organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-{Eth­yl[(E)-4-(4-pyridylvin­yl)phenyl]­amino}benzaldehyde

aDepartment of Chemistry, Huainan Normal University, Huainan 232001, People's Republic of China, and bDepartment of Chemistry, Anhui University, Hefei 230039, People's Republic of China
*Correspondence e-mail: liudaofu1202@126.com

(Received 21 September 2008; accepted 28 September 2008; online 4 October 2008)

In the title mol­ecule, C22H20N2O, the central aromatic ring forms dihedral angles of 45.30 (2) and 69.43 (2)°, respectively, with the outer pyridine and benzene rings. In the crystal structure, weak inter­molecular C—H⋯O inter­actions link the mol­ecules into layers parallel to the ab plane.

Related literature

For related structure information, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For general background, see: Marder (2006[Marder, S. R. (2006). Chem. Commun. pp. 131-134.]).

[Scheme 1]

Experimental

Crystal data
  • C22H20N2O

  • Mr = 328.40

  • Triclinic, [P \overline 1]

  • a = 8.8338 (14) Å

  • b = 9.5747 (18) Å

  • c = 10.472 (2) Å

  • α = 86.621 (2)°

  • β = 84.276 (1)°

  • γ = 83.886 (1)°

  • V = 875.3 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 298 (2) K

  • 0.50 × 0.40 × 0.36 mm

Data collection
  • Bruker SMART area-dectector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2002[Bruker (2002). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.963, Tmax = 0.973

  • 4562 measured reflections

  • 3036 independent reflections

  • 2092 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.067

  • wR(F2) = 0.209

  • S = 1.02

  • 3036 reflections

  • 228 parameters

  • H-atom parameters constrained

  • Δρmax = 0.59 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C21—H21B⋯O1i 0.97 2.60 3.384 (4) 138
C15—H15⋯O1ii 0.93 2.63 3.553 (4) 175
Symmetry codes: (i) x+1, y, z; (ii) x+1, y-1, z.

Data collection: SMART (Bruker, 2002[Bruker (2002). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPII (Johnson, 1976[Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Nonlinear optical (NLO) organic materials have been extensively studied due to their broad applications in the area of electronics and photonics (Marder, 2006). It has been found that the delocalized conjugated electrons contribute to enhancing the NLO response through their capability for hyperpolarization. As a part of our ongoing investigation of NLO materials, the title compound has been prepared. Its crystal structure is presented here.

The molecular structure of the title compound is shown in Fig. 1. Bond lengths and angles in the molecule are in agreement with the values reported in the literature (Allen et al., 1987). The C11—C14 and C15—C18 bond lengths are indicative of double-bond character. Therefore, there is a high electron delocalization in the π-system of the molecule. The dihedral angle formed by the pyridine ring and C8—C13 benzene ring is 45.30 (2)°.

In the crystal, weak intermolecular C—H···O interactions (Table 1) link the molecules into layers parallel to ab plane.

Related literature top

For related literature, see: Allen et al. (1987); Marder (2006). [From the Section Editors: It would be much more useful to readers if the "Related literature" section had some kind of simple sub-division, so that, instead of just "For related literature, see···" it said, for example, "For general background, see···. For related structures, see···." etc. Please revise this section as indicated.]

Experimental top

For the preparation of 4-(N-ethyl-N-(4-((E)-2-(pyridin-4-yl) vinyl)phenyl)amino)benzaldehyde: A mixture of 4-(N-ethyl-N-(4-iodophenyl)amino)benzaldehyde (3.15 g, 10 mmol), Pd(OAc)2 (0.0330 g), triethylamine (15 ml) and 4-vinylpyridine (15 ml) were heated at 363 K with CH3CN (40 ml) as solvent for 40 h under nitrogen. The mixture was cooled to room temperature and added to 500 ml water. Plentiful yellow solid was obtained by filtration. This was dissolved in dichloromethane. The solution was washed twice with water, dried over anhydrous magnesium sulfate, then filtered and concentrated. The resulting solution was purified by flash column chromatography with dichloromethane as eluent to give light yellow crystals (1.95 mg, yield 56%).

Refinement top

All hydrogen atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.93–0.97 Å and Uiso(H) = 1.2 or 1.5 Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing 30% probability displacement ellipsoids.
4-{Ethyl[(E)-4-(4-pyridylvinyl)phenyl]amino}benzaldehyde top
Crystal data top
C22H20N2OZ = 2
Mr = 328.40F(000) = 348
Triclinic, P1Dx = 1.246 Mg m3
a = 8.8338 (14) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.5747 (18) ÅCell parameters from 1751 reflections
c = 10.472 (2) Åθ = 2.3–27.2°
α = 86.621 (2)°µ = 0.08 mm1
β = 84.276 (1)°T = 298 K
γ = 83.886 (1)°Block, yellow
V = 875.3 (3) Å30.50 × 0.40 × 0.36 mm
Data collection top
Bruker APEX area-dectector
diffractometer
3036 independent reflections
Radiation source: fine-focus sealed tube2092 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ϕ and ω scansθmax = 25.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 1010
Tmin = 0.963, Tmax = 0.973k = 1111
4562 measured reflectionsl = 129
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.067H-atom parameters constrained
wR(F2) = 0.210 w = 1/[σ2(Fo2) + (0.0993P)2 + 0.5822P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
3036 reflectionsΔρmax = 0.59 e Å3
228 parametersΔρmin = 0.22 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.053 (9)
Crystal data top
C22H20N2Oγ = 83.886 (1)°
Mr = 328.40V = 875.3 (3) Å3
Triclinic, P1Z = 2
a = 8.8338 (14) ÅMo Kα radiation
b = 9.5747 (18) ŵ = 0.08 mm1
c = 10.472 (2) ÅT = 298 K
α = 86.621 (2)°0.50 × 0.40 × 0.36 mm
β = 84.276 (1)°
Data collection top
Bruker APEX area-dectector
diffractometer
3036 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
2092 reflections with I > 2σ(I)
Tmin = 0.963, Tmax = 0.973Rint = 0.023
4562 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0670 restraints
wR(F2) = 0.210H-atom parameters constrained
S = 1.02Δρmax = 0.59 e Å3
3036 reflectionsΔρmin = 0.22 e Å3
228 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.6686 (3)0.5962 (2)0.8163 (2)0.0589 (7)
N20.8199 (3)0.3738 (3)0.3196 (3)0.0651 (7)
O10.0027 (3)0.9357 (3)0.8369 (3)0.0855 (8)
C10.1224 (4)0.9637 (3)0.8579 (3)0.0670 (9)
H10.12991.05400.88310.080*
C20.2628 (3)0.8680 (3)0.8471 (3)0.0543 (7)
C30.4016 (4)0.9124 (3)0.8714 (3)0.0637 (9)
H30.40351.00410.89560.076*
C40.5361 (4)0.8255 (3)0.8609 (3)0.0610 (8)
H40.62690.85890.87740.073*
C50.5362 (3)0.6866 (3)0.8254 (3)0.0502 (7)
C60.3954 (3)0.6420 (3)0.8015 (3)0.0503 (7)
H60.39210.55010.77870.060*
C70.2630 (3)0.7309 (3)0.8109 (2)0.0509 (7)
H70.17200.69890.79280.061*
C80.6755 (3)0.4681 (3)0.7520 (3)0.0502 (7)
C90.6535 (3)0.4731 (3)0.6235 (3)0.0496 (7)
H90.62910.55940.58100.060*
C100.6671 (3)0.3521 (3)0.5574 (3)0.0522 (7)
H100.64990.35770.47100.063*
C110.7055 (3)0.2228 (3)0.6162 (3)0.0518 (7)
C120.7281 (4)0.2186 (3)0.7447 (3)0.0635 (8)
H120.75440.13240.78670.076*
C130.7127 (4)0.3398 (3)0.8128 (3)0.0633 (8)
H130.72750.33430.89970.076*
C140.7174 (3)0.0976 (3)0.5376 (3)0.0604 (8)
H140.66890.10840.46220.073*
C150.7878 (3)0.0247 (3)0.5623 (3)0.0611 (8)
H150.83730.03810.63710.073*
C160.7031 (4)0.2750 (3)0.3192 (3)0.0608 (8)
H160.62790.28370.26490.073*
C170.6865 (3)0.1606 (3)0.3941 (3)0.0600 (8)
H170.60280.09360.38820.072*
C180.7943 (3)0.1442 (3)0.4789 (3)0.0545 (7)
C190.9135 (3)0.2486 (3)0.4816 (3)0.0643 (8)
H190.98820.24580.53780.077*
C200.9211 (4)0.3565 (3)0.4006 (3)0.0676 (9)
H201.00500.42380.40270.081*
C210.8183 (4)0.6392 (3)0.8480 (3)0.0650 (8)
H21A0.90100.57500.81060.078*
H21B0.83130.73270.81020.078*
C220.8276 (5)0.6394 (4)0.9886 (4)0.0863 (11)
H22A0.74730.70451.02570.129*
H22B0.92490.66711.00490.129*
H22C0.81650.54671.02620.129*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0578 (15)0.0496 (14)0.0732 (16)0.0037 (11)0.0218 (12)0.0252 (12)
N20.0703 (17)0.0542 (16)0.0700 (17)0.0036 (13)0.0055 (14)0.0210 (13)
O10.0712 (16)0.0721 (16)0.112 (2)0.0133 (13)0.0176 (14)0.0154 (14)
C10.078 (2)0.0516 (18)0.071 (2)0.0061 (16)0.0103 (17)0.0125 (15)
C20.0678 (19)0.0442 (16)0.0501 (15)0.0073 (13)0.0110 (13)0.0101 (12)
C30.083 (2)0.0386 (16)0.072 (2)0.0053 (15)0.0229 (17)0.0201 (14)
C40.0686 (19)0.0464 (17)0.0721 (19)0.0005 (14)0.0229 (16)0.0194 (14)
C50.0638 (18)0.0415 (15)0.0471 (15)0.0014 (13)0.0145 (13)0.0127 (11)
C60.0606 (17)0.0398 (15)0.0516 (15)0.0025 (12)0.0052 (13)0.0142 (12)
C70.0568 (17)0.0490 (16)0.0468 (15)0.0011 (13)0.0048 (12)0.0100 (12)
C80.0500 (15)0.0428 (15)0.0591 (17)0.0025 (12)0.0129 (13)0.0148 (12)
C90.0467 (15)0.0452 (15)0.0567 (16)0.0033 (12)0.0089 (12)0.0077 (12)
C100.0503 (16)0.0568 (18)0.0496 (15)0.0012 (13)0.0050 (12)0.0145 (13)
C110.0479 (15)0.0506 (17)0.0574 (17)0.0021 (12)0.0007 (12)0.0187 (13)
C120.073 (2)0.0423 (16)0.073 (2)0.0076 (14)0.0090 (16)0.0042 (14)
C130.082 (2)0.0547 (18)0.0540 (17)0.0067 (16)0.0181 (15)0.0105 (14)
C140.0536 (17)0.0574 (19)0.0694 (19)0.0020 (14)0.0002 (14)0.0120 (15)
C150.0547 (17)0.061 (2)0.0684 (19)0.0023 (15)0.0059 (15)0.0121 (15)
C160.0619 (19)0.0567 (18)0.0651 (18)0.0082 (15)0.0029 (15)0.0167 (15)
C170.0506 (17)0.0494 (17)0.077 (2)0.0035 (13)0.0046 (15)0.0106 (15)
C180.0506 (16)0.0512 (17)0.0626 (17)0.0125 (13)0.0054 (13)0.0165 (13)
C190.0490 (17)0.071 (2)0.073 (2)0.0028 (15)0.0025 (14)0.0155 (16)
C200.0600 (19)0.060 (2)0.078 (2)0.0078 (15)0.0071 (16)0.0132 (17)
C210.0648 (19)0.0600 (19)0.071 (2)0.0030 (15)0.0064 (15)0.0157 (15)
C220.098 (3)0.084 (3)0.081 (2)0.003 (2)0.033 (2)0.012 (2)
Geometric parameters (Å, º) top
N1—C51.378 (3)C11—C121.377 (4)
N1—C81.426 (3)C11—C141.483 (4)
N1—C211.500 (4)C12—C131.385 (4)
N2—C201.321 (4)C12—H120.9300
N2—C161.323 (4)C13—H130.9300
O1—C11.208 (4)C14—C151.291 (4)
C1—C21.461 (4)C14—H140.9300
C1—H10.9300C15—C181.473 (4)
C2—C71.388 (4)C15—H150.9300
C2—C31.391 (4)C16—C171.372 (4)
C3—C41.374 (4)C16—H160.9300
C3—H30.9300C17—C181.391 (4)
C4—C51.402 (4)C17—H170.9300
C4—H40.9300C18—C191.374 (4)
C5—C61.408 (4)C19—C201.367 (4)
C6—C71.370 (4)C19—H190.9300
C6—H60.9300C20—H200.9300
C7—H70.9300C21—C221.482 (5)
C8—C131.373 (4)C21—H21A0.9700
C8—C91.375 (4)C21—H21B0.9700
C9—C101.373 (4)C22—H22A0.9600
C9—H90.9300C22—H22B0.9600
C10—C111.375 (4)C22—H22C0.9600
C10—H100.9300
C5—N1—C8120.6 (2)C11—C12—H12119.3
C5—N1—C21122.0 (2)C13—C12—H12119.3
C8—N1—C21116.3 (2)C8—C13—C12120.0 (3)
C20—N2—C16115.0 (3)C8—C13—H13120.0
O1—C1—C2125.7 (3)C12—C13—H13120.0
O1—C1—H1117.2C15—C14—C11127.0 (3)
C2—C1—H1117.2C15—C14—H14116.5
C7—C2—C3117.8 (3)C11—C14—H14116.5
C7—C2—C1121.4 (3)C14—C15—C18123.7 (3)
C3—C2—C1120.8 (3)C14—C15—H15118.1
C4—C3—C2122.3 (3)C18—C15—H15118.1
C4—C3—H3118.9N2—C16—C17123.9 (3)
C2—C3—H3118.9N2—C16—H16118.1
C3—C4—C5120.0 (3)C17—C16—H16118.1
C3—C4—H4120.0C16—C17—C18120.3 (3)
C5—C4—H4120.0C16—C17—H17119.8
N1—C5—C4121.4 (3)C18—C17—H17119.8
N1—C5—C6121.1 (2)C19—C18—C17115.8 (3)
C4—C5—C6117.5 (3)C19—C18—C15119.7 (3)
C7—C6—C5121.6 (3)C17—C18—C15124.5 (3)
C7—C6—H6119.2C20—C19—C18119.2 (3)
C5—C6—H6119.2C20—C19—H19120.4
C6—C7—C2120.8 (3)C18—C19—H19120.4
C6—C7—H7119.6N2—C20—C19125.8 (3)
C2—C7—H7119.6N2—C20—H20117.1
C13—C8—C9118.8 (3)C19—C20—H20117.1
C13—C8—N1121.8 (3)C22—C21—N1112.0 (3)
C9—C8—N1119.3 (3)C22—C21—H21A109.2
C10—C9—C8120.7 (3)N1—C21—H21A109.2
C10—C9—H9119.6C22—C21—H21B109.2
C8—C9—H9119.6N1—C21—H21B109.2
C9—C10—C11121.4 (3)H21A—C21—H21B107.9
C9—C10—H10119.3C21—C22—H22A109.5
C11—C10—H10119.3C21—C22—H22B109.5
C10—C11—C12117.6 (3)H22A—C22—H22B109.5
C10—C11—C14117.8 (3)C21—C22—H22C109.5
C12—C11—C14124.6 (3)H22A—C22—H22C109.5
C11—C12—C13121.5 (3)H22B—C22—H22C109.5
O1—C1—C2—C70.4 (5)C9—C10—C11—C120.8 (4)
O1—C1—C2—C3178.8 (3)C9—C10—C11—C14179.9 (3)
C7—C2—C3—C40.2 (5)C10—C11—C12—C130.1 (5)
C1—C2—C3—C4179.4 (3)C14—C11—C12—C13178.9 (3)
C2—C3—C4—C50.4 (5)C9—C8—C13—C120.3 (5)
C8—N1—C5—C4165.1 (3)N1—C8—C13—C12175.7 (3)
C21—N1—C5—C42.2 (4)C11—C12—C13—C80.7 (5)
C8—N1—C5—C615.9 (4)C10—C11—C14—C15160.8 (3)
C21—N1—C5—C6176.8 (3)C12—C11—C14—C1520.1 (5)
C3—C4—C5—N1178.9 (3)C11—C14—C15—C18180.0 (3)
C3—C4—C5—C60.1 (4)C20—N2—C16—C171.2 (5)
N1—C5—C6—C7179.7 (3)N2—C16—C17—C181.3 (5)
C4—C5—C6—C70.7 (4)C16—C17—C18—C190.3 (4)
C5—C6—C7—C21.3 (4)C16—C17—C18—C15179.3 (3)
C3—C2—C7—C61.0 (4)C14—C15—C18—C19154.8 (3)
C1—C2—C7—C6179.8 (3)C14—C15—C18—C1724.9 (5)
C5—N1—C8—C13122.4 (3)C17—C18—C19—C201.9 (4)
C21—N1—C8—C1369.6 (4)C15—C18—C19—C20177.8 (3)
C5—N1—C8—C961.7 (4)C16—N2—C20—C190.5 (5)
C21—N1—C8—C9106.4 (3)C18—C19—C20—N22.1 (5)
C13—C8—C9—C100.6 (4)C5—N1—C21—C2276.9 (4)
N1—C8—C9—C10176.6 (2)C8—N1—C21—C22115.3 (3)
C8—C9—C10—C111.1 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C21—H21B···O1i0.972.603.384 (4)138
C15—H15···O1ii0.932.633.553 (4)175
Symmetry codes: (i) x+1, y, z; (ii) x+1, y1, z.

Experimental details

Crystal data
Chemical formulaC22H20N2O
Mr328.40
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)8.8338 (14), 9.5747 (18), 10.472 (2)
α, β, γ (°)86.621 (2), 84.276 (1), 83.886 (1)
V3)875.3 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.50 × 0.40 × 0.36
Data collection
DiffractometerBruker APEX area-dectector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2002)
Tmin, Tmax0.963, 0.973
No. of measured, independent and
observed [I > 2σ(I)] reflections
4562, 3036, 2092
Rint0.023
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.067, 0.210, 1.02
No. of reflections3036
No. of parameters228
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.59, 0.22

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPII (Johnson, 1976).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C21—H21B···O1i0.972.603.384 (4)138
C15—H15···O1ii0.932.633.553 (4)175
Symmetry codes: (i) x+1, y, z; (ii) x+1, y1, z.
 

Acknowledgements

We thank Professor D.-Q. Wang of Liaocheng University for hie assistance in the X-ray structure determination.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2002). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationJohnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationMarder, S. R. (2006). Chem. Commun. pp. 131–134.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds