organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Amino­pyridinium 4-hy­droxy­benzoate

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 24 October 2008; accepted 27 October 2008; online 31 October 2008)

In the title compound, C5H7N2+·C7H5O3, the carboxyl­ate mean plane of the 4-hydroxy­benzoate anion is twisted by 8.78 (5)° from the attached ring. The cations and anions are linked via O—H⋯O, N—H⋯O and C—H⋯O hydrogen bonds, forming a three-dimensional network. In addition, ππ inter­actions involving the benzene and pyridinium rings, with centroid–centroid distances of 3.5500 (6) and 3.6594 (6) Å, are observed.

Related literature

For the applications of 2-amino­pyridine, see: Windholz (1976[Windholz, M. (1976). The Merck Index, 9th ed. Boca Raton, USA: Merck & Co. Inc.]). For related structures, see: Chao et al. (1975[Chao, M., Schemp, E. & Rosenstein, R. D. (1975). Acta Cryst. B31, 2922-2924.]); Heath et al. (1992[Heath, E. A., Singh, P. & Ebisuzaki, Y. (1992). Acta Cryst. C48, 1960-1965.]); Jebas & Balasubramanian (2006[Jebas, S. R. & Balasubramanian, T. (2006). Acta Cryst. E62, o2209-o2211.]); Joanna & Zaworotko (2005[Joanna, A. B. & Zaworotko, M. J. (2005). Cryst. Growth Des. 5, 1169-1179.]); Smith et al. (2000[Smith, G., Bott, R. C. & Wermuth, U. D. (2000). Acta Cryst. C56, 1505-1506.]).

[Scheme 1]

Experimental

Crystal data
  • C5H7N2+·C7H5O3

  • Mr = 232.24

  • Monoclinic, P 21 /n

  • a = 10.0647 (2) Å

  • b = 10.9369 (2) Å

  • c = 10.7985 (2) Å

  • β = 111.036 (1)°

  • V = 1109.44 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 100.0 (1) K

  • 0.34 × 0.29 × 0.17 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.966, Tmax = 0.983

  • 22398 measured reflections

  • 5078 independent reflections

  • 3835 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.140

  • S = 1.02

  • 5078 reflections

  • 158 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.50 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O1⋯O2i 0.82 1.86 2.6257 (9) 154
N2—H1N2⋯O2ii 0.86 1.98 2.8224 (11) 167
N2—H2N2⋯O3iii 0.86 1.99 2.8396 (11) 171
N1—H1N1⋯O3ii 0.88 (1) 1.81 (1) 2.6861 (10) 169 (2)
C10—H10A⋯O1 0.93 2.51 3.3482 (14) 149
C11—H11A⋯O2i 0.93 2.34 3.1899 (12) 152
Symmetry codes: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) x-1, y-1, z; (iii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

2-Aminopyridine is used in the manufacture of pharmaceuticals, especially antihistaminic drugs (Windholz, 1976). As an extension of our systematic study of hydrogen bonding patterns of 2-aminopyridine with aromatic carboxylic acids, the title compound was synthesized and its crystal structure determined.

The asymmetric unit contains one 2-aminopyridinium cation and 4-hydroxybenzoate anion. The proton transfer from the carboxyl group to atom N1 of 2-aminopyridine resulted in the widening of C8—N1—C12 angle of the pyridinium ring to 122.35°, compared to the corresponding angle of 117.7 (1)° in neutral 2-aminopyridine (Chao et al., 1975). Similar feature is observed in various 2-aminopyridine acid complexes (Joanna & Zaworotko, 2005; Smith et al., 2000). The bond distances and angles in the title compound are comparable to those in various 2-aminopyridine acid complexes and 4-hydroxybenzoic acid (Joanna & Zaworotko, 2005; Heath et al., 1992).

The 2-aminopyridinium cation is essentially planar, with a maximum deviation of 0.016 (1) Å for atom N1. In the 4-hydroxybenzoate anion, the carboxylate group is twisted slightly from the attached ring; the dihedral angle between C1-C6 and O2/O3/C6/C7 planes is 8.78 (5)°.

The crystal packing is consolidated by intermolecular O—H···O, N—H···O and C—H···O hydrogen bonds (Table 1). These hydrogen bonds link the molecules into a three-dimensional network. The packing is further strengthened by π-π interactions involving the benzene (centroid Cg1) and pyridinium (centroid Cg2) rings, with Cg1···Cg2iv = 3.6594 (6) Å and Cg2···Cg2v = 3.5500 (6) Å [symmetry code: (iv) 1-x, 1-y, 1-z; (v) -x, 1-y, 1-z].

Related literature top

For the applications of 2-aminopyridine, see: Windholz (1976). For related structures, see: Chao et al. (1975); Heath et al. (1992); Jebas & Balasubramanian (2006); Joanna & Zaworotko (2005); Smith et al. (2000).

Experimental top

2-Aminopyridine and 4-hydroxybenzoic acid were mixed in methanol in a 1:1 molar ratio. The clear colourless solution obtained was allowed to evaporate slowly. Colourless crystals were obtained after a week.

Refinement top

H atoms were placed in calculated positions, with C-H = 0.93 Å, N-H = 0.86 Å and O-H = 0.82 Å and refined using a riding model with Uiso(H) = 1.2Ueq(C,N) and 1.5Ueq(O). Atom H1N1 was located in a difference map and was refined with an N-H distance restraint of 0.86 Å.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2 (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom numbering scheme. The dashed line indicates a hydrogen bond.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed along the c axis. Hydrogen bonds are shown as dashed lines.
2-Aminopyridinium 4-hydroxybenzoate top
Crystal data top
C5H7N2+·C7H5O3F(000) = 488
Mr = 232.24Dx = 1.390 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 6837 reflections
a = 10.0647 (2) Åθ = 2.8–35.6°
b = 10.9369 (2) ŵ = 0.10 mm1
c = 10.7985 (2) ÅT = 100 K
β = 111.036 (1)°Block, colourless
V = 1109.44 (4) Å30.34 × 0.29 × 0.17 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
5078 independent reflections
Radiation source: fine-focus sealed tube3835 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
ϕ and ω scansθmax = 35.6°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1611
Tmin = 0.966, Tmax = 0.983k = 1717
22398 measured reflectionsl = 1617
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.140H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0746P)2 + 0.2186P]
where P = (Fo2 + 2Fc2)/3
5078 reflections(Δ/σ)max = 0.001
158 parametersΔρmax = 0.50 e Å3
1 restraintΔρmin = 0.21 e Å3
Crystal data top
C5H7N2+·C7H5O3V = 1109.44 (4) Å3
Mr = 232.24Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.0647 (2) ŵ = 0.10 mm1
b = 10.9369 (2) ÅT = 100 K
c = 10.7985 (2) Å0.34 × 0.29 × 0.17 mm
β = 111.036 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
5078 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
3835 reflections with I > 2σ(I)
Tmin = 0.966, Tmax = 0.983Rint = 0.030
22398 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0491 restraint
wR(F2) = 0.140H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.50 e Å3
5078 reflectionsΔρmin = 0.21 e Å3
158 parameters
Special details top

Experimental. The data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.52173 (8)0.67777 (7)0.56764 (7)0.02345 (16)
H1O10.54350.64300.63950.035*
O20.97943 (7)1.10528 (6)0.70095 (6)0.01770 (14)
O30.88217 (8)1.12535 (7)0.48165 (6)0.02051 (14)
N10.06716 (8)0.30978 (7)0.51061 (7)0.01683 (15)
N20.18939 (9)0.28645 (8)0.73537 (8)0.02239 (17)
H1N20.13540.22540.73480.027*
H2N20.25500.30850.80820.027*
C10.81342 (9)0.89872 (8)0.69825 (8)0.01647 (16)
H1A0.88730.91800.77690.020*
C20.72397 (10)0.80096 (9)0.69536 (8)0.01740 (16)
H2A0.73870.75480.77140.021*
C30.61195 (10)0.77231 (9)0.57782 (9)0.01771 (16)
C40.59084 (11)0.84236 (10)0.46429 (9)0.02258 (19)
H4A0.51570.82430.38620.027*
C50.68141 (10)0.93876 (9)0.46745 (9)0.02087 (18)
H5A0.66730.98420.39100.025*
C60.79383 (9)0.96844 (8)0.58454 (8)0.01518 (15)
C70.89111 (9)1.07305 (8)0.58888 (8)0.01503 (15)
C80.03894 (10)0.36798 (9)0.39292 (9)0.01886 (17)
H8A0.03480.33990.31830.023*
C90.11667 (11)0.46682 (9)0.38189 (10)0.02141 (18)
H9A0.09680.50680.30120.026*
C100.22817 (11)0.50629 (9)0.49691 (10)0.02254 (19)
H10A0.28360.57280.49190.027*
C110.25595 (10)0.44821 (9)0.61585 (10)0.02098 (18)
H11A0.32970.47500.69110.025*
C120.17140 (10)0.34698 (9)0.62328 (9)0.01766 (16)
H1N10.0145 (17)0.2453 (12)0.5101 (19)0.051 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0264 (4)0.0269 (4)0.0164 (3)0.0110 (3)0.0069 (3)0.0002 (3)
O20.0180 (3)0.0203 (3)0.0128 (3)0.0017 (2)0.0032 (2)0.0020 (2)
O30.0219 (3)0.0218 (3)0.0143 (3)0.0048 (3)0.0023 (2)0.0040 (2)
N10.0170 (3)0.0179 (3)0.0144 (3)0.0029 (3)0.0042 (3)0.0020 (3)
N20.0227 (4)0.0254 (4)0.0147 (3)0.0055 (3)0.0015 (3)0.0015 (3)
C10.0167 (4)0.0186 (4)0.0127 (3)0.0001 (3)0.0036 (3)0.0001 (3)
C20.0189 (4)0.0194 (4)0.0136 (3)0.0011 (3)0.0056 (3)0.0016 (3)
C30.0192 (4)0.0198 (4)0.0151 (3)0.0037 (3)0.0073 (3)0.0011 (3)
C40.0230 (4)0.0288 (5)0.0126 (3)0.0093 (4)0.0024 (3)0.0002 (3)
C50.0225 (4)0.0245 (5)0.0133 (3)0.0053 (3)0.0036 (3)0.0023 (3)
C60.0159 (3)0.0164 (4)0.0127 (3)0.0000 (3)0.0044 (3)0.0002 (3)
C70.0154 (3)0.0156 (4)0.0129 (3)0.0010 (3)0.0037 (3)0.0001 (3)
C80.0185 (4)0.0218 (4)0.0159 (4)0.0018 (3)0.0057 (3)0.0008 (3)
C90.0226 (4)0.0220 (4)0.0206 (4)0.0025 (3)0.0090 (3)0.0011 (3)
C100.0210 (4)0.0205 (4)0.0276 (4)0.0052 (3)0.0105 (4)0.0025 (3)
C110.0169 (4)0.0213 (4)0.0229 (4)0.0034 (3)0.0049 (3)0.0046 (3)
C120.0162 (4)0.0190 (4)0.0163 (4)0.0005 (3)0.0040 (3)0.0032 (3)
Geometric parameters (Å, º) top
O1—C31.3543 (11)C3—C41.3957 (13)
O1—H1O10.8200C4—C51.3861 (13)
O2—C71.2675 (10)C4—H4A0.93
O3—C71.2654 (10)C5—C61.3990 (12)
N1—C121.3528 (11)C5—H5A0.93
N1—C81.3571 (12)C6—C71.4956 (12)
N1—H1N10.881 (9)C8—C91.3644 (13)
N2—C121.3338 (12)C8—H8A0.93
N2—H1N20.86C9—C101.4099 (14)
N2—H2N20.86C9—H9A0.93
C1—C21.3908 (13)C10—C111.3687 (14)
C1—C61.3980 (12)C10—H10A0.93
C1—H1A0.93C11—C121.4161 (13)
C2—C31.3975 (12)C11—H11A0.93
C2—H2A0.93
C3—O1—H1O1109.5C1—C6—C5118.72 (8)
C12—N1—C8122.35 (8)C1—C6—C7120.36 (8)
C12—N1—H1N1121.1 (13)C5—C6—C7120.92 (8)
C8—N1—H1N1116.5 (13)O3—C7—O2122.89 (8)
C12—N2—H1N2120.0O3—C7—C6119.10 (7)
C12—N2—H2N2120.0O2—C7—C6118.00 (7)
H1N2—N2—H2N2120.0N1—C8—C9121.30 (9)
C2—C1—C6120.90 (8)N1—C8—H8A119.3
C2—C1—H1A119.5C9—C8—H8A119.3
C6—C1—H1A119.5C8—C9—C10117.75 (9)
C1—C2—C3119.83 (8)C8—C9—H9A121.1
C1—C2—H2A120.1C10—C9—H9A121.1
C3—C2—H2A120.1C11—C10—C9120.96 (9)
O1—C3—C4117.49 (8)C11—C10—H10A119.5
O1—C3—C2122.94 (8)C9—C10—H10A119.5
C4—C3—C2119.57 (8)C10—C11—C12119.44 (9)
C5—C4—C3120.30 (8)C10—C11—H11A120.3
C5—C4—H4A119.9C12—C11—H11A120.3
C3—C4—H4A119.9N2—C12—N1118.41 (8)
C4—C5—C6120.67 (8)N2—C12—C11123.43 (8)
C4—C5—H5A119.7N1—C12—C11118.17 (8)
C6—C5—H5A119.7
C6—C1—C2—C30.63 (14)C5—C6—C7—O38.78 (13)
C1—C2—C3—O1179.36 (9)C1—C6—C7—O28.40 (12)
C1—C2—C3—C40.07 (14)C5—C6—C7—O2171.26 (9)
O1—C3—C4—C5178.61 (9)C12—N1—C8—C91.07 (14)
C2—C3—C4—C50.84 (15)N1—C8—C9—C100.35 (14)
C3—C4—C5—C60.92 (16)C8—C9—C10—C110.87 (15)
C2—C1—C6—C50.55 (13)C9—C10—C11—C120.02 (15)
C2—C1—C6—C7179.78 (8)C8—N1—C12—N2178.22 (9)
C4—C5—C6—C10.22 (14)C8—N1—C12—C111.90 (14)
C4—C5—C6—C7179.44 (9)C10—C11—C12—N2178.79 (9)
C1—C6—C7—O3171.56 (8)C10—C11—C12—N11.33 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O1···O2i0.821.862.6257 (9)154
N2—H1N2···O2ii0.861.982.8224 (11)167
N2—H2N2···O3iii0.861.992.8396 (11)171
N1—H1N1···O3ii0.88 (1)1.81 (1)2.6861 (10)169 (2)
C10—H10A···O10.932.513.3482 (14)149
C11—H11A···O2i0.932.343.1899 (12)152
Symmetry codes: (i) x+3/2, y1/2, z+3/2; (ii) x1, y1, z; (iii) x1/2, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC5H7N2+·C7H5O3
Mr232.24
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)10.0647 (2), 10.9369 (2), 10.7985 (2)
β (°) 111.036 (1)
V3)1109.44 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.34 × 0.29 × 0.17
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.966, 0.983
No. of measured, independent and
observed [I > 2σ(I)] reflections
22398, 5078, 3835
Rint0.030
(sin θ/λ)max1)0.820
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.140, 1.02
No. of reflections5078
No. of parameters158
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.50, 0.21

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O1···O2i0.821.862.6257 (9)154
N2—H1N2···O2ii0.861.982.8224 (11)167
N2—H2N2···O3iii0.861.992.8396 (11)171
N1—H1N1···O3ii0.88 (1)1.81 (1)2.6861 (10)169 (2)
C10—H10A···O10.932.513.3482 (14)149
C11—H11A···O2i0.932.343.1899 (12)152
Symmetry codes: (i) x+3/2, y1/2, z+3/2; (ii) x1, y1, z; (iii) x1/2, y+3/2, z+1/2.
 

Footnotes

Permanent address: Department of Physics, Karunya University, Karunya Nagar, Coimbatore 641 114, India.

§Additional correspondence author, e-mail: robinsunj@yahoo.com.

Acknowledgements

HKF and SRJ thank the Malaysian Government and Universiti Sains Malaysia for the Science Fund grant No. 305/PFIZIK/613312. SRJ thanks Universiti Sains Malaysia for a post–doctoral research fellowship. CKQ thanks Universiti Sains Malaysia for a student assistanceship.

References

First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChao, M., Schemp, E. & Rosenstein, R. D. (1975). Acta Cryst. B31, 2922–2924.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationHeath, E. A., Singh, P. & Ebisuzaki, Y. (1992). Acta Cryst. C48, 1960–1965.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationJebas, S. R. & Balasubramanian, T. (2006). Acta Cryst. E62, o2209–o2211.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJoanna, A. B. & Zaworotko, M. J. (2005). Cryst. Growth Des. 5, 1169–1179.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSmith, G., Bott, R. C. & Wermuth, U. D. (2000). Acta Cryst. C56, 1505–1506.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWindholz, M. (1976). The Merck Index, 9th ed. Boca Raton, USA: Merck & Co. Inc.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds