organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(m-Phenyl­enedi­methyl­ene)di­ammonium dichloride

aDepartment of Chemistry and Biology, Xiangfan University, Xiangfan 441053, People's Republic of China
*Correspondence e-mail: chenghua510@yahoo.com.cn

(Received 22 September 2008; accepted 27 September 2008; online 4 October 2008)

The asymmetric unit of the title compound, C8H14N22+·2Cl, contains one and a half of the dications and three chloride anions. The half molecule is completed by crystallographic twofold symmetry with two C atoms lying on the rotation axis. The two ammonium groups in each cation adopt a trans conformation with respect ot the benzene ring. The ammonium groups and chloride anions are involved in the formation of a three-dimensional N—H⋯Cl hydrogen-bonding network, which stabilizes the crystal packing.

Related literature

For general background and applications, see: Pasini & Zunino (1987[Pasini, A. & Zunino, F. (1987). Angew. Chem. Int. Ed. Engl. 26, 615-624.]); Otsuka et al. (1990[Otsuka, M., Masuda, T., Haupt, A., Ohno, M., Shiraki, T., Sugiura, Y. & Maeda, K. (1990). J. Am. Chem. Soc. 112, 838-845.]); Michalson & Smuszkovicz (1989[Michalson, E. T. & Smuszkovicz, J. (1989). Prog. Drug. Res. 33, 135-149.]); Reedijk (1996[Reedijk, J. J. (1996). J. Chem. Soc. Chem. Commun. pp. 801-806.]); Blaser (1992[Blaser, H. U. (1992). Chem. Rev. 92, 935-952.]); Soai & Niwa (1992[Soai, K. & Niwa, S. (1992). Chem. Rev. 92, 833-856.]); Jacobsen (1993[Jacobsen, E. N. (1993). Catalytic Asymmetric Synthesis, pp. 159-202. New York: VCH.]); Kolb et al. (1994[Kolb, H. C., VanNieuwenhze, M. S. & Sharpless, K. B. (1994). Chem. Rev. 94, 2483-2547.]).

[Scheme 1]

Experimental

Crystal data
  • C8H14N22+·2Cl

  • Mr = 209.11

  • Monoclinic, C 2/c

  • a = 27.5859 (18) Å

  • b = 13.1594 (14) Å

  • c = 8.8324 (6) Å

  • β = 103.539 (1)°

  • V = 3117.2 (4) Å3

  • Z = 12

  • Mo Kα radiation

  • μ = 0.58 mm−1

  • T = 298 (2) K

  • 0.20 × 0.10 × 0.10 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1997[Sheldrick, G. M. (1997). SADABS. University of Göttingen, Germany.]) Tmin = 0.893, Tmax = 0.945

  • 14623 measured reflections

  • 3066 independent reflections

  • 2615 reflections with I > 2σ(I)

  • Rint = 0.103

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.118

  • S = 1.06

  • 3066 reflections

  • 191 parameters

  • 9 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3B⋯Cl1 0.878 (16) 2.338 (16) 3.206 (2) 170 (2)
N2—H2C⋯Cl3 0.927 (16) 2.360 (17) 3.2453 (19) 160 (2)
N1—H1B⋯Cl2 0.869 (15) 2.276 (17) 3.1186 (18) 163 (2)
N3—H3C⋯Cl2i 0.880 (17) 2.343 (19) 3.171 (2) 157 (2)
N2—H2B⋯Cl1ii 0.860 (16) 2.58 (2) 3.189 (2) 129.0 (19)
N1—H1C⋯Cl3iii 0.884 (15) 2.341 (17) 3.2071 (18) 166 (2)
N2—H2A⋯Cl2iv 0.842 (16) 2.442 (18) 3.201 (2) 150 (2)
N1—H1A⋯Cl3iv 0.858 (16) 2.506 (18) 3.2527 (17) 146.0 (19)
Symmetry codes: (i) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (ii) [x, -y+1, z-{\script{1\over 2}}]; (iii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z].

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1999[Bruker (1999). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The diamine compounds are important in biologically active natural products (Pasini & Zunino, 1987; Otsuka et al., 1990), in medicinal chemistry (Michalson & Smuszkovicz, 1989; Reedijk, 1996). They are also used as chiral auxiliaries and chiral ligands in asymmetric catalysis (Blaser, 1992; Soai & Niwa, 1992; Jacobsen, 1993; Kolb et al., 1994). Herewith we present the title diamine compound, (I).

In (I) (Fig. 1), all bond lengths and angles are normal. Two amino groups in the dications adopt trans-conformation and each amino group form three N—H···Cl hydrogen bonds (Table 1) to stabilize the crystal packing.

Related literature top

For related literature, see: Pasini & Zunino (1987); Otsuka et al. (1990); Michalson & Smuszkovicz (1989); Reedijk (1996); Blaser (1992); Soai & Niwa (1992); Jacobsen (1993); Kolb et al. (1994). [From the Section Editors: It would be much more useful to readers if the "Related literature" section had some kind of simple sub-division, so that, instead of just "For related literature, see···" it said, for example, "For general background, see···. For related structures, see···." etc. Please revise this section as indicated.]

Experimental top

1,3-Phenylenedimethanamine was dissolved in ethanol, then 1N HCl was dropped to the solution. Colourless, block-like crystals of (I) suitable for X-ray data collection were obtained by slow evaporation of ethanol at 283 K.

Refinement top

All H atoms were initially located in a difference Fourier map. C-bound H atoms were placed in idealized positions (C—H = 0.93–0.97 Å) and refined as riding, with Uiso(H) = 1.2Ueq(C). Amino H atoms were refined with bond restraint of N—H = 0.88 (3) Å and constrained displacement parameter Uiso(H) = 1.2Ueq(N).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of (I) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented by spheres of arbitrary radius.
(m-Phenylenedimethylene)diammonium dichloride top
Crystal data top
C8H14N22+·2ClF(000) = 1320
Mr = 209.11Dx = 1.337 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -c/2ycCell parameters from 6157 reflections
a = 27.5859 (18) Åθ = 2.8–27.8°
b = 13.1594 (14) ŵ = 0.58 mm1
c = 8.8324 (6) ÅT = 298 K
β = 103.539 (1)°Block, colourless
V = 3117.2 (4) Å30.20 × 0.10 × 0.10 mm
Z = 12
Data collection top
Bruker SMART CCD area-detector
diffractometer
3066 independent reflections
Radiation source: fine-focus sealed tube2615 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.103
ϕ and ω scansθmax = 26.0°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997)
h = 3333
Tmin = 0.894, Tmax = 0.945k = 1416
14623 measured reflectionsl = 1010
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.118H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0717P)2]
where P = (Fo2 + 2Fc2)/3
3066 reflections(Δ/σ)max = 0.001
191 parametersΔρmax = 0.36 e Å3
9 restraintsΔρmin = 0.31 e Å3
Crystal data top
C8H14N22+·2ClV = 3117.2 (4) Å3
Mr = 209.11Z = 12
Monoclinic, C2/cMo Kα radiation
a = 27.5859 (18) ŵ = 0.58 mm1
b = 13.1594 (14) ÅT = 298 K
c = 8.8324 (6) Å0.20 × 0.10 × 0.10 mm
β = 103.539 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3066 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997)
2615 reflections with I > 2σ(I)
Tmin = 0.894, Tmax = 0.945Rint = 0.103
14623 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0439 restraints
wR(F2) = 0.118H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.36 e Å3
3066 reflectionsΔρmin = 0.31 e Å3
191 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.27771 (7)0.50258 (14)0.0022 (2)0.0355 (4)
C20.26673 (7)0.60114 (16)0.0327 (2)0.0414 (5)
H20.28560.65470.00890.050*
C30.22778 (7)0.62046 (16)0.1031 (2)0.0438 (5)
H30.22060.68700.12610.053*
C40.19964 (7)0.54155 (16)0.1392 (2)0.0398 (5)
H40.17350.55490.18650.048*
C50.21012 (6)0.44213 (14)0.1052 (2)0.0341 (4)
C60.24907 (7)0.42332 (14)0.0342 (2)0.0355 (4)
H60.25610.35690.01060.043*
C70.31958 (8)0.48207 (17)0.0814 (2)0.0447 (5)
H7A0.31180.42150.14500.054*
H7B0.32200.53840.15000.054*
C80.18156 (7)0.35486 (16)0.1535 (3)0.0458 (5)
H8A0.19950.29220.14690.055*
H8B0.18020.36420.26130.055*
C90.00722 (7)0.23186 (15)0.6209 (2)0.0349 (4)
C100.00730 (8)0.12695 (16)0.6221 (3)0.0466 (5)
H100.01230.09150.53600.056*
C110.00000.0741 (2)0.75000.0553 (8)
H110.00000.00340.75000.066*
C120.00000.2839 (2)0.75000.0349 (6)
H120.00000.35460.75000.042*
C130.01564 (8)0.28914 (19)0.4806 (3)0.0483 (5)
H13A0.01000.24390.39150.058*
H13B0.00810.34460.45610.058*
Cl10.08043 (2)0.50782 (4)0.76455 (6)0.04504 (18)
Cl20.35181 (2)0.28315 (4)0.23278 (6)0.04852 (19)
Cl30.094656 (19)0.15614 (4)0.24153 (6)0.04295 (18)
N10.36851 (6)0.46791 (14)0.0298 (2)0.0375 (4)
H1C0.3787 (8)0.5257 (13)0.078 (3)0.045*
H1A0.3894 (7)0.4518 (17)0.025 (2)0.045*
H1B0.3683 (8)0.4230 (15)0.102 (2)0.045*
N20.13028 (7)0.34496 (14)0.0574 (2)0.0433 (4)
H2A0.1269 (9)0.3278 (17)0.036 (2)0.052*
H2B0.1123 (8)0.3989 (15)0.050 (3)0.052*
H2C0.1129 (8)0.2921 (15)0.090 (3)0.052*
N30.06651 (7)0.32989 (15)0.5100 (2)0.0433 (4)
H3C0.0906 (7)0.2890 (16)0.557 (3)0.052*
H3A0.0729 (8)0.3619 (17)0.430 (2)0.052*
H3B0.0690 (8)0.3733 (16)0.587 (2)0.052*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0337 (10)0.0412 (11)0.0320 (10)0.0014 (8)0.0086 (8)0.0026 (8)
C20.0419 (11)0.0340 (11)0.0477 (11)0.0020 (9)0.0093 (9)0.0080 (9)
C30.0437 (11)0.0300 (11)0.0564 (13)0.0065 (9)0.0093 (10)0.0010 (9)
C40.0348 (10)0.0394 (11)0.0465 (11)0.0074 (8)0.0121 (9)0.0002 (9)
C50.0312 (9)0.0350 (11)0.0351 (10)0.0009 (8)0.0060 (8)0.0031 (8)
C60.0383 (10)0.0304 (10)0.0373 (10)0.0049 (8)0.0080 (8)0.0016 (8)
C70.0441 (12)0.0572 (14)0.0357 (11)0.0029 (10)0.0155 (10)0.0038 (9)
C80.0410 (11)0.0424 (12)0.0537 (13)0.0015 (9)0.0106 (10)0.0110 (10)
C90.0297 (9)0.0420 (12)0.0345 (10)0.0004 (8)0.0103 (8)0.0021 (8)
C100.0534 (12)0.0404 (13)0.0487 (13)0.0014 (10)0.0174 (10)0.0118 (10)
C110.070 (2)0.0306 (16)0.067 (2)0.0000.0181 (18)0.000
C120.0321 (13)0.0293 (14)0.0460 (16)0.0000.0148 (12)0.000
C130.0415 (11)0.0678 (16)0.0373 (11)0.0028 (10)0.0126 (9)0.0077 (10)
Cl10.0547 (3)0.0370 (3)0.0492 (3)0.0046 (2)0.0237 (3)0.0082 (2)
Cl20.0507 (3)0.0449 (3)0.0514 (3)0.0066 (2)0.0148 (3)0.0119 (2)
Cl30.0483 (3)0.0368 (3)0.0480 (3)0.0090 (2)0.0199 (3)0.0070 (2)
N10.0371 (9)0.0345 (9)0.0450 (10)0.0037 (7)0.0179 (8)0.0048 (7)
N20.0414 (10)0.0364 (10)0.0530 (11)0.0058 (8)0.0132 (9)0.0012 (8)
N30.0455 (10)0.0417 (11)0.0438 (11)0.0037 (8)0.0130 (9)0.0101 (8)
Geometric parameters (Å, º) top
C1—C21.383 (3)C9—C131.514 (3)
C1—C61.391 (3)C10—C111.381 (3)
C1—C71.508 (3)C10—H100.9300
C2—C31.385 (3)C11—C10i1.381 (3)
C2—H20.9300C11—H110.9300
C3—C41.378 (3)C12—C9i1.384 (2)
C3—H30.9300C12—H120.9300
C4—C51.388 (3)C13—N31.468 (3)
C4—H40.9300C13—H13A0.9700
C5—C61.387 (2)C13—H13B0.9700
C5—C81.510 (3)N1—H1C0.884 (15)
C6—H60.9300N1—H1A0.858 (16)
C7—N11.483 (3)N1—H1B0.869 (15)
C7—H7A0.9700N2—H2A0.842 (16)
C7—H7B0.9700N2—H2B0.860 (16)
C8—N21.475 (3)N2—H2C0.927 (16)
C8—H8A0.9700N3—H3C0.880 (17)
C8—H8B0.9700N3—H3A0.877 (16)
C9—C101.381 (3)N3—H3B0.878 (16)
C9—C121.384 (2)
C2—C1—C6119.05 (17)C9—C10—C11120.7 (2)
C2—C1—C7120.19 (17)C9—C10—H10119.7
C6—C1—C7120.75 (17)C11—C10—H10119.7
C1—C2—C3120.39 (18)C10—C11—C10i119.5 (3)
C1—C2—H2119.8C10—C11—H11120.2
C3—C2—H2119.8C10i—C11—H11120.2
C4—C3—C2120.25 (19)C9—C12—C9i120.6 (3)
C4—C3—H3119.9C9—C12—H12119.7
C2—C3—H3119.9C9i—C12—H12119.7
C3—C4—C5120.21 (17)N3—C13—C9111.14 (18)
C3—C4—H4119.9N3—C13—H13A109.4
C5—C4—H4119.9C9—C13—H13A109.4
C6—C5—C4119.26 (17)N3—C13—H13B109.4
C6—C5—C8120.17 (17)C9—C13—H13B109.4
C4—C5—C8120.46 (17)H13A—C13—H13B108.0
C5—C6—C1120.85 (17)C7—N1—H1C110.3 (15)
C5—C6—H6119.6C7—N1—H1A106.6 (15)
C1—C6—H6119.6H1C—N1—H1A108 (2)
N1—C7—C1113.13 (16)C7—N1—H1B114.1 (14)
N1—C7—H7A109.0H1C—N1—H1B107 (2)
C1—C7—H7A109.0H1A—N1—H1B111 (2)
N1—C7—H7B109.0C8—N2—H2A117.4 (18)
C1—C7—H7B109.0C8—N2—H2B115.4 (16)
H7A—C7—H7B107.8H2A—N2—H2B103 (2)
N2—C8—C5113.48 (17)C8—N2—H2C112.6 (15)
N2—C8—H8A108.9H2A—N2—H2C99 (2)
C5—C8—H8A108.9H2B—N2—H2C108 (2)
N2—C8—H8B108.9C13—N3—H3C116.4 (16)
C5—C8—H8B108.9C13—N3—H3A113.4 (16)
H8A—C8—H8B107.7H3C—N3—H3A114 (2)
C10—C9—C12119.27 (18)C13—N3—H3B105.8 (15)
C10—C9—C13120.27 (18)H3C—N3—H3B97 (2)
C12—C9—C13120.5 (2)H3A—N3—H3B109 (2)
C6—C1—C2—C30.0 (3)C6—C1—C7—N192.2 (2)
C7—C1—C2—C3178.93 (19)C6—C5—C8—N2109.5 (2)
C1—C2—C3—C40.1 (3)C4—C5—C8—N274.2 (2)
C2—C3—C4—C50.0 (3)C12—C9—C10—C110.4 (3)
C3—C4—C5—C60.2 (3)C13—C9—C10—C11179.56 (17)
C3—C4—C5—C8176.14 (19)C9—C10—C11—C10i0.18 (13)
C4—C5—C6—C10.4 (3)C10—C9—C12—C9i0.18 (13)
C8—C5—C6—C1175.99 (18)C13—C9—C12—C9i179.4 (2)
C2—C1—C6—C50.3 (3)C10—C9—C13—N3103.1 (2)
C7—C1—C6—C5179.17 (18)C12—C9—C13—N376.1 (2)
C2—C1—C7—N188.9 (2)
Symmetry code: (i) x, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3B···Cl10.88 (2)2.34 (2)3.206 (2)170 (2)
N2—H2C···Cl30.93 (2)2.36 (2)3.2453 (19)160 (2)
N1—H1B···Cl20.87 (2)2.28 (2)3.1186 (18)163 (2)
N3—H3C···Cl2ii0.88 (2)2.34 (2)3.171 (2)157 (2)
N2—H2B···Cl1iii0.86 (2)2.58 (2)3.189 (2)129 (2)
N1—H1C···Cl3iv0.88 (2)2.34 (2)3.2071 (18)166 (2)
N2—H2A···Cl2v0.84 (2)2.44 (2)3.201 (2)150 (2)
N1—H1A···Cl3v0.86 (2)2.51 (2)3.2527 (17)146 (2)
Symmetry codes: (ii) x+1/2, y+1/2, z+1; (iii) x, y+1, z1/2; (iv) x+1/2, y+1/2, z+1/2; (v) x+1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formulaC8H14N22+·2Cl
Mr209.11
Crystal system, space groupMonoclinic, C2/c
Temperature (K)298
a, b, c (Å)27.5859 (18), 13.1594 (14), 8.8324 (6)
β (°) 103.539 (1)
V3)3117.2 (4)
Z12
Radiation typeMo Kα
µ (mm1)0.58
Crystal size (mm)0.20 × 0.10 × 0.10
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1997)
Tmin, Tmax0.894, 0.945
No. of measured, independent and
observed [I > 2σ(I)] reflections
14623, 3066, 2615
Rint0.103
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.118, 1.06
No. of reflections3066
No. of parameters191
No. of restraints9
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.36, 0.31

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3B···Cl10.878 (16)2.338 (16)3.206 (2)170 (2)
N2—H2C···Cl30.927 (16)2.360 (17)3.2453 (19)160 (2)
N1—H1B···Cl20.869 (15)2.276 (17)3.1186 (18)163 (2)
N3—H3C···Cl2i0.880 (17)2.343 (19)3.171 (2)157 (2)
N2—H2B···Cl1ii0.860 (16)2.58 (2)3.189 (2)129.0 (19)
N1—H1C···Cl3iii0.884 (15)2.341 (17)3.2071 (18)166 (2)
N2—H2A···Cl2iv0.842 (16)2.442 (18)3.201 (2)150 (2)
N1—H1A···Cl3iv0.858 (16)2.506 (18)3.2527 (17)146.0 (19)
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x, y+1, z1/2; (iii) x+1/2, y+1/2, z+1/2; (iv) x+1/2, y+1/2, z.
 

Acknowledgements

The authors are grateful to Xiangfan University for financial support.

References

First citationBlaser, H. U. (1992). Chem. Rev. 92, 935–952.  CrossRef CAS Web of Science Google Scholar
First citationBruker (1999). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2001). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationJacobsen, E. N. (1993). Catalytic Asymmetric Synthesis, pp. 159–202. New York: VCH.  Google Scholar
First citationKolb, H. C., VanNieuwenhze, M. S. & Sharpless, K. B. (1994). Chem. Rev. 94, 2483–2547.  CrossRef CAS Web of Science Google Scholar
First citationMichalson, E. T. & Smuszkovicz, J. (1989). Prog. Drug. Res. 33, 135–149.  CrossRef CAS PubMed Google Scholar
First citationOtsuka, M., Masuda, T., Haupt, A., Ohno, M., Shiraki, T., Sugiura, Y. & Maeda, K. (1990). J. Am. Chem. Soc. 112, 838–845.  CrossRef CAS Web of Science Google Scholar
First citationPasini, A. & Zunino, F. (1987). Angew. Chem. Int. Ed. Engl. 26, 615–624.  CrossRef Web of Science Google Scholar
First citationReedijk, J. J. (1996). J. Chem. Soc. Chem. Commun. pp. 801–806.  CrossRef Google Scholar
First citationSheldrick, G. M. (1997). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSoai, K. & Niwa, S. (1992). Chem. Rev. 92, 833–856.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds