organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-3-(2-Fur­yl)-1-(2-hy­droxy­phen­yl)prop-2-en-1-one

aDongchang College, Liaocheng University, Liaocheng 250059, People's Republic of China, and bLiaocheng No.3 Middle School, Liaocheng, People's Republic of China
*Correspondence e-mail: konglingqian08@163.com

(Received 13 September 2008; accepted 30 September 2008; online 22 October 2008)

In the title mol­ecule, C13H10O3, an intra­molecular O—H⋯O hydrogen bond influences the mol­ecular conformation, and the benzene and furan rings form a dihedral angle of 8.35 (7)°. Weak inter­molecular C—H⋯O hydrogen bonds link mol­ecules into sheets parallel to the bc plane.

Related literature

For a related crystal structure, see: Li et al. (1992[Li, Z.-D., Huang, L.-Z., Su, G.-B. & Wang, H.-Y. (1992). Chin. J. Struct. Chem. 11, 1-4.]).

[Scheme 1]

Experimental

Crystal data
  • C13H10O3

  • Mr = 214.21

  • Monoclinic, P 21 /c

  • a = 3.8560 (5) Å

  • b = 15.6565 (14) Å

  • c = 17.309 (2) Å

  • β = 95.065 (2)°

  • V = 1040.9 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 298 (2) K

  • 0.27 × 0.25 × 0.07 mm

Data collection
  • Siemens SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.974, Tmax = 0.993

  • 5153 measured reflections

  • 1848 independent reflections

  • 668 reflections with I > 2σ(I)

  • Rint = 0.126

Refinement
  • R[F2 > 2σ(F2)] = 0.067

  • wR(F2) = 0.184

  • S = 0.81

  • 1848 reflections

  • 146 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O2 0.82 1.84 2.544 (4) 144
C1—H1⋯O2i 0.93 2.59 3.400 (5) 146
C3—H3A⋯O3ii 0.93 2.59 3.504 (5) 169
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ii) [-x+2, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In continuation of our ongoing program directed to the development of environmentally benign methods of chemical synthesis, we describe in this paper a user-friendly, solvent-free protocol for the synthesis of chalcones starting from the fragrant aldehydes and fragrant ketones in the presence of NaOH under solvent-free conditions. Using this method, which can be considered as a a general method for the synthesis of chalcones, we obtained the title compound, (I). We present here its crystal structure.

In (I) (Fig. 1), the bond lengths and angles are normal and comparable to those observed in related compound (Li et al., 1992). The benzene and furan rings form a dihedral angle of 8.35 (7)°. In the crystal, weak intermolecular C—H···O hydrogen bonds (Table 1) link the molecules into sheets parallel to bc plane.

Related literature top

For a related crystal structure, see: Li et al. (1992).

Experimental top

Furan-2-carbaldehyde (0.3 mmol) and 2-hydroxylacetophenone (0.3 mmol), NaOH (0.3 mmol) were mixed in 50 ml flash under sovlent-free conditions After stirring for 5 min at 373 K, the mixture was soilden slowly and afforded the title compound, then recrystallized from ethanol, affording the title compound as a colourless crystalline solid. Elemental analysis: calculated for C13H10O3: C 72.90, H 4.71%; found: C 72.88, H 4.65%.

Refinement top

All H atoms were placed in geometrically idealized positions (O—H 0.85 Å, C—H 0.93 Å) and treated as riding, with Uiso(H) = 1.2 Ueq(C,O).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atomic numbering and 40% probability displacement ellipsoids.
(E)-3-(2-Furyl)-1-(2-hydroxyphenyl)prop-2-en-1-one top
Crystal data top
C13H10O3F(000) = 448
Mr = 214.21Dx = 1.367 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 3.8560 (5) ÅCell parameters from 438 reflections
b = 15.6565 (14) Åθ = 2.4–18.4°
c = 17.309 (2) ŵ = 0.10 mm1
β = 95.065 (2)°T = 298 K
V = 1040.9 (2) Å3Block, colourless
Z = 40.27 × 0.25 × 0.07 mm
Data collection top
Siemens SMART CCD area-detector
diffractometer
1848 independent reflections
Radiation source: fine-focus sealed tube668 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.126
Detector resolution: ϕ and ω pixels mm-1θmax = 25.0°, θmin = 1.8°
ϕ and ω scansh = 44
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 718
Tmin = 0.974, Tmax = 0.993l = 2020
5153 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.067Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.184H-atom parameters constrained
S = 0.81 w = 1/[σ2(Fo2) + (0.0721P)2]
where P = (Fo2 + 2Fc2)/3
1848 reflections(Δ/σ)max < 0.001
146 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C13H10O3V = 1040.9 (2) Å3
Mr = 214.21Z = 4
Monoclinic, P21/cMo Kα radiation
a = 3.8560 (5) ŵ = 0.10 mm1
b = 15.6565 (14) ÅT = 298 K
c = 17.309 (2) Å0.27 × 0.25 × 0.07 mm
β = 95.065 (2)°
Data collection top
Siemens SMART CCD area-detector
diffractometer
1848 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
668 reflections with I > 2σ(I)
Tmin = 0.974, Tmax = 0.993Rint = 0.126
5153 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0670 restraints
wR(F2) = 0.184H-atom parameters constrained
S = 0.81Δρmax = 0.22 e Å3
1848 reflectionsΔρmin = 0.19 e Å3
146 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O11.0561 (7)0.73465 (16)0.48262 (15)0.0794 (9)
O20.8017 (8)0.83794 (18)0.74522 (15)0.0885 (11)
O30.5477 (10)0.9672 (2)0.80912 (17)0.1030 (12)
H30.65460.92200.80870.154*
C11.1454 (12)0.6735 (3)0.4327 (2)0.0842 (15)
H11.14720.68110.37940.101*
C21.2297 (11)0.6018 (3)0.4699 (3)0.0769 (13)
H21.30180.55100.44850.092*
C31.1887 (11)0.6177 (3)0.5478 (2)0.0748 (13)
H3A1.22710.57880.58820.090*
C41.0842 (10)0.6991 (2)0.5544 (2)0.0584 (10)
C50.9983 (9)0.7493 (2)0.6177 (2)0.0608 (11)
H51.02220.72400.66650.073*
C60.8860 (10)0.8300 (2)0.6137 (2)0.0598 (11)
H60.86760.85780.56610.072*
C70.7918 (10)0.8754 (2)0.6822 (2)0.0600 (11)
C80.6700 (9)0.9648 (2)0.6757 (2)0.0553 (10)
C90.5559 (11)1.0064 (3)0.7399 (2)0.0690 (12)
C100.4467 (12)1.0901 (3)0.7358 (3)0.0835 (14)
H100.36971.11700.77900.100*
C110.4529 (13)1.1329 (3)0.6679 (3)0.0930 (16)
H110.37691.18930.66490.112*
C120.5685 (12)1.0951 (3)0.6033 (3)0.0839 (14)
H120.57471.12560.55730.101*
C130.6745 (11)1.0117 (3)0.6079 (2)0.0702 (12)
H130.75180.98580.56420.084*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.111 (3)0.0632 (19)0.0648 (18)0.0106 (16)0.0132 (16)0.0022 (16)
O20.138 (3)0.067 (2)0.0625 (18)0.0095 (18)0.0190 (18)0.0029 (15)
O30.150 (4)0.087 (3)0.076 (2)0.010 (2)0.033 (2)0.0105 (18)
C10.112 (4)0.076 (3)0.065 (3)0.008 (3)0.015 (3)0.014 (3)
C20.080 (4)0.057 (3)0.095 (3)0.008 (2)0.012 (3)0.016 (3)
C30.086 (4)0.061 (3)0.078 (3)0.008 (2)0.011 (2)0.004 (2)
C40.065 (3)0.053 (2)0.058 (2)0.002 (2)0.010 (2)0.001 (2)
C50.063 (3)0.059 (2)0.061 (2)0.001 (2)0.010 (2)0.004 (2)
C60.067 (3)0.058 (2)0.054 (2)0.002 (2)0.005 (2)0.003 (2)
C70.064 (3)0.057 (3)0.059 (2)0.005 (2)0.004 (2)0.001 (2)
C80.055 (3)0.053 (2)0.058 (2)0.0020 (19)0.006 (2)0.001 (2)
C90.071 (3)0.069 (3)0.068 (3)0.001 (2)0.009 (2)0.009 (2)
C100.080 (4)0.073 (3)0.095 (4)0.008 (3)0.001 (3)0.023 (3)
C110.093 (4)0.061 (3)0.122 (4)0.014 (3)0.014 (3)0.013 (3)
C120.099 (4)0.063 (3)0.086 (3)0.000 (3)0.008 (3)0.007 (3)
C130.078 (3)0.056 (3)0.076 (3)0.004 (2)0.007 (2)0.005 (2)
Geometric parameters (Å, º) top
O1—C11.354 (4)C6—C71.455 (5)
O1—C41.357 (4)C6—H60.9300
O2—C71.237 (4)C7—C81.476 (5)
O3—C91.349 (4)C8—C131.386 (5)
O3—H30.8200C8—C91.393 (5)
C1—C21.321 (5)C9—C101.377 (6)
C1—H10.9300C10—C111.354 (5)
C2—C31.394 (5)C10—H100.9300
C2—H20.9300C11—C121.374 (6)
C3—C41.343 (5)C11—H110.9300
C3—H3A0.9300C12—C131.368 (5)
C4—C51.413 (5)C12—H120.9300
C5—C61.335 (5)C13—H130.9300
C5—H50.9300
C1—O1—C4106.9 (3)O2—C7—C8120.1 (4)
C9—O3—H3109.5C6—C7—C8120.1 (3)
C2—C1—O1110.8 (3)C13—C8—C9117.1 (4)
C2—C1—H1124.6C13—C8—C7122.6 (3)
O1—C1—H1124.6C9—C8—C7120.3 (4)
C1—C2—C3106.0 (4)O3—C9—C10116.6 (4)
C1—C2—H2127.0O3—C9—C8122.0 (4)
C3—C2—H2127.0C10—C9—C8121.4 (4)
C4—C3—C2108.2 (4)C11—C10—C9119.2 (4)
C4—C3—H3A125.9C11—C10—H10120.4
C2—C3—H3A125.9C9—C10—H10120.4
C3—C4—O1108.2 (3)C10—C11—C12121.6 (4)
C3—C4—C5133.3 (4)C10—C11—H11119.2
O1—C4—C5118.5 (3)C12—C11—H11119.2
C6—C5—C4125.7 (3)C13—C12—C11118.8 (4)
C6—C5—H5117.1C13—C12—H12120.6
C4—C5—H5117.1C11—C12—H12120.6
C5—C6—C7121.6 (3)C12—C13—C8122.0 (4)
C5—C6—H6119.2C12—C13—H13119.0
C7—C6—H6119.2C8—C13—H13119.0
O2—C7—C6119.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O20.821.842.544 (4)144
C1—H1···O2i0.932.593.400 (5)146
C3—H3A···O3ii0.932.593.504 (5)169
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x+2, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC13H10O3
Mr214.21
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)3.8560 (5), 15.6565 (14), 17.309 (2)
β (°) 95.065 (2)
V3)1040.9 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.27 × 0.25 × 0.07
Data collection
DiffractometerSiemens SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.974, 0.993
No. of measured, independent and
observed [I > 2σ(I)] reflections
5153, 1848, 668
Rint0.126
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.067, 0.184, 0.81
No. of reflections1848
No. of parameters146
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.19

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O20.821.842.544 (4)143.8
C1—H1···O2i0.932.593.400 (5)145.7
C3—H3A···O3ii0.932.593.504 (5)168.8
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x+2, y1/2, z+3/2.
 

Acknowledgements

This project was supported by the Foundation of Dongchang College, Liaocheng University (grant No. LG0801).

References

First citationLi, Z.-D., Huang, L.-Z., Su, G.-B. & Wang, H.-Y. (1992). Chin. J. Struct. Chem. 11, 1–4.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds