metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2,9-Di­methyl-1,10-phenanthroline-κ2N,N′)(4-hy­droxy­benzoato-κ2O,O′)(nitrato-κO)copper(II)

aCollege of Chemistry and Chemical Engineering, Henan University, Kaifeng 475001, People's Republic of China, bDepartment of Chemistry and Chemical Engineering, Huanghuai University, Zhumadian 463000, People's Republic of China, and cCollege of Chemistry and Environmental Science, Henan Normal University, Xinxiang 453007, People's Republic of China
*Correspondence e-mail: pz_zhao@hotmail.com

(Received 19 October 2008; accepted 24 October 2008; online 31 October 2008)

In the title compound, [Cu(C7H5O3)(NO3)(C14H12N2)], the CuII ion is five-coordinated in a slightly distorted square-pyramidal geometry by one O atom of a nitrate anion, two O atoms of a 4-hydroxy­benzoate anion, and two N atoms from a bidentate 2,9-dimethyl-1,10-phenanthroline (dmphen) ligand. In the crystal structure, inversion-related mol­ecules are linked into dimers by O—H⋯O hydrogen bonds. The packing is further stabilized by ππ inter­actions involving the benzene rings of the dmphen and hydroxy­benzoate units, with centroid–centroid distances of 3.4930 (14) or 3.5727 (14) Å.

Related literature

For related structures, see: Xuan et al. (2007[Xuan, X.-P., Zhao, P.-Z. & Zhang, S.-X. (2007). Acta Cryst. E63, m1817.]); Zhao et al. (2007[Zhao, P.-Z., Yan, F.-M., Xuan, X.-P. & Tang, Q.-H. (2007). Acta Cryst. E63, m2523.]); Okabe et al. (2007[Okabe, N., Tsuji, A. & Yodoshi, M. (2007). Acta Cryst. E63, m1756-m1757.]). For general background, see: Selvakumar et al. (2006[Selvakumar, B., Rajendiran, V., Maheswari, P. U., Stoeckli-Evans, H. & Palaniandavar, M. (2006). J. Inorg. Biochem. 100, 316-330.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C7H5O3)(NO3)(C14H12N2)]

  • Mr = 470.92

  • Triclinic, [P \overline 1]

  • a = 9.594 (1) Å

  • b = 9.802 (1) Å

  • c = 12.347 (1) Å

  • α = 78.687 (14)°

  • β = 70.409 (13)°

  • γ = 63.740 (12)°

  • V = 979.4 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.16 mm−1

  • T = 291 (2) K

  • 0.37 × 0.30 × 0.17 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.673, Tmax = 0.830

  • 7393 measured reflections

  • 3613 independent reflections

  • 3129 reflections with I > 2σ(I)

  • Rint = 0.016

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.082

  • S = 1.02

  • 3613 reflections

  • 283 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Selected bond lengths (Å)

Cu1—O1 2.004 (3)
Cu1—N1 2.007 (3)
Cu1—N2 2.008 (3)
Cu1—O2 2.026 (2)
Cu1—O4 2.292 (3)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O4i 0.82 1.97 2.767 (4) 164
Symmetry code: (i) -x, -y+1, -z+1.

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The construction of novel CuII complexes are important for the development of new therapeutic drug design because of their antitumor activity (Selvakumar et al., 2006). A number of CuII complexes have been synthesized and their crystal structures have been reported (Okabe et al., 2007; Xuan et al.,2007; Zhao et al., 2007). The title compound was recently obtained from the reaction of copper nitrate, sodium 4-hydroxybenzoate and dmphen in an ethanol-water mixture, and its crystal structure is reported here (Fig.1).

The CuII atom lies in a slightly distorted square-pyramidal coordination environment with one nitrate anion coordinated in the apical position. A bidentate 4-hydroxybenzoate anion binds to the CuII atom as a chelate through two oxygen atoms of the carboxylate group, together with two N atoms of the dmphen, constitute the base of the pyramid. The corresponding bond lengths are listed in Table 1.

In the crystal structure, inversion related molecules are linked into a dimer by O—H···O hydrogen bonds (Fig. 2). The packing is further stabilized by π-π interactions involving the benzene rings of the dmphen (C5-C8/C13/C14; centroid Cg1) and hydroxybenzoate (C16-C21; centroid Cg2) ligands (Fig. 2). The Cg1···Cg1ii and Cg1···Cg2iii distances are 3.4930 (14) Å and 3.5727 (14) Å, respectively [symmetry codes: (ii) 1 - x,-y,1 - z; (iii) 2-x, -y, -z]. This combination of hydrogen bonds and stacking interactions builds a three-dimensional network architecture.

Related literature top

For related structures, see: Xuan et al. (2007); Zhao et al. (2007); Okabe et al. (2007). For general background, see: Selvakumar et al. (2006).

Experimental top

4-Hydroxybenzoic acid (0.1389 g, 1 mmol) and NaOH (0.0380 g, 1 mmol) were dissolved in distilled water (10 ml) and 10 ml of Cu(NO3)2.3H2O (0.1220 g, 1 mmol) was added. This solution was added to a solution of 2,9-dimethyl-1,10-phenanthroline hemihydrate (C14H12N2.0.5H2O, 0.1088 g, 0.5 mmol) in ethanol (10 ml). The mixture was stirred at 323 K and then refluxed for 5 h, cooled to room temperature and filtered. Green single crystals of the title compound appeared over a period of two weeks by slow evaporation at room temperature.

Refinement top

Methyl and hydroxy H atoms were placed in calculated positions, with C-H = 0.96 Å and O-H = 0.82 %A, and refined with free torsion angles to fit the electron density; Uiso(H) = 1.5Ueq(carrier). Other H atoms were placed in calculated positions, with C-H = 0.93 %A, and refined using the riding-model approximation with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title complex, with atom labels and 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. The hydrogen-bonding motifs, and π-π interactions between the aromatic rings of neighboring molecules in the crystal structure of the title compound. Dashed lines indicate the hydrogen bonds.
(2,9-Dimethyl-1,10-phenanthroline-κ2N,N')(4-hydroxybenzoato- κ2O,O')(nitrato-κO)copper(II) top
Crystal data top
[Cu(C7H5O3)(NO3)(C14H12N2)]Z = 2
Mr = 470.92F(000) = 482
Triclinic, P1Dx = 1.597 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.594 (1) ÅCell parameters from 3492 reflections
b = 9.802 (1) Åθ = 2.5–26.8°
c = 12.347 (1) ŵ = 1.16 mm1
α = 78.687 (14)°T = 291 K
β = 70.409 (13)°Block, green
γ = 63.740 (12)°0.37 × 0.30 × 0.17 mm
V = 979.4 (2) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
3613 independent reflections
Radiation source: fine-focus sealed tube3129 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.016
ϕ and ω scansθmax = 25.5°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
h = 1111
Tmin = 0.673, Tmax = 0.830k = 1111
7393 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.082H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0426P)2 + 0.3425P]
where P = (Fo2 + 2Fc2)/3
3613 reflections(Δ/σ)max = 0.001
283 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
[Cu(C7H5O3)(NO3)(C14H12N2)]γ = 63.740 (12)°
Mr = 470.92V = 979.4 (2) Å3
Triclinic, P1Z = 2
a = 9.594 (1) ÅMo Kα radiation
b = 9.802 (1) ŵ = 1.16 mm1
c = 12.347 (1) ÅT = 291 K
α = 78.687 (14)°0.37 × 0.30 × 0.17 mm
β = 70.409 (13)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3613 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
3129 reflections with I > 2σ(I)
Tmin = 0.673, Tmax = 0.830Rint = 0.016
7393 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.082H-atom parameters constrained
S = 1.03Δρmax = 0.29 e Å3
3613 reflectionsΔρmin = 0.28 e Å3
283 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)

are estimated using the full covariance matrix. The cell e.s.d.'s are taken

into account individually in the estimation of e.s.d.'s in distances, angles

and torsion angles; correlations between e.s.d.'s in cell parameters are only

used when they are defined by crystal symmetry. An approximate (isotropic)

treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and

goodness of fit S are based on F2, conventional R-factors R are based

on F, with F set to zero for negative F2. The threshold expression of

F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is

not relevant to the choice of reflections for refinement. R-factors based

on F2 are statistically about twice as large as those based on F, and R-

factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.56944 (3)0.10556 (3)0.31286 (2)0.04415 (11)
O10.3621 (2)0.0772 (2)0.38002 (17)0.0671 (5)
O20.4119 (2)0.2318 (2)0.44919 (15)0.0621 (5)
O30.33023 (19)0.4060 (2)0.72945 (16)0.0582 (4)
H30.35410.48630.75610.087*
O40.4677 (2)0.3057 (2)0.18943 (16)0.0622 (5)
O50.4474 (2)0.1655 (2)0.08484 (18)0.0701 (5)
O60.3103 (3)0.4068 (3)0.0818 (2)0.1043 (9)
N10.7212 (2)0.0741 (2)0.21653 (16)0.0421 (4)
N20.7676 (2)0.1464 (2)0.28006 (16)0.0422 (4)
N30.4092 (2)0.2916 (2)0.11642 (18)0.0504 (5)
C10.5285 (3)0.1813 (3)0.2297 (3)0.0715 (8)
H1A0.50380.20400.31140.107*
H1B0.52490.25690.19290.107*
H1C0.45030.08270.21330.107*
C20.6932 (3)0.1819 (3)0.1857 (2)0.0510 (6)
C30.8195 (4)0.2957 (3)0.1132 (2)0.0641 (7)
H3A0.79830.36900.09200.077*
C40.9713 (3)0.3004 (3)0.0738 (2)0.0625 (7)
H41.05370.37740.02700.075*
C51.0041 (3)0.1884 (3)0.10370 (19)0.0496 (6)
C61.1587 (3)0.1807 (3)0.0638 (2)0.0602 (7)
H61.24520.25420.01600.072*
C71.1814 (3)0.0682 (3)0.0943 (2)0.0598 (7)
H71.28280.06480.06660.072*
C81.0515 (3)0.0449 (3)0.1683 (2)0.0498 (6)
C91.0668 (3)0.1644 (4)0.2035 (2)0.0643 (7)
H91.16590.17240.17870.077*
C100.9371 (3)0.2677 (4)0.2736 (3)0.0665 (7)
H100.94850.34630.29640.080*
C110.7859 (3)0.2593 (3)0.3126 (2)0.0522 (6)
C120.6441 (3)0.3759 (3)0.3901 (3)0.0737 (8)
H12A0.56060.43080.35230.111*
H12B0.67810.44560.40750.111*
H12C0.60300.32580.46020.111*
C130.8981 (2)0.0411 (3)0.20915 (18)0.0406 (5)
C140.8733 (3)0.0774 (2)0.17599 (18)0.0410 (5)
C150.3136 (3)0.1778 (3)0.4508 (2)0.0473 (5)
C160.1466 (3)0.2347 (3)0.52814 (18)0.0417 (5)
C170.0886 (3)0.3593 (3)0.59319 (19)0.0470 (5)
H170.15760.40370.59090.056*
C180.0697 (3)0.4184 (3)0.6611 (2)0.0468 (5)
H180.10690.50200.70410.056*
C190.1735 (3)0.3527 (3)0.66513 (19)0.0431 (5)
C200.1163 (3)0.2265 (3)0.6021 (2)0.0496 (6)
H200.18450.18060.60600.060*
C210.0425 (3)0.1690 (3)0.5334 (2)0.0481 (5)
H210.07980.08550.49030.058*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.03013 (15)0.04953 (18)0.05171 (18)0.01577 (12)0.00692 (11)0.00997 (12)
O10.0446 (9)0.0701 (12)0.0827 (13)0.0273 (9)0.0080 (9)0.0326 (10)
O20.0428 (9)0.0921 (14)0.0585 (10)0.0370 (9)0.0016 (8)0.0242 (9)
O30.0380 (9)0.0583 (11)0.0737 (12)0.0203 (8)0.0022 (8)0.0164 (9)
O40.0612 (11)0.0592 (11)0.0719 (12)0.0204 (9)0.0303 (10)0.0054 (9)
O50.0574 (11)0.0630 (12)0.0845 (14)0.0193 (9)0.0084 (10)0.0260 (10)
O60.1100 (19)0.0705 (14)0.129 (2)0.0055 (13)0.0824 (17)0.0155 (14)
N10.0362 (9)0.0428 (10)0.0467 (10)0.0140 (8)0.0142 (8)0.0023 (8)
N20.0334 (9)0.0479 (10)0.0472 (10)0.0164 (8)0.0136 (8)0.0037 (8)
N30.0319 (10)0.0550 (13)0.0567 (12)0.0123 (9)0.0060 (9)0.0118 (10)
C10.0650 (17)0.0609 (17)0.105 (2)0.0342 (14)0.0248 (16)0.0169 (16)
C20.0521 (14)0.0424 (13)0.0617 (15)0.0162 (11)0.0243 (12)0.0028 (11)
C30.0733 (19)0.0473 (14)0.0741 (18)0.0150 (13)0.0308 (15)0.0147 (13)
C40.0585 (16)0.0519 (15)0.0574 (16)0.0012 (12)0.0186 (13)0.0148 (12)
C50.0440 (13)0.0516 (14)0.0397 (12)0.0069 (10)0.0137 (10)0.0015 (10)
C60.0371 (13)0.0738 (18)0.0433 (14)0.0045 (12)0.0047 (10)0.0027 (12)
C70.0319 (12)0.0829 (19)0.0499 (14)0.0182 (12)0.0061 (10)0.0056 (13)
C80.0356 (12)0.0675 (16)0.0433 (13)0.0215 (11)0.0122 (10)0.0063 (11)
C90.0444 (14)0.091 (2)0.0704 (18)0.0419 (14)0.0157 (13)0.0026 (15)
C100.0567 (16)0.0772 (19)0.084 (2)0.0401 (15)0.0211 (15)0.0098 (16)
C110.0445 (13)0.0579 (15)0.0634 (15)0.0236 (11)0.0204 (11)0.0074 (12)
C120.0550 (16)0.0690 (18)0.106 (2)0.0223 (14)0.0214 (16)0.0340 (17)
C130.0326 (11)0.0506 (13)0.0363 (11)0.0159 (9)0.0120 (9)0.0038 (9)
C140.0344 (11)0.0448 (12)0.0385 (11)0.0107 (9)0.0139 (9)0.0021 (9)
C150.0407 (12)0.0554 (14)0.0438 (13)0.0203 (11)0.0092 (10)0.0012 (11)
C160.0388 (11)0.0499 (13)0.0374 (11)0.0214 (10)0.0092 (9)0.0005 (10)
C170.0432 (12)0.0598 (14)0.0459 (13)0.0306 (11)0.0088 (10)0.0033 (11)
C180.0475 (13)0.0489 (13)0.0458 (13)0.0230 (11)0.0068 (10)0.0093 (10)
C190.0355 (11)0.0477 (12)0.0433 (12)0.0172 (10)0.0091 (9)0.0003 (10)
C200.0418 (12)0.0523 (14)0.0610 (15)0.0259 (11)0.0104 (11)0.0073 (11)
C210.0455 (13)0.0465 (13)0.0517 (14)0.0198 (10)0.0073 (10)0.0105 (10)
Geometric parameters (Å, º) top
Cu1—O12.004 (3)C5—C61.429 (4)
Cu1—N12.007 (3)C6—C71.356 (4)
Cu1—N22.008 (3)C6—H60.93
Cu1—O22.026 (2)C7—C81.425 (4)
Cu1—O42.292 (3)C7—H70.93
Cu1—C152.357 (3)C8—C131.402 (4)
O1—C151.269 (3)C8—C91.406 (4)
O2—C151.264 (3)C9—C101.352 (4)
O3—C191.353 (3)C9—H90.93
O3—H30.82C10—C111.402 (4)
O4—N31.266 (3)C10—H100.93
O5—N31.228 (3)C11—C121.501 (4)
O6—N31.221 (3)C12—H12A0.96
N1—C21.346 (3)C12—H12B0.96
N1—C141.363 (3)C12—H12C0.96
N2—C111.345 (3)C13—C141.438 (3)
N2—C131.370 (3)C15—C161.478 (3)
C1—C21.486 (4)C16—C211.387 (3)
C1—H1A0.96C16—C171.390 (3)
C1—H1B0.96C17—C181.380 (3)
C1—H1C0.96C17—H170.93
C2—C31.408 (4)C18—C191.390 (3)
C3—C41.354 (4)C18—H180.93
C3—H3A0.93C19—C201.388 (4)
C4—C51.409 (4)C20—C211.386 (3)
C4—H40.93C20—H200.93
C5—C141.406 (3)C21—H210.93
O1—Cu1—N1105.07 (10)C6—C7—H7119.7
O1—Cu1—N2167.57 (8)C8—C7—H7119.7
N1—Cu1—N284.14 (10)C13—C8—C9116.6 (2)
O1—Cu1—O264.92 (9)C13—C8—C7119.8 (2)
N1—Cu1—O2161.37 (8)C9—C8—C7123.6 (2)
N2—Cu1—O2103.84 (9)C10—C9—C8119.9 (2)
O1—Cu1—O494.09 (10)C10—C9—H9120.1
N1—Cu1—O4106.75 (12)C8—C9—H9120.1
N2—Cu1—O491.11 (10)C9—C10—C11121.6 (3)
O2—Cu1—O490.11 (12)C9—C10—H10119.2
O1—Cu1—C1532.57 (9)C11—C10—H10119.2
N1—Cu1—C15136.29 (9)N2—C11—C10119.8 (2)
N2—Cu1—C15136.17 (10)N2—C11—C12119.8 (2)
O2—Cu1—C1532.40 (8)C10—C11—C12120.3 (2)
O4—Cu1—C1591.14 (10)C11—C12—H12A109.5
C15—O1—Cu189.23 (15)C11—C12—H12B109.5
C15—O2—Cu188.38 (16)H12A—C12—H12B109.5
C19—O3—H3109.5C11—C12—H12C109.5
N3—O4—Cu1121.09 (17)H12A—C12—H12C109.5
C2—N1—C14118.7 (2)H12B—C12—H12C109.5
C2—N1—Cu1130.40 (18)N2—C13—C8123.0 (2)
C14—N1—Cu1110.83 (15)N2—C13—C14117.3 (2)
C11—N2—C13119.1 (2)C8—C13—C14119.7 (2)
C11—N2—Cu1130.43 (16)N1—C14—C5123.5 (2)
C13—N2—Cu1110.44 (16)N1—C14—C13117.20 (19)
O6—N3—O5121.6 (2)C5—C14—C13119.3 (2)
O6—N3—O4117.7 (2)O2—C15—O1117.3 (2)
O5—N3—O4120.7 (2)O2—C15—C16121.2 (2)
C2—C1—H1A109.5O1—C15—C16121.4 (2)
C2—C1—H1B109.5O2—C15—Cu159.23 (14)
H1A—C1—H1B109.5O1—C15—Cu158.19 (13)
C2—C1—H1C109.5C16—C15—Cu1174.09 (17)
H1A—C1—H1C109.5C21—C16—C17118.8 (2)
H1B—C1—H1C109.5C21—C16—C15120.6 (2)
N1—C2—C3120.2 (2)C17—C16—C15120.5 (2)
N1—C2—C1119.6 (2)C18—C17—C16121.1 (2)
C3—C2—C1120.1 (2)C18—C17—H17119.5
C4—C3—C2121.3 (3)C16—C17—H17119.5
C4—C3—H3A119.4C17—C18—C19119.8 (2)
C2—C3—H3A119.4C17—C18—H18120.1
C3—C4—C5119.8 (2)C19—C18—H18120.1
C3—C4—H4120.1O3—C19—C20117.7 (2)
C5—C4—H4120.1O3—C19—C18122.6 (2)
C14—C5—C4116.5 (2)C20—C19—C18119.7 (2)
C14—C5—C6119.4 (2)C21—C20—C19120.0 (2)
C4—C5—C6124.1 (2)C21—C20—H20120.0
C7—C6—C5121.1 (2)C19—C20—H20120.0
C7—C6—H6119.4C20—C21—C16120.7 (2)
C5—C6—H6119.4C20—C21—H21119.7
C6—C7—C8120.6 (2)C16—C21—H21119.7
N1—Cu1—O1—C15165.73 (15)C13—N2—C11—C100.2 (4)
N2—Cu1—O1—C1528.8 (4)Cu1—N2—C11—C10176.80 (19)
O2—Cu1—O1—C152.50 (14)C13—N2—C11—C12179.9 (2)
O4—Cu1—O1—C1585.71 (18)Cu1—N2—C11—C123.0 (4)
O1—Cu1—O2—C152.51 (14)C9—C10—C11—N20.1 (4)
N1—Cu1—O2—C1563.2 (3)C9—C10—C11—C12179.9 (3)
N2—Cu1—O2—C15176.87 (14)C11—N2—C13—C80.0 (3)
O4—Cu1—O2—C1591.96 (17)Cu1—N2—C13—C8177.49 (17)
O1—Cu1—O4—N357.54 (18)C11—N2—C13—C14179.8 (2)
N1—Cu1—O4—N349.54 (19)Cu1—N2—C13—C142.2 (2)
N2—Cu1—O4—N3133.76 (17)C9—C8—C13—N20.1 (3)
O2—Cu1—O4—N3122.40 (18)C7—C8—C13—N2179.7 (2)
C15—Cu1—O4—N390.02 (19)C9—C8—C13—C14179.6 (2)
O1—Cu1—N1—C29.1 (2)C7—C8—C13—C140.0 (3)
N2—Cu1—N1—C2179.4 (2)C2—N1—C14—C50.4 (3)
O2—Cu1—N1—C264.0 (3)Cu1—N1—C14—C5178.41 (17)
O4—Cu1—N1—C290.0 (2)C2—N1—C14—C13178.98 (19)
C15—Cu1—N1—C220.2 (3)Cu1—N1—C14—C131.0 (2)
O1—Cu1—N1—C14173.18 (14)C4—C5—C14—N10.2 (3)
N2—Cu1—N1—C141.68 (14)C6—C5—C14—N1178.8 (2)
O2—Cu1—N1—C14118.3 (2)C4—C5—C14—C13179.5 (2)
O4—Cu1—N1—C1487.72 (16)C6—C5—C14—C130.5 (3)
C15—Cu1—N1—C14162.11 (14)N2—C13—C14—N10.9 (3)
O1—Cu1—N2—C1142.2 (5)C8—C13—C14—N1178.84 (19)
N1—Cu1—N2—C11179.3 (2)N2—C13—C14—C5179.72 (19)
O2—Cu1—N2—C1117.8 (2)C8—C13—C14—C50.6 (3)
O4—Cu1—N2—C1172.6 (2)Cu1—O2—C15—O14.0 (2)
C15—Cu1—N2—C1120.2 (3)Cu1—O2—C15—C16173.1 (2)
O1—Cu1—N2—C13140.6 (3)Cu1—O1—C15—O24.1 (2)
N1—Cu1—N2—C132.12 (14)Cu1—O1—C15—C16173.1 (2)
O2—Cu1—N2—C13165.01 (14)O1—Cu1—C15—O2175.8 (2)
O4—Cu1—N2—C13104.60 (17)N1—Cu1—C15—O2155.62 (14)
C15—Cu1—N2—C13162.59 (14)N2—Cu1—C15—O24.4 (2)
Cu1—O4—N3—O6155.5 (2)O4—Cu1—C15—O288.41 (18)
Cu1—O4—N3—O522.2 (3)N1—Cu1—C15—O120.2 (2)
C14—N1—C2—C30.2 (3)N2—Cu1—C15—O1171.39 (14)
Cu1—N1—C2—C3177.79 (18)O2—Cu1—C15—O1175.8 (2)
C14—N1—C2—C1179.5 (2)O4—Cu1—C15—O195.81 (18)
Cu1—N1—C2—C13.0 (3)O2—C15—C16—C21176.7 (2)
N1—C2—C3—C40.5 (4)O1—C15—C16—C216.3 (4)
C1—C2—C3—C4178.7 (3)O2—C15—C16—C176.2 (3)
C2—C3—C4—C51.1 (4)O1—C15—C16—C17170.8 (2)
C3—C4—C5—C140.9 (4)C21—C16—C17—C180.6 (3)
C3—C4—C5—C6178.0 (2)C15—C16—C17—C18176.6 (2)
C14—C5—C6—C70.1 (4)C16—C17—C18—C190.1 (4)
C4—C5—C6—C7178.8 (2)C17—C18—C19—O3179.5 (2)
C5—C6—C7—C80.7 (4)C17—C18—C19—C201.0 (3)
C6—C7—C8—C130.6 (4)O3—C19—C20—C21178.9 (2)
C6—C7—C8—C9179.8 (2)C18—C19—C20—C211.6 (4)
C13—C8—C9—C100.1 (4)C19—C20—C21—C161.1 (4)
C7—C8—C9—C10179.7 (3)C17—C16—C21—C200.0 (4)
C8—C9—C10—C110.0 (4)C15—C16—C21—C20177.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O4i0.821.972.767 (4)164
Symmetry code: (i) x, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Cu(C7H5O3)(NO3)(C14H12N2)]
Mr470.92
Crystal system, space groupTriclinic, P1
Temperature (K)291
a, b, c (Å)9.594 (1), 9.802 (1), 12.347 (1)
α, β, γ (°)78.687 (14), 70.409 (13), 63.740 (12)
V3)979.4 (2)
Z2
Radiation typeMo Kα
µ (mm1)1.16
Crystal size (mm)0.37 × 0.30 × 0.17
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1997)
Tmin, Tmax0.673, 0.830
No. of measured, independent and
observed [I > 2σ(I)] reflections
7393, 3613, 3129
Rint0.016
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.082, 1.03
No. of reflections3613
No. of parameters283
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.28

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Cu1—O12.004 (3)Cu1—O22.026 (2)
Cu1—N12.007 (3)Cu1—O42.292 (3)
Cu1—N22.008 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O4i0.821.972.767 (4)164
Symmetry code: (i) x, y+1, z+1.
 

Acknowledgements

Financial support from the Science Fund of Henan Province for Distinguished Young Scholars (grant No. 074100510005) is gratefully acknowledged.

References

First citationBruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationOkabe, N., Tsuji, A. & Yodoshi, M. (2007). Acta Cryst. E63, m1756–m1757.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSelvakumar, B., Rajendiran, V., Maheswari, P. U., Stoeckli-Evans, H. & Palaniandavar, M. (2006). J. Inorg. Biochem. 100, 316–330.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXuan, X.-P., Zhao, P.-Z. & Zhang, S.-X. (2007). Acta Cryst. E63, m1817.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhao, P.-Z., Yan, F.-M., Xuan, X.-P. & Tang, Q.-H. (2007). Acta Cryst. E63, m2523.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds