÅT = 120 K
β = 90.090 (17)°Prism, colourless
V = 582.4 (6) Å30.45 × 0.40 × 0.21 mm
Z = 2
Data collection top
Bruker SMART APEX
diffractometer
1492 independent reflections
Radiation source: sealed tube1420 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
ϕ and ω scansθmax = 27.9°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 66
Tmin = 0.962, Tmax = 0.978k = 88
5071 measured reflectionsl = 2219
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: difference Fourier map
wR(F2) = 0.098H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0686P)2 + 0.0394P]
where P = (Fo2 + 2Fc2)/3
1492 reflections(Δ/σ)max = 0.001
150 parametersΔρmax = 0.25 e Å3
1 restraintΔρmin = 0.17 e Å3
Crystal data top
C13H16FNOV = 582.4 (6) Å3
Mr = 221.27Z = 2
Monoclinic, P21Mo Kα radiation
a = 5.267 (3) ŵ = 0.09 mm1
b = 6.599 (4) ÅT = 120 K
c = 16.755 (9) Å0.45 × 0.40 × 0.21 mm
β = 90.090 (17)°
Data collection top
Bruker SMART APEX
diffractometer
1492 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
1420 reflections with I > 2σ(I)
Tmin = 0.962, Tmax = 0.978Rint = 0.034
5071 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0351 restraint
wR(F2) = 0.098H-atom parameters constrained
S = 1.05Δρmax = 0.25 e Å3
1492 reflectionsΔρmin = 0.17 e Å3
150 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
F10.9633 (3)0.6562 (2)0.49344 (8)0.0376 (4)0.873 (3)
F20.249 (2)0.9837 (17)0.3846 (6)0.043 (3)*0.127 (3)
O10.2561 (2)0.2922 (2)0.25636 (8)0.0316 (3)
N10.6841 (3)0.2208 (2)0.25218 (8)0.0206 (3)
H1A0.83560.25050.27100.025*
C10.4794 (3)0.3278 (2)0.27778 (10)0.0208 (3)
C20.5341 (3)0.5002 (2)0.33504 (9)0.0198 (3)
C30.7409 (3)0.4971 (3)0.38818 (10)0.0229 (3)
H3A0.85560.38600.38940.027*
C40.7720 (3)0.6615 (3)0.43877 (10)0.0269 (4)
H4A0.90800.65910.47600.032*0.127 (3)
C50.6128 (4)0.8300 (3)0.43745 (10)0.0288 (4)
H5A0.64190.94160.47210.035*
C60.4084 (4)0.8306 (3)0.38366 (11)0.0295 (4)
H6A0.29730.94390.38170.035*0.873 (3)
C70.3671 (3)0.6659 (3)0.33314 (10)0.0253 (4)
H7A0.22650.66580.29760.030*
C80.6571 (3)0.0567 (2)0.19365 (9)0.0195 (3)
H8A0.48530.00540.20030.023*
C90.6786 (4)0.1391 (3)0.10784 (10)0.0275 (4)
H9A0.54310.24030.09840.033*
H9B0.84450.20740.10110.033*
C100.6542 (4)0.0336 (3)0.04667 (10)0.0299 (4)
H10A0.48130.09200.04970.036*
H10B0.67810.02160.00780.036*
C110.8501 (4)0.2007 (3)0.06182 (11)0.0291 (4)
H11A1.02280.14660.05240.035*
H11B0.82120.31360.02400.035*
C120.8313 (4)0.2802 (3)0.14799 (11)0.0272 (4)
H12A0.66530.34800.15550.033*
H12B0.96640.38180.15730.033*
C130.8582 (3)0.1078 (3)0.20882 (11)0.0232 (3)
H13A1.02990.04760.20470.028*
H13B0.83790.16240.26350.028*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0405 (8)0.0402 (7)0.0322 (7)0.0017 (6)0.0107 (5)0.0067 (6)
O10.0177 (6)0.0310 (7)0.0460 (8)0.0009 (5)0.0028 (5)0.0113 (6)
N10.0172 (6)0.0198 (6)0.0247 (7)0.0003 (5)0.0015 (5)0.0024 (5)
C10.0197 (8)0.0181 (7)0.0246 (7)0.0002 (6)0.0004 (6)0.0004 (6)
C20.0197 (8)0.0180 (7)0.0217 (7)0.0015 (6)0.0045 (6)0.0002 (6)
C30.0231 (8)0.0221 (7)0.0235 (7)0.0014 (6)0.0018 (6)0.0010 (6)
C40.0270 (9)0.0306 (9)0.0229 (8)0.0040 (7)0.0018 (6)0.0012 (7)
C50.0314 (9)0.0259 (9)0.0292 (8)0.0041 (7)0.0075 (7)0.0081 (8)
C60.0268 (9)0.0233 (8)0.0385 (9)0.0044 (7)0.0076 (7)0.0052 (8)
C70.0214 (8)0.0253 (8)0.0293 (8)0.0023 (7)0.0013 (6)0.0015 (7)
C80.0169 (7)0.0173 (7)0.0243 (8)0.0005 (6)0.0003 (6)0.0017 (6)
C90.0376 (10)0.0205 (8)0.0242 (8)0.0018 (7)0.0026 (7)0.0000 (6)
C100.0367 (10)0.0281 (9)0.0250 (8)0.0007 (8)0.0034 (7)0.0043 (7)
C110.0290 (9)0.0249 (8)0.0334 (9)0.0032 (8)0.0051 (7)0.0085 (8)
C120.0284 (9)0.0177 (8)0.0356 (9)0.0023 (7)0.0016 (7)0.0027 (7)
C130.0221 (8)0.0192 (8)0.0285 (8)0.0014 (6)0.0010 (6)0.0003 (6)
Geometric parameters (Å, º) top
F1—C41.361 (2)C8—C131.538 (2)
F2—C61.315 (11)C8—C91.541 (2)
O1—C11.252 (2)C8—H8A1.00
N1—C11.359 (2)C9—C101.538 (2)
N1—C81.468 (2)C9—H9A0.99
N1—H1A0.88C9—H9B0.99
C1—C21.515 (2)C10—C111.531 (3)
C2—C71.404 (2)C10—H10A0.99
C2—C31.406 (2)C10—H10B0.99
C3—C41.386 (3)C11—C121.540 (3)
C3—H3A0.95C11—H11A0.99
C4—C51.393 (3)C11—H11B0.99
C4—H4A0.95C12—C131.534 (2)
C5—C61.403 (3)C12—H12A0.99
C5—H5A0.95C12—H12B0.99
C6—C71.394 (3)C13—H13A0.99
C6—H6A0.95C13—H13B0.99
C7—H7A0.95
C1—N1—C8121.23 (14)C13—C8—H8A108.4
C1—N1—H1A119.4C9—C8—H8A108.4
C8—N1—H1A119.4C10—C9—C8110.76 (15)
O1—C1—N1123.89 (15)C10—C9—H9A109.5
O1—C1—C2120.02 (14)C8—C9—H9A109.5
N1—C1—C2116.09 (14)C10—C9—H9B109.5
C7—C2—C3120.72 (15)C8—C9—H9B109.5
C7—C2—C1116.85 (14)H9A—C9—H9B108.1
C3—C2—C1122.42 (15)C11—C10—C9111.55 (14)
C4—C3—C2117.78 (16)C11—C10—H10A109.3
C4—C3—H3A121.1C9—C10—H10A109.3
C2—C3—H3A121.1C11—C10—H10B109.3
F1—C4—C3118.55 (17)C9—C10—H10B109.3
F1—C4—C5118.43 (16)H10A—C10—H10B108.0
C3—C4—C5123.00 (16)C10—C11—C12110.90 (15)
C3—C4—H4A118.5C10—C11—H11A109.5
C5—C4—H4A118.5C12—C11—H11A109.5
C4—C5—C6118.30 (16)C10—C11—H11B109.5
C4—C5—H5A120.9C12—C11—H11B109.5
C6—C5—H5A120.9H11A—C11—H11B108.0
F2—C6—C7120.5 (5)C13—C12—C11111.33 (15)
F2—C6—C5119.0 (5)C13—C12—H12A109.4
C7—C6—C5120.42 (16)C11—C12—H12A109.4
C7—C6—H6A119.8C13—C12—H12B109.4
C5—C6—H6A119.8C11—C12—H12B109.4
C6—C7—C2119.75 (15)H12A—C12—H12B108.0
C6—C7—H7A120.1C12—C13—C8110.55 (13)
C2—C7—H7A120.1C12—C13—H13A109.5
N1—C8—C13110.16 (13)C8—C13—H13A109.5
N1—C8—C9110.86 (13)C12—C13—H13B109.5
C13—C8—C9110.58 (13)C8—C13—H13B109.5
N1—C8—H8A108.4H13A—C13—H13B108.1
C8—N1—C1—O12.5 (2)F2—C6—C7—C2177.6 (5)
C8—N1—C1—C2177.01 (13)C5—C6—C7—C21.2 (3)
O1—C1—C2—C729.1 (2)C3—C2—C7—C60.9 (2)
N1—C1—C2—C7150.37 (15)C1—C2—C7—C6179.27 (15)
O1—C1—C2—C3150.71 (16)C1—N1—C8—C13148.28 (15)
N1—C1—C2—C329.8 (2)C1—N1—C8—C989.00 (18)
C7—C2—C3—C40.6 (2)N1—C8—C9—C10179.17 (14)
C1—C2—C3—C4179.20 (14)C13—C8—C9—C1056.69 (18)
C2—C3—C4—F1176.62 (15)C8—C9—C10—C1155.8 (2)
C2—C3—C4—C51.9 (3)C9—C10—C11—C1255.0 (2)
F1—C4—C5—C6176.95 (16)C10—C11—C12—C1355.56 (19)
C3—C4—C5—C61.6 (3)C11—C12—C13—C856.76 (19)
C4—C5—C6—F2176.4 (6)N1—C8—C13—C12179.90 (13)
C4—C5—C6—C70.1 (3)C9—C8—C13—C1257.21 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.882.253.050 (2)152
C5—H5A···F1ii0.952.583.310 (3)134
Symmetry codes: (i) x+1, y, z; (ii) x+2, y+1/2, z+1.

Experimental details

Crystal data
Chemical formulaC13H16FNO
Mr221.27
Crystal system, space groupMonoclinic, P21
Temperature (K)120
a, b, c (Å)5.267 (3), 6.599 (4), 16.755 (9)
β (°) 90.090 (17)
V3)582.4 (6)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.45 × 0.40 × 0.21
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.962, 0.978
No. of measured, independent and
observed [I > 2σ(I)] reflections
5071, 1492, 1420
Rint0.034
(sin θ/λ)max1)0.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.098, 1.05
No. of reflections1492
No. of parameters150
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.17

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.882.253.050 (2)152
C5—H5A···F1ii0.952.583.310 (3)134
Symmetry codes: (i) x+1, y, z; (ii) x+2, y+1/2, z+1.
 

Acknowledgements

NA is grateful to the Higher Education Commission of Pakistan for financial support for a PhD programme.

References

First citationBruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChopra, D. & Guru Row, T. N. (2005). Cryst. Growth Des. 5, 1679–1681.  Web of Science CSD CrossRef CAS Google Scholar
First citationSaeed, A., Abbas, N., Hussain, S. & Flörke, U. (2008a). Acta Cryst. E64, o773.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSaeed, A., Khera, R. A., Batool, M., Shaheen, U. & Flörke, U. (2008b). Acta Cryst. E64, o1625.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds