metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­chlorido(2,6-dipyrazol-1-ylpyridine)zinc(II)

aDepartment of Chemistry and Chemical Engineering, Binzhou University, Binzhou 256603, People's Republic of China, and bDepartment of Chemistry, Shandong Normal University, Jinan 250014, People's Republic of China
*Correspondence e-mail: yangzhongnian1978@yahoo.com.cn

(Received 20 September 2008; accepted 26 September 2008; online 9 October 2008)

In the title complex, [ZnCl2(C11H9N5)], the ZnII ion assumes a distorted trigonal–bipyramidal ZnN3Cl2 coordination geometry [Zn—N = 2.1397 (16)–2.2117 (17) Å, Zn—Cl = 2.2470 (6) and 2.2564 (6) Å]. The crystal packing exhibits ππ stacking inter­actions between the 2,6-dipyrazol-1-ylpyridine ligands of neighbouring mol­ecules.

Related literature

For the related crystal structure of dichlorido­[2,6-bis(pyrazol­yl­meth­yl)pyridine]zinc(II), see Balamurugan et al. (2004[Balamurugan, V., Hundal, M. S. & Mukherjee, R. (2004). Chem. Eur. J. 10, 1683-1690.]).

[Scheme 1]

Experimental

Crystal data
  • [ZnCl2(C11H9N5)]

  • Mr = 347.50

  • Monoclinic, P 21 /c

  • a = 10.9630 (17) Å

  • b = 8.0263 (13) Å

  • c = 14.943 (2) Å

  • β = 93.079 (2)°

  • V = 1313.0 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.27 mm−1

  • T = 298 (2) K

  • 0.48 × 0.42 × 0.29 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.409, Tmax = 0.559 (expected range = 0.379–0.518)

  • 7375 measured reflections

  • 2848 independent reflections

  • 2431 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.078

  • S = 1.05

  • 2848 reflections

  • 173 parameters

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Selected interatomic distances (Å)

Cg1, Cg2 and Cg3 are the centroids of the C4/N1/N4/N5/Zn1, C1–C3/N4/N5 and C4–C8/N1 rings, respectively.

Cg1⋯Cg2i 3.4087 (12)
Cg2⋯Cg3i 3.6253 (13)
Symmetry code: (i) -x+1, -y, -z.

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and local programs.

Supporting information


Comment top

2,6-Dipyrazol-1-ylpyridine and the relevant homologues as a tridentate ligand play an important role in modern coordination chemistry (Balamurugan et al., 2004), and the interest in complexes with 2,6-dipyrazol-1-ylpyridine ligand stimulted us to prepare the title complex, (I). Herein we report its crystal structure.

In (I) (Fig. 1), each ZnII ion has a distorted trigonal-bipyramidal coordination environment. In the crystal, there exist π-π stacking interactions involving symmetry related 2,6-dipyrazol-1-ylpyridine ligands (Talbe 1).

Related literature top

For the related crystal structure of dichloro[dichlorido?][2,6-bis(pyrazolylmethyl)pyridine]zinc(II), see Balamurugan et al. (2004).

Experimental top

15 ml me thanol solution containing 2,6-dipyrazol-1-ylpyridine (0.0522 g, 0.247 mmol) and pyrazine-1,4-dioxide (0.0414 g, 0.369 mmol) was added into 5 ml H2O solution of ZnCl2 (0.0783 g, 0.575 mmol), and the mixed solution was stirred for a few minutes. Colorless single crystals were obtained after the filtrate was allowed to stand at room temperature for 40 days.

Refinement top

All H atoms were placed in calculated positions with C—H = 0.93 Å and refined as riding with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and local programs.

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atomic numbering and 30% probability displacement ellipsoids.
Dichlorido(2,6-dipyrazol-1-ylpyridine)zinc(II) top
Crystal data top
[ZnCl2(C11H9N5)]F(000) = 696
Mr = 347.50Dx = 1.758 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3889 reflections
a = 10.9630 (17) Åθ = 2.4–28.2°
b = 8.0263 (13) ŵ = 2.27 mm1
c = 14.943 (2) ÅT = 298 K
β = 93.079 (2)°Block, colourless
V = 1313.0 (4) Å30.48 × 0.42 × 0.29 mm
Z = 4
Data collection top
Bruker SMART APEX CCD
diffractometer
2848 independent reflections
Radiation source: fine-focus sealed tube2431 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
ϕ and ω scansθmax = 27.0°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 914
Tmin = 0.409, Tmax = 0.559k = 910
7375 measured reflectionsl = 1618
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.029H-atom parameters constrained
wR(F2) = 0.078 w = 1/[σ2(Fo2) + (0.0445P)2 + 0.0869P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.002
2848 reflectionsΔρmax = 0.28 e Å3
173 parametersΔρmin = 0.32 e Å3
0 restraintsExtinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0167 (11)
Crystal data top
[ZnCl2(C11H9N5)]V = 1313.0 (4) Å3
Mr = 347.50Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.9630 (17) ŵ = 2.27 mm1
b = 8.0263 (13) ÅT = 298 K
c = 14.943 (2) Å0.48 × 0.42 × 0.29 mm
β = 93.079 (2)°
Data collection top
Bruker SMART APEX CCD
diffractometer
2848 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2431 reflections with I > 2σ(I)
Tmin = 0.409, Tmax = 0.559Rint = 0.030
7375 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0290 restraints
wR(F2) = 0.078H-atom parameters constrained
S = 1.05Δρmax = 0.28 e Å3
2848 reflectionsΔρmin = 0.32 e Å3
173 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.47097 (18)0.3058 (2)0.04770 (16)0.0447 (5)
H10.44650.35250.10080.054*
C20.40961 (19)0.3275 (3)0.03549 (17)0.0478 (5)
H20.33890.38910.04810.057*
C30.47479 (18)0.2396 (2)0.09475 (16)0.0440 (5)
H30.45720.22920.15610.053*
C40.66172 (17)0.0609 (2)0.07399 (13)0.0349 (4)
C50.66885 (19)0.0026 (3)0.16015 (14)0.0448 (5)
H50.61470.03870.20620.054*
C60.7591 (2)0.1111 (3)0.17553 (16)0.0487 (5)
H60.76630.15330.23300.058*
C70.8394 (2)0.1637 (3)0.10659 (15)0.0442 (5)
H70.89980.24230.11600.053*
C80.82578 (17)0.0944 (2)0.02369 (14)0.0357 (4)
C90.99689 (18)0.2410 (2)0.06325 (16)0.0454 (5)
H91.02750.30880.01920.054*
C101.0387 (2)0.2314 (3)0.14943 (17)0.0502 (6)
H101.10360.29030.17670.060*
C110.9647 (2)0.1152 (3)0.18931 (17)0.0491 (6)
H110.97300.08370.24920.059*
Cl10.65199 (5)0.06053 (7)0.25184 (4)0.05045 (17)
Cl20.83525 (5)0.37392 (6)0.12155 (4)0.04545 (15)
N10.74008 (13)0.01621 (18)0.00710 (10)0.0327 (3)
N20.90163 (15)0.13336 (19)0.05243 (12)0.0374 (4)
N30.88095 (15)0.0554 (2)0.13084 (11)0.0417 (4)
N40.57069 (14)0.1699 (2)0.04655 (11)0.0366 (4)
N50.56823 (14)0.2105 (2)0.04169 (11)0.0385 (4)
Zn10.73202 (2)0.13073 (3)0.121755 (15)0.03696 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0377 (11)0.0347 (10)0.0624 (14)0.0040 (8)0.0090 (10)0.0009 (10)
C20.0347 (10)0.0363 (10)0.0721 (16)0.0005 (9)0.0004 (10)0.0102 (10)
C30.0360 (10)0.0439 (11)0.0512 (13)0.0045 (9)0.0066 (9)0.0124 (9)
C40.0329 (10)0.0332 (9)0.0386 (11)0.0072 (7)0.0014 (8)0.0020 (8)
C50.0441 (11)0.0538 (12)0.0361 (11)0.0052 (10)0.0025 (9)0.0023 (9)
C60.0539 (13)0.0570 (13)0.0357 (12)0.0052 (10)0.0062 (10)0.0076 (10)
C70.0428 (12)0.0470 (11)0.0435 (12)0.0032 (9)0.0071 (9)0.0029 (9)
C80.0338 (10)0.0337 (9)0.0400 (11)0.0062 (8)0.0054 (8)0.0026 (8)
C90.0392 (11)0.0374 (11)0.0599 (15)0.0031 (9)0.0064 (10)0.0053 (9)
C100.0414 (11)0.0469 (12)0.0613 (15)0.0030 (9)0.0047 (10)0.0154 (11)
C110.0458 (12)0.0549 (13)0.0460 (14)0.0010 (10)0.0036 (10)0.0090 (10)
Cl10.0523 (3)0.0611 (4)0.0389 (3)0.0069 (2)0.0112 (2)0.0012 (2)
Cl20.0431 (3)0.0428 (3)0.0500 (3)0.0086 (2)0.0017 (2)0.0035 (2)
N10.0309 (8)0.0332 (8)0.0338 (9)0.0042 (6)0.0000 (7)0.0014 (7)
N20.0348 (9)0.0376 (9)0.0400 (10)0.0006 (6)0.0034 (7)0.0025 (7)
N30.0413 (9)0.0486 (10)0.0351 (9)0.0030 (8)0.0022 (7)0.0011 (7)
N40.0316 (8)0.0370 (8)0.0407 (10)0.0038 (7)0.0015 (7)0.0037 (7)
N50.0359 (9)0.0376 (9)0.0419 (10)0.0029 (7)0.0022 (7)0.0007 (7)
Zn10.03632 (16)0.04045 (17)0.03418 (17)0.00377 (9)0.00263 (10)0.00260 (9)
Geometric parameters (Å, º) top
C1—N51.319 (3)C8—N11.325 (2)
C1—C21.392 (3)C8—N21.408 (3)
C1—H10.9300C9—C101.346 (3)
C2—C31.364 (3)C9—N21.358 (2)
C2—H20.9300C9—H90.9300
C3—N41.362 (2)C10—C111.391 (3)
C3—H30.9300C10—H100.9300
C4—N11.332 (2)C11—N31.323 (3)
C4—C51.376 (3)C11—H110.9300
C4—N41.405 (2)Cl1—Zn12.2470 (6)
C5—C61.374 (3)Cl2—Zn12.2564 (6)
C5—H50.9300N1—Zn12.1397 (16)
C6—C71.385 (3)N2—N31.358 (2)
C6—H60.9300N3—Zn12.2117 (17)
C7—C81.374 (3)N4—N51.360 (2)
C7—H70.9300N5—Zn12.1988 (16)
Cg1···Cg2i3.4087 (12)Cg2···Cg3i3.6253 (13)
N5—C1—C2111.4 (2)C11—C10—H10127.1
N5—C1—H1124.3N3—C11—C10111.1 (2)
C2—C1—H1124.3N3—C11—H11124.4
C3—C2—C1105.67 (19)C10—C11—H11124.4
C3—C2—H2127.2C8—N1—C4118.37 (17)
C1—C2—H2127.2C8—N1—Zn1121.33 (13)
N4—C3—C2106.6 (2)C4—N1—Zn1120.23 (13)
N4—C3—H3126.7C9—N2—N3110.69 (17)
C2—C3—H3126.7C9—N2—C8130.90 (18)
N1—C4—C5122.93 (18)N3—N2—C8118.41 (16)
N1—C4—N4112.86 (17)C11—N3—N2105.09 (18)
C5—C4—N4124.19 (18)C11—N3—Zn1140.30 (16)
C6—C5—C4117.4 (2)N2—N3—Zn1114.53 (12)
C6—C5—H5121.3N5—N4—C3111.07 (17)
C4—C5—H5121.3N5—N4—C4118.92 (16)
C5—C6—C7120.8 (2)C3—N4—C4129.90 (18)
C5—C6—H6119.6C1—N5—N4105.25 (17)
C7—C6—H6119.6C1—N5—Zn1140.46 (15)
C8—C7—C6116.84 (19)N4—N5—Zn1113.56 (11)
C8—C7—H7121.6N1—Zn1—N572.99 (6)
C6—C7—H7121.6N1—Zn1—N372.49 (6)
N1—C8—C7123.55 (19)N5—Zn1—N3143.97 (6)
N1—C8—N2113.06 (17)N1—Zn1—Cl1135.05 (4)
C7—C8—N2123.38 (18)N5—Zn1—Cl1101.44 (5)
C10—C9—N2107.3 (2)N3—Zn1—Cl195.67 (5)
C10—C9—H9126.3N1—Zn1—Cl2108.99 (4)
N2—C9—H9126.3N5—Zn1—Cl298.18 (5)
C9—C10—C11105.8 (2)N3—Zn1—Cl2102.45 (5)
C9—C10—H10127.1Cl1—Zn1—Cl2115.93 (2)
N5—C1—C2—C30.1 (2)C5—C4—N4—N5175.69 (18)
C1—C2—C3—N40.1 (2)N1—C4—N4—C3178.85 (18)
N1—C4—C5—C62.3 (3)C5—C4—N4—C30.2 (3)
N4—C4—C5—C6176.27 (18)C2—C1—N5—N40.2 (2)
C4—C5—C6—C70.2 (3)C2—C1—N5—Zn1169.07 (15)
C5—C6—C7—C81.3 (3)C3—N4—N5—C10.3 (2)
C6—C7—C8—N10.9 (3)C4—N4—N5—C1176.86 (16)
C6—C7—C8—N2178.97 (18)C3—N4—N5—Zn1172.54 (12)
N2—C9—C10—C110.3 (2)C4—N4—N5—Zn110.85 (19)
C9—C10—C11—N30.0 (3)C8—N1—Zn1—N5173.52 (14)
C7—C8—N1—C41.0 (3)C4—N1—Zn1—N59.64 (13)
N2—C8—N1—C4179.07 (15)C8—N1—Zn1—N34.01 (13)
C7—C8—N1—Zn1175.88 (15)C4—N1—Zn1—N3179.15 (15)
N2—C8—N1—Zn14.0 (2)C8—N1—Zn1—Cl184.26 (14)
C5—C4—N1—C82.7 (3)C4—N1—Zn1—Cl198.90 (13)
N4—C4—N1—C8176.00 (15)C8—N1—Zn1—Cl293.49 (13)
C5—C4—N1—Zn1174.24 (14)C4—N1—Zn1—Cl283.35 (13)
N4—C4—N1—Zn17.1 (2)C1—N5—Zn1—N1178.6 (2)
C10—C9—N2—N30.4 (2)N4—N5—Zn1—N110.30 (11)
C10—C9—N2—C8179.88 (19)C1—N5—Zn1—N3164.27 (19)
N1—C8—N2—C9178.77 (18)N4—N5—Zn1—N327.46 (18)
C7—C8—N2—C91.3 (3)C1—N5—Zn1—Cl147.6 (2)
N1—C8—N2—N30.9 (2)N4—N5—Zn1—Cl1144.18 (11)
C7—C8—N2—N3179.04 (18)C1—N5—Zn1—Cl271.1 (2)
C10—C11—N3—N20.3 (2)N4—N5—Zn1—Cl297.15 (12)
C10—C11—N3—Zn1176.68 (16)C11—N3—Zn1—N1179.3 (2)
C9—N2—N3—C110.4 (2)N2—N3—Zn1—N13.17 (12)
C8—N2—N3—C11179.84 (17)C11—N3—Zn1—N5163.4 (2)
C9—N2—N3—Zn1177.92 (12)N2—N3—Zn1—N520.38 (19)
C8—N2—N3—Zn12.4 (2)C11—N3—Zn1—Cl145.1 (2)
C2—C3—N4—N50.2 (2)N2—N3—Zn1—Cl1138.76 (12)
C2—C3—N4—C4176.33 (18)C11—N3—Zn1—Cl273.1 (2)
N1—C4—N4—N53.0 (2)N2—N3—Zn1—Cl2103.08 (12)
Symmetry code: (i) x+1, y, z.

Experimental details

Crystal data
Chemical formula[ZnCl2(C11H9N5)]
Mr347.50
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)10.9630 (17), 8.0263 (13), 14.943 (2)
β (°) 93.079 (2)
V3)1313.0 (4)
Z4
Radiation typeMo Kα
µ (mm1)2.27
Crystal size (mm)0.48 × 0.42 × 0.29
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.409, 0.559
No. of measured, independent and
observed [I > 2σ(I)] reflections
7375, 2848, 2431
Rint0.030
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.078, 1.05
No. of reflections2848
No. of parameters173
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.28, 0.32

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXTL (Sheldrick, 2008) and local programs.

Selected interatomic distances (Å) top
Cg1···Cg2i3.4087 (12)Cg2···Cg3i3.6253 (13)
Symmetry code: (i) x+1, y, z.
 

Acknowledgements

This work was supported by the Doctor's Foundation of Binzhou University.

References

First citationBalamurugan, V., Hundal, M. S. & Mukherjee, R. (2004). Chem. Eur. J. 10, 1683–1690.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds