organic compounds
(E)-3-(2-Furyl)-1-(2-hydroxyphenyl)prop-2-en-1-one
aDongchang College, Liaocheng University, Liaocheng 250059, People's Republic of China, and bLiaocheng No.3 Middle School, Liaocheng, People's Republic of China
*Correspondence e-mail: konglingqian08@163.com
In the title molecule, C13H10O3, an intramolecular O—H⋯O hydrogen bond influences the molecular conformation, and the benzene and furan rings form a dihedral angle of 8.35 (7)°. Weak intermolecular C—H⋯O hydrogen bonds link molecules into sheets parallel to the bc plane.
Experimental
Crystal data
|
Refinement
|
Data collection: SMART (Siemens, 1996); cell SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536808031644/cv2448sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808031644/cv2448Isup2.hkl
Furan-2-carbaldehyde (0.3 mmol) and 2-hydroxylacetophenone (0.3 mmol), NaOH (0.3 mmol) were mixed in 50 ml flash under sovlent-free conditions After stirring for 5 min at 373 K, the mixture was soilden slowly and afforded the title compound, then recrystallized from ethanol, affording the title compound as a colourless crystalline solid. Elemental analysis: calculated for C13H10O3: C 72.90, H 4.71%; found: C 72.88, H 4.65%.
All H atoms were placed in geometrically idealized positions (O—H 0.85 Å, C—H 0.93 Å) and treated as riding, with Uiso(H) = 1.2 Ueq(C,O).
Data collection: SMART (Siemens, 1996); cell
SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. The molecular structure of (I) showing the atomic numbering and 40% probability displacement ellipsoids. |
C13H10O3 | F(000) = 448 |
Mr = 214.21 | Dx = 1.367 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 3.8560 (5) Å | Cell parameters from 438 reflections |
b = 15.6565 (14) Å | θ = 2.4–18.4° |
c = 17.309 (2) Å | µ = 0.10 mm−1 |
β = 95.065 (2)° | T = 298 K |
V = 1040.9 (2) Å3 | Block, colourless |
Z = 4 | 0.27 × 0.25 × 0.07 mm |
Siemens SMART CCD area-detector diffractometer | 1848 independent reflections |
Radiation source: fine-focus sealed tube | 668 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.126 |
Detector resolution: ϕ and ω pixels mm-1 | θmax = 25.0°, θmin = 1.8° |
ϕ and ω scans | h = −4→4 |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | k = −7→18 |
Tmin = 0.974, Tmax = 0.993 | l = −20→20 |
5153 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.067 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.184 | H-atom parameters constrained |
S = 0.81 | w = 1/[σ2(Fo2) + (0.0721P)2] where P = (Fo2 + 2Fc2)/3 |
1848 reflections | (Δ/σ)max < 0.001 |
146 parameters | Δρmax = 0.22 e Å−3 |
0 restraints | Δρmin = −0.19 e Å−3 |
C13H10O3 | V = 1040.9 (2) Å3 |
Mr = 214.21 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 3.8560 (5) Å | µ = 0.10 mm−1 |
b = 15.6565 (14) Å | T = 298 K |
c = 17.309 (2) Å | 0.27 × 0.25 × 0.07 mm |
β = 95.065 (2)° |
Siemens SMART CCD area-detector diffractometer | 1848 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 668 reflections with I > 2σ(I) |
Tmin = 0.974, Tmax = 0.993 | Rint = 0.126 |
5153 measured reflections |
R[F2 > 2σ(F2)] = 0.067 | 0 restraints |
wR(F2) = 0.184 | H-atom parameters constrained |
S = 0.81 | Δρmax = 0.22 e Å−3 |
1848 reflections | Δρmin = −0.19 e Å−3 |
146 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 1.0561 (7) | 0.73465 (16) | 0.48262 (15) | 0.0794 (9) | |
O2 | 0.8017 (8) | 0.83794 (18) | 0.74522 (15) | 0.0885 (11) | |
O3 | 0.5477 (10) | 0.9672 (2) | 0.80912 (17) | 0.1030 (12) | |
H3 | 0.6546 | 0.9220 | 0.8087 | 0.154* | |
C1 | 1.1454 (12) | 0.6735 (3) | 0.4327 (2) | 0.0842 (15) | |
H1 | 1.1472 | 0.6811 | 0.3794 | 0.101* | |
C2 | 1.2297 (11) | 0.6018 (3) | 0.4699 (3) | 0.0769 (13) | |
H2 | 1.3018 | 0.5510 | 0.4485 | 0.092* | |
C3 | 1.1887 (11) | 0.6177 (3) | 0.5478 (2) | 0.0748 (13) | |
H3A | 1.2271 | 0.5788 | 0.5882 | 0.090* | |
C4 | 1.0842 (10) | 0.6991 (2) | 0.5544 (2) | 0.0584 (10) | |
C5 | 0.9983 (9) | 0.7493 (2) | 0.6177 (2) | 0.0608 (11) | |
H5 | 1.0222 | 0.7240 | 0.6665 | 0.073* | |
C6 | 0.8860 (10) | 0.8300 (2) | 0.6137 (2) | 0.0598 (11) | |
H6 | 0.8676 | 0.8578 | 0.5661 | 0.072* | |
C7 | 0.7918 (10) | 0.8754 (2) | 0.6822 (2) | 0.0600 (11) | |
C8 | 0.6700 (9) | 0.9648 (2) | 0.6757 (2) | 0.0553 (10) | |
C9 | 0.5559 (11) | 1.0064 (3) | 0.7399 (2) | 0.0690 (12) | |
C10 | 0.4467 (12) | 1.0901 (3) | 0.7358 (3) | 0.0835 (14) | |
H10 | 0.3697 | 1.1170 | 0.7790 | 0.100* | |
C11 | 0.4529 (13) | 1.1329 (3) | 0.6679 (3) | 0.0930 (16) | |
H11 | 0.3769 | 1.1893 | 0.6649 | 0.112* | |
C12 | 0.5685 (12) | 1.0951 (3) | 0.6033 (3) | 0.0839 (14) | |
H12 | 0.5747 | 1.1256 | 0.5573 | 0.101* | |
C13 | 0.6745 (11) | 1.0117 (3) | 0.6079 (2) | 0.0702 (12) | |
H13 | 0.7518 | 0.9858 | 0.5642 | 0.084* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.111 (3) | 0.0632 (19) | 0.0648 (18) | 0.0106 (16) | 0.0132 (16) | −0.0022 (16) |
O2 | 0.138 (3) | 0.067 (2) | 0.0625 (18) | 0.0095 (18) | 0.0190 (18) | 0.0029 (15) |
O3 | 0.150 (4) | 0.087 (3) | 0.076 (2) | 0.010 (2) | 0.033 (2) | −0.0105 (18) |
C1 | 0.112 (4) | 0.076 (3) | 0.065 (3) | 0.008 (3) | 0.015 (3) | −0.014 (3) |
C2 | 0.080 (4) | 0.057 (3) | 0.095 (3) | 0.008 (2) | 0.012 (3) | −0.016 (3) |
C3 | 0.086 (4) | 0.061 (3) | 0.078 (3) | 0.008 (2) | 0.011 (2) | −0.004 (2) |
C4 | 0.065 (3) | 0.053 (2) | 0.058 (2) | −0.002 (2) | 0.010 (2) | −0.001 (2) |
C5 | 0.063 (3) | 0.059 (2) | 0.061 (2) | 0.001 (2) | 0.010 (2) | 0.004 (2) |
C6 | 0.067 (3) | 0.058 (2) | 0.054 (2) | 0.002 (2) | 0.005 (2) | −0.003 (2) |
C7 | 0.064 (3) | 0.057 (3) | 0.059 (2) | −0.005 (2) | 0.004 (2) | 0.001 (2) |
C8 | 0.055 (3) | 0.053 (2) | 0.058 (2) | −0.0020 (19) | 0.006 (2) | −0.001 (2) |
C9 | 0.071 (3) | 0.069 (3) | 0.068 (3) | −0.001 (2) | 0.009 (2) | −0.009 (2) |
C10 | 0.080 (4) | 0.073 (3) | 0.095 (4) | 0.008 (3) | 0.001 (3) | −0.023 (3) |
C11 | 0.093 (4) | 0.061 (3) | 0.122 (4) | 0.014 (3) | −0.014 (3) | −0.013 (3) |
C12 | 0.099 (4) | 0.063 (3) | 0.086 (3) | 0.000 (3) | −0.008 (3) | 0.007 (3) |
C13 | 0.078 (3) | 0.056 (3) | 0.076 (3) | −0.004 (2) | 0.007 (2) | −0.005 (2) |
O1—C1 | 1.354 (4) | C6—C7 | 1.455 (5) |
O1—C4 | 1.357 (4) | C6—H6 | 0.9300 |
O2—C7 | 1.237 (4) | C7—C8 | 1.476 (5) |
O3—C9 | 1.349 (4) | C8—C13 | 1.386 (5) |
O3—H3 | 0.8200 | C8—C9 | 1.393 (5) |
C1—C2 | 1.321 (5) | C9—C10 | 1.377 (6) |
C1—H1 | 0.9300 | C10—C11 | 1.354 (5) |
C2—C3 | 1.394 (5) | C10—H10 | 0.9300 |
C2—H2 | 0.9300 | C11—C12 | 1.374 (6) |
C3—C4 | 1.343 (5) | C11—H11 | 0.9300 |
C3—H3A | 0.9300 | C12—C13 | 1.368 (5) |
C4—C5 | 1.413 (5) | C12—H12 | 0.9300 |
C5—C6 | 1.335 (5) | C13—H13 | 0.9300 |
C5—H5 | 0.9300 | ||
C1—O1—C4 | 106.9 (3) | O2—C7—C8 | 120.1 (4) |
C9—O3—H3 | 109.5 | C6—C7—C8 | 120.1 (3) |
C2—C1—O1 | 110.8 (3) | C13—C8—C9 | 117.1 (4) |
C2—C1—H1 | 124.6 | C13—C8—C7 | 122.6 (3) |
O1—C1—H1 | 124.6 | C9—C8—C7 | 120.3 (4) |
C1—C2—C3 | 106.0 (4) | O3—C9—C10 | 116.6 (4) |
C1—C2—H2 | 127.0 | O3—C9—C8 | 122.0 (4) |
C3—C2—H2 | 127.0 | C10—C9—C8 | 121.4 (4) |
C4—C3—C2 | 108.2 (4) | C11—C10—C9 | 119.2 (4) |
C4—C3—H3A | 125.9 | C11—C10—H10 | 120.4 |
C2—C3—H3A | 125.9 | C9—C10—H10 | 120.4 |
C3—C4—O1 | 108.2 (3) | C10—C11—C12 | 121.6 (4) |
C3—C4—C5 | 133.3 (4) | C10—C11—H11 | 119.2 |
O1—C4—C5 | 118.5 (3) | C12—C11—H11 | 119.2 |
C6—C5—C4 | 125.7 (3) | C13—C12—C11 | 118.8 (4) |
C6—C5—H5 | 117.1 | C13—C12—H12 | 120.6 |
C4—C5—H5 | 117.1 | C11—C12—H12 | 120.6 |
C5—C6—C7 | 121.6 (3) | C12—C13—C8 | 122.0 (4) |
C5—C6—H6 | 119.2 | C12—C13—H13 | 119.0 |
C7—C6—H6 | 119.2 | C8—C13—H13 | 119.0 |
O2—C7—C6 | 119.7 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
O3—H3···O2 | 0.82 | 1.84 | 2.544 (4) | 144 |
C1—H1···O2i | 0.93 | 2.59 | 3.400 (5) | 146 |
C3—H3A···O3ii | 0.93 | 2.59 | 3.504 (5) | 169 |
Symmetry codes: (i) x, −y+3/2, z−1/2; (ii) −x+2, y−1/2, −z+3/2. |
Experimental details
Crystal data | |
Chemical formula | C13H10O3 |
Mr | 214.21 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 298 |
a, b, c (Å) | 3.8560 (5), 15.6565 (14), 17.309 (2) |
β (°) | 95.065 (2) |
V (Å3) | 1040.9 (2) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.10 |
Crystal size (mm) | 0.27 × 0.25 × 0.07 |
Data collection | |
Diffractometer | Siemens SMART CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.974, 0.993 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 5153, 1848, 668 |
Rint | 0.126 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.067, 0.184, 0.81 |
No. of reflections | 1848 |
No. of parameters | 146 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.22, −0.19 |
Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
O3—H3···O2 | 0.82 | 1.84 | 2.544 (4) | 143.8 |
C1—H1···O2i | 0.93 | 2.59 | 3.400 (5) | 145.7 |
C3—H3A···O3ii | 0.93 | 2.59 | 3.504 (5) | 168.8 |
Symmetry codes: (i) x, −y+3/2, z−1/2; (ii) −x+2, y−1/2, −z+3/2. |
Acknowledgements
This project was supported by the Foundation of Dongchang College, Liaocheng University (grant No. LG0801).
References
Li, Z.-D., Huang, L.-Z., Su, G.-B. & Wang, H.-Y. (1992). Chin. J. Struct. Chem. 11, 1–4. Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
In continuation of our ongoing program directed to the development of environmentally benign methods of chemical synthesis, we describe in this paper a user-friendly, solvent-free protocol for the synthesis of chalcones starting from the fragrant aldehydes and fragrant ketones in the presence of NaOH under solvent-free conditions. Using this method, which can be considered as a a general method for the synthesis of chalcones, we obtained the title compound, (I). We present here its crystal structure.
In (I) (Fig. 1), the bond lengths and angles are normal and comparable to those observed in related compound (Li et al., 1992). The benzene and furan rings form a dihedral angle of 8.35 (7)°. In the crystal, weak intermolecular C—H···O hydrogen bonds (Table 1) link the molecules into sheets parallel to bc plane.