metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 11| November 2008| Pages m1377-m1378

[(–)-(1S,2S)-N,N′-Bis(2-oxido­benzyl­­idene)-1,2-di­phenyl­ethane-1,2-di­amine]­bis­­(pyridine)cobalt(III) perchlorate methanol hemisolvate hemihydrate

aDepartment of Chemistry, Dezhou University, Dezhou 253023, People's Republic of China
*Correspondence e-mail: ch_yt@126.com

(Received 23 September 2008; accepted 3 October 2008; online 9 October 2008)

In the title compound, [Co(C28H22N2O2)(C5H5N)2]ClO4·0.5CH4O·0.5H2O, each CoIII ion is coordinated by the tetra­dentate N,N′-bis­(2-oxidobenzyl­idene)-1,2-diphenyl­ethane-1,2-diamine ligand [Co—N = 1.900 (3) and 1.903 (3) Å; Co—O = 1.885 (3) and 1.891 (3) Å] and two pyridine ligands [Co—N = 1.967 (4) and 1.977 (3) Å] in a distorted octa­hedral geometry. The packing of the cations and anions forms voids of 258 Å3, which are filled by methanol and solvent water mol­ecules with half occupancies. O—H⋯O hydrogen bonds between solvent molecules, perchlorate anions and water molecules, and between water molecules and O atoms of the ligand, help to consolidate the crystal packing.

Related literature

For related crystal structures, see: Korendovych & Rybak-Akimova (2003[Korendovych, I. V. & Rybak-Akimova, E. V. (2003). Acta Cryst. E59, o1498-o1500.]); Shi et al. (1995[Shi, X.-H., You, X.-Z., Li, C., Song, B.-L., Li, T.-H. & Huang, X.-Y. (1995). Acta Cryst. C51, 206-207.]). For general background, see: Amirnasr et al. (2001[Amirnasr, M., Schenk, K. J., Gorji, A. & Vafazadef, R. (2001). Polyhedron, 20, 695-702.]); Botteher et al., 1997[Botteher, A., Takeuchi, T., Hardcastle, K. I., Meade, T. J. & Gray, H. B. (1997). Inorg. Chem. 36, 2498-2504.]; Cmi et al. (1998[Cmi, R., Moore, S. J. & Marzilli, L. G. (1998). Inorg. Chem. 37, 6890-6897.]); Henson et al. (1999[Henson, N. J., Hay, P. J. & Redondo, A. (1999). Inorg. Chem. 38, 1618-1626.]); Polson et al. (1997[Polson, S. M., Cini, R., Pifferi, C. & Marzilli, L. G. (1997). Inorg. Chem. 36, 314-322.]); Yamada (1999[Yamada, S. (1999). Coord. Chem. Rev. 191-192, 537-555.]); Zhang et al. (1990[Zhang, W., Loebach, J. L., Wilson, S. R. & Jacobsen, E. N. (1990). J. Am. Chem. Soc. 112, 2801-2803.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(C28H22N2O2)(C5H5N)2]ClO4·0.5CH4O·0.5H2O

  • Mr = 760.09

  • Orthorhombic, P 21 21 21

  • a = 10.8900 (3) Å

  • b = 18.6219 (5) Å

  • c = 18.6557 (6) Å

  • V = 3783.24 (19) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.58 mm−1

  • T = 273 (2) K

  • 0.18 × 0.16 × 0.14 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.]) Tmin = 0.903, Tmax = 0.924

  • 42911 measured reflections

  • 7407 independent reflections

  • 5476 reflections with I > 2σ(I)

  • Rint = 0.064

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.145

  • S = 1.02

  • 7407 reflections

  • 463 parameters

  • 13 restraints

  • H-atom parameters constrained

  • Δρmax = 0.48 e Å−3

  • Δρmin = −0.37 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), with 3248 Friedel pairs

  • Flack parameter: 0.03 (2)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O8—H8D⋯O6i 0.85 1.98 2.831 (14) 178
O8—H8C⋯O7 0.85 1.96 2.807 (19) 177
O7—H7⋯O2 0.82 2.08 2.897 (11) 171
Symmetry code: (i) x+1, y, z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SAINT-Plus. Bruker AXS Inc., Madison,Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP (Sheldrick, 1998[Sheldrick, G. M. (1998). XP. Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: XP.

Supporting information


Comment top

The cobalt complexes with tetradentate Schiff base ligands have been extensively studied due to their important utilities in mimic cobalamin (B12) coenzymes (Amirnasr et al., 2001; Cmi et al., 1998; Polson et al., 1997), and as dioxygen carriers and oxygen activators (Yamada, 1999; Henson et al., 1999) . In addition, CoIII Schiff base complexes have also been used as antimicrobial agents when their two axial positions are occupied by two amine ligands (Botteher et al., 1997). Herein, we report the new CoIII complex based on the chiral tetradentate Schiff base ligand (-)-(1S,2S)-N,N'-Bis(salicylidene)-1,2- diphenyl-1,2-ethanediamine (L), whose structure has been reported recently (Korendovych & Rybak-Akimova, 2003).

In the cation (Fig. 1), the coordination sphere of CoIII ion is a distorted octahedron, in which four equational positions come from two N atoms and two O atoms of the tetradentate Schiff base ligand and the apical positions are occupied by N atoms of two pyridine molecules. The bond lengths of Co—O(L) and Co—N(L) are 1.885 (3), 1.891 (3)A% and 1.900 (3), 1.903 (3)A%, respectively, which are in agreement with the corresponding bond lengths in the similar CoIII Schiff base complex trans-[Co(salen)(py)2][BPh4] (Shi et al., 1995)). The distances of Co—Npy 1.967 (4) and 1.977 (3)A% are also consistent with those distances in the same complex, but slightly longer than the distances of Co—NSchiff base.

Related literature top

For related crystal structures, see: Korendovych & Rybak-Akimova (2003); Shi et al. (1995). For general background, see: Amirnasr et al. (2001); Botteher et al., 1997; Cmi et al. (1998); Henson et al. (1999); Polson et al. (1997); Yamada (1999); Zhang et al. (1990).

Experimental top

The free Schiff base ligand L was synthesized according to the literature (Zhang et al., 1990). The synthsis of the title complex was carried out by reacting CoClO4.6H2O, pyridine and L (molar ratio 1:2:1 in methanol. After the stirring process was continued for about 30 min at room temperature, the mixture was filtered and the filtrate was allowed to partial evaporate in air for several days to produce crystals suitable for X-ray diffraction. Anal. Calcd for C38.5H35ClCoN4O7: C, 60.84; H, 4.64; N, 7.37. Found: C, 60.64; H, 4.65; N, 7.39.

Refinement top

The occupancies of methanol (O7, C39) and crystalline water (O8) molecules were set to 0.5 and not refined. The common Uiso was refined for O7 and C39 atoms (methanol). Atom O8 was also refined isotropically. All H atoms were placed in idealized positions (C—H 0.93-0.98 Å; O-H 0.82-0.85 Å), and refined as riding with Uiso(H) = 1.2-1.5Ueq of the parent atom.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP (Sheldrick, 1998); software used to prepare material for publication: XP (Sheldrick, 1998).

Figures top
[Figure 1] Fig. 1. A view of the cation of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms omited for clarity.
[(-)-(1S,2S)-N,N'-Bis(2-oxidobenzylidene)- 1,2-diphenylethane-1,2-diamine] bis(pyridine)cobalt(III) perchlorate methanol hemisolvate hemihydrate top
Crystal data top
[Co(C28H22N2O2)(C5H5N)2]ClO4·0.5CH4O·0.5H2ODx = 1.334 Mg m3
Dm = 1.334 Mg m3
Dm measured by not measured
Mr = 760.09Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 8558 reflections
a = 10.8900 (3) Åθ = 2.4–20.8°
b = 18.6219 (5) ŵ = 0.58 mm1
c = 18.6557 (6) ÅT = 273 K
V = 3783.24 (19) Å3Block, red-brown
Z = 40.18 × 0.16 × 0.14 mm
F(000) = 1576
Data collection top
Bruker APEXII CCD area-detector
diffractometer
7407 independent reflections
Radiation source: fine-focus sealed tube5476 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.064
ϕ and ω scansθmax = 26.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 1313
Tmin = 0.903, Tmax = 0.924k = 2222
42911 measured reflectionsl = 2323
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.050 w = 1/[σ2(Fo2) + (0.0885P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.145(Δ/σ)max = 0.001
S = 1.02Δρmax = 0.48 e Å3
7407 reflectionsΔρmin = 0.37 e Å3
463 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
13 restraintsExtinction coefficient: 0.0014 (5)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 3248 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.03 (2)
Crystal data top
[Co(C28H22N2O2)(C5H5N)2]ClO4·0.5CH4O·0.5H2OV = 3783.24 (19) Å3
Mr = 760.09Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 10.8900 (3) ŵ = 0.58 mm1
b = 18.6219 (5) ÅT = 273 K
c = 18.6557 (6) Å0.18 × 0.16 × 0.14 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
7407 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
5476 reflections with I > 2σ(I)
Tmin = 0.903, Tmax = 0.924Rint = 0.064
42911 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.050H-atom parameters constrained
wR(F2) = 0.145Δρmax = 0.48 e Å3
S = 1.02Δρmin = 0.37 e Å3
7407 reflectionsAbsolute structure: Flack (1983), 3248 Friedel pairs
463 parametersAbsolute structure parameter: 0.03 (2)
13 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Co10.50476 (4)0.57650 (2)0.75640 (2)0.04751 (16)
Cl10.10093 (14)0.50610 (10)0.55336 (8)0.1022 (5)
O10.6076 (3)0.65694 (14)0.76901 (15)0.0568 (7)
O20.5983 (3)0.55521 (14)0.67367 (15)0.0619 (7)
O30.1244 (5)0.5541 (3)0.4915 (2)0.1324 (18)
O40.2142 (4)0.4859 (3)0.5844 (3)0.1202 (15)
O50.0367 (5)0.4459 (4)0.5318 (4)0.175 (3)
O60.0303 (5)0.5444 (3)0.6048 (3)0.1398 (18)
O70.6798 (12)0.6643 (6)0.5737 (6)0.153 (4)*0.50
H70.64950.63590.60220.230*0.50
O80.9347 (13)0.6770 (6)0.5559 (7)0.163 (4)*0.50
H8C0.85720.67460.56060.195*0.50
H8D0.96570.63770.57030.195*0.50
N10.4061 (3)0.59406 (15)0.83873 (17)0.0460 (7)
N20.3989 (3)0.49659 (15)0.74280 (16)0.0462 (7)
N30.6234 (3)0.52046 (17)0.81394 (17)0.0506 (8)
N40.4010 (4)0.63945 (18)0.6973 (2)0.0601 (9)
C10.5455 (4)0.68095 (18)0.8912 (2)0.0498 (9)
C20.6202 (4)0.69134 (19)0.8297 (2)0.0497 (9)
C30.7149 (4)0.7448 (2)0.8337 (3)0.0571 (10)
H30.76370.75400.79380.069*
C40.7341 (4)0.7824 (2)0.8957 (3)0.0607 (11)
H40.79550.81710.89730.073*
C50.6637 (4)0.7697 (2)0.9561 (3)0.0632 (11)
H50.67990.79470.99820.076*
C60.5700 (4)0.7204 (2)0.9542 (2)0.0578 (10)
H60.52220.71290.99480.069*
C70.4382 (4)0.63562 (19)0.8909 (2)0.0477 (9)
H7A0.38830.63640.93130.057*
C80.5417 (3)0.4304 (2)0.6702 (2)0.0482 (8)
C90.5718 (4)0.3609 (2)0.6450 (2)0.0578 (10)
H90.51780.32310.65360.069*
C100.6775 (4)0.3479 (2)0.6087 (3)0.0666 (12)
H100.69750.30160.59410.080*
C110.7546 (4)0.4046 (3)0.5938 (3)0.0729 (13)
H110.82730.39590.56920.087*
C120.7280 (4)0.4727 (3)0.6140 (3)0.0688 (12)
H120.78090.50980.60130.083*
C130.6209 (4)0.4882 (2)0.6542 (2)0.0539 (10)
C140.4274 (3)0.4402 (2)0.7069 (2)0.0493 (9)
H140.37010.40330.70450.059*
C150.2981 (3)0.5456 (2)0.8473 (2)0.0473 (9)
H150.32020.50880.88260.057*
C160.2763 (3)0.5075 (2)0.7757 (2)0.0486 (9)
H160.23050.54060.74480.058*
C170.1814 (3)0.5823 (2)0.8738 (2)0.0510 (9)
C180.1280 (4)0.6393 (3)0.8389 (3)0.0713 (12)
H180.16640.65880.79890.086*
C190.0192 (4)0.6679 (3)0.8621 (3)0.0758 (13)
H190.01590.70570.83670.091*
C200.0378 (4)0.6424 (2)0.9208 (3)0.0686 (12)
H200.11120.66290.93610.082*
C210.0128 (4)0.5855 (2)0.9584 (2)0.0649 (11)
H210.02630.56720.99880.078*
C220.1243 (4)0.5560 (2)0.9345 (2)0.0536 (9)
H220.16010.51830.95980.064*
C230.1990 (4)0.4396 (2)0.7842 (2)0.0571 (10)
C240.2292 (6)0.3877 (3)0.8359 (3)0.0832 (15)
H240.29870.39290.86440.100*
C250.1518 (7)0.3278 (3)0.8433 (4)0.105 (2)
H250.17080.29340.87760.126*
C260.0507 (6)0.3185 (4)0.8023 (4)0.1008 (18)
H260.00120.27830.80830.121*
C270.0227 (5)0.3690 (4)0.7522 (4)0.1023 (19)
H270.04670.36320.72370.123*
C280.0970 (4)0.4298 (3)0.7429 (3)0.0739 (12)
H280.07650.46370.70840.089*
C290.5918 (4)0.4749 (2)0.8660 (3)0.0630 (11)
H290.50860.46810.87490.076*
C300.6749 (5)0.4372 (3)0.9074 (3)0.0778 (13)
H300.64860.40670.94370.093*
C310.7970 (5)0.4464 (4)0.8932 (4)0.0970 (19)
H310.85620.42120.91880.116*
C320.8306 (4)0.4940 (3)0.8399 (4)0.0849 (16)
H320.91330.50170.83010.102*
C330.7431 (4)0.5298 (2)0.8013 (3)0.0631 (11)
H330.76750.56150.76540.076*
C340.3626 (6)0.6221 (3)0.6330 (3)0.0879 (17)
H340.38100.57640.61600.105*
C350.2964 (7)0.6674 (3)0.5888 (4)0.114 (3)
H350.27030.65210.54380.137*
C360.2701 (7)0.7351 (4)0.6125 (4)0.117 (2)
H360.22870.76720.58290.140*
C370.3057 (6)0.7558 (3)0.6813 (4)0.0915 (17)
H370.28560.80080.69960.110*
C380.3721 (5)0.7068 (2)0.7213 (3)0.0691 (12)
H380.39850.72030.76680.083*
C390.5940 (19)0.7285 (10)0.5644 (10)0.153 (4)*0.50
H39A0.55630.73980.60950.230*0.50
H39B0.53160.71700.52990.230*0.50
H39C0.64030.76920.54790.230*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0420 (3)0.0414 (3)0.0591 (3)0.0055 (2)0.0071 (3)0.0055 (2)
Cl10.0737 (9)0.1434 (14)0.0895 (9)0.0270 (9)0.0163 (7)0.0380 (9)
O10.0533 (16)0.0459 (14)0.0712 (18)0.0099 (12)0.0084 (14)0.0100 (12)
O20.0624 (17)0.0527 (16)0.0705 (17)0.0156 (14)0.0165 (15)0.0143 (13)
O30.125 (4)0.198 (5)0.073 (2)0.016 (4)0.013 (2)0.008 (3)
O40.073 (3)0.155 (4)0.132 (3)0.013 (3)0.003 (3)0.009 (3)
O50.109 (4)0.213 (6)0.204 (6)0.068 (4)0.018 (4)0.090 (5)
O60.141 (4)0.157 (4)0.121 (3)0.013 (4)0.047 (3)0.035 (3)
N10.0350 (15)0.0403 (16)0.0626 (18)0.0018 (13)0.0020 (14)0.0051 (14)
N20.0385 (15)0.0437 (16)0.0564 (17)0.0024 (13)0.0045 (15)0.0035 (14)
N30.0392 (17)0.0451 (17)0.068 (2)0.0015 (14)0.0004 (15)0.0106 (15)
N40.060 (2)0.0524 (19)0.068 (2)0.0124 (18)0.0020 (19)0.0029 (16)
C10.044 (2)0.0363 (19)0.070 (2)0.0064 (16)0.0002 (18)0.0026 (17)
C20.041 (2)0.0355 (19)0.073 (3)0.0044 (16)0.0035 (19)0.0068 (18)
C30.044 (2)0.047 (2)0.081 (3)0.0023 (18)0.003 (2)0.003 (2)
C40.047 (2)0.040 (2)0.096 (3)0.0008 (18)0.018 (2)0.010 (2)
C50.054 (3)0.053 (2)0.083 (3)0.002 (2)0.016 (2)0.014 (2)
C60.057 (3)0.046 (2)0.070 (3)0.0029 (19)0.009 (2)0.0085 (19)
C70.046 (2)0.0396 (18)0.058 (2)0.0036 (17)0.0047 (18)0.0028 (17)
C80.0429 (19)0.0465 (19)0.0552 (19)0.0043 (17)0.0000 (15)0.0079 (18)
C90.050 (2)0.052 (2)0.071 (3)0.0026 (19)0.002 (2)0.0113 (19)
C100.052 (2)0.062 (3)0.086 (3)0.003 (2)0.004 (2)0.017 (2)
C110.046 (3)0.082 (3)0.091 (3)0.001 (2)0.014 (2)0.027 (3)
C120.050 (2)0.074 (3)0.082 (3)0.015 (2)0.018 (2)0.015 (2)
C130.049 (2)0.055 (2)0.057 (2)0.0091 (19)0.0057 (18)0.0100 (18)
C140.045 (2)0.043 (2)0.060 (2)0.0073 (17)0.0032 (18)0.0049 (17)
C150.039 (2)0.045 (2)0.058 (2)0.0004 (16)0.0063 (17)0.0015 (17)
C160.0388 (18)0.045 (2)0.062 (2)0.0017 (17)0.0045 (16)0.0038 (17)
C170.0359 (18)0.052 (2)0.065 (2)0.0015 (17)0.0010 (17)0.0017 (19)
C180.059 (3)0.070 (3)0.085 (3)0.015 (2)0.010 (2)0.009 (2)
C190.054 (3)0.075 (3)0.098 (3)0.027 (2)0.008 (3)0.006 (2)
C200.049 (2)0.068 (3)0.089 (3)0.011 (2)0.004 (2)0.014 (2)
C210.047 (2)0.081 (3)0.066 (2)0.004 (2)0.009 (2)0.013 (2)
C220.047 (2)0.056 (2)0.059 (2)0.0006 (18)0.0067 (18)0.0029 (17)
C230.049 (2)0.056 (2)0.066 (2)0.0120 (19)0.0161 (19)0.009 (2)
C240.095 (4)0.062 (3)0.092 (3)0.030 (3)0.003 (3)0.005 (3)
C250.130 (5)0.074 (3)0.112 (4)0.036 (4)0.028 (4)0.002 (3)
C260.089 (4)0.098 (4)0.116 (4)0.045 (3)0.030 (3)0.027 (3)
C270.052 (3)0.113 (4)0.141 (5)0.031 (3)0.016 (4)0.054 (4)
C280.049 (2)0.081 (3)0.092 (3)0.012 (2)0.004 (2)0.021 (3)
C290.046 (2)0.058 (2)0.086 (3)0.007 (2)0.001 (2)0.003 (2)
C300.070 (3)0.064 (3)0.099 (3)0.008 (3)0.015 (3)0.008 (3)
C310.068 (4)0.096 (4)0.127 (5)0.030 (3)0.036 (4)0.020 (4)
C320.045 (2)0.087 (4)0.123 (4)0.010 (3)0.011 (3)0.034 (4)
C330.040 (2)0.067 (3)0.082 (3)0.003 (2)0.003 (2)0.022 (2)
C340.111 (5)0.067 (3)0.085 (4)0.016 (3)0.021 (3)0.007 (3)
C350.154 (7)0.075 (4)0.114 (5)0.020 (4)0.063 (5)0.025 (3)
C360.137 (6)0.082 (4)0.131 (6)0.004 (4)0.045 (5)0.036 (4)
C370.103 (4)0.058 (3)0.113 (4)0.004 (3)0.013 (4)0.015 (3)
C380.069 (3)0.059 (3)0.079 (3)0.002 (2)0.002 (2)0.006 (2)
Geometric parameters (Å, º) top
Co1—O11.885 (3)C15—C171.525 (5)
Co1—O21.891 (3)C15—C161.530 (5)
Co1—N21.900 (3)C15—H150.9800
Co1—N11.903 (3)C16—C231.528 (5)
Co1—N41.967 (4)C16—H160.9800
Co1—N31.977 (3)C17—C181.374 (6)
Cl1—O51.381 (5)C17—C221.383 (5)
Cl1—O41.414 (5)C18—C191.368 (6)
Cl1—O61.421 (5)C18—H180.9300
Cl1—O31.482 (5)C19—C201.347 (7)
O1—C21.309 (5)C19—H190.9300
O2—C131.322 (5)C20—C211.385 (6)
O7—C391.53 (2)C20—H200.9300
O7—H70.8200C21—C221.407 (5)
O8—H8C0.8501C21—H210.9300
O8—H8D0.8501C22—H220.9300
N1—C71.291 (5)C23—C281.364 (6)
N1—C151.492 (5)C23—C241.403 (7)
N2—C141.284 (4)C24—C251.405 (7)
N2—C161.483 (5)C24—H240.9300
N3—C291.334 (6)C25—C261.351 (9)
N3—C331.337 (5)C25—H250.9300
N4—C341.310 (6)C26—C271.362 (10)
N4—C381.369 (6)C26—H260.9300
C1—C61.411 (6)C27—C281.401 (7)
C1—C21.420 (6)C27—H270.9300
C1—C71.441 (5)C28—H280.9300
C2—C31.436 (6)C29—C301.381 (6)
C3—C41.367 (6)C29—H290.9300
C3—H30.9300C30—C311.367 (8)
C4—C51.383 (7)C30—H300.9300
C4—H40.9300C31—C321.381 (8)
C5—C61.373 (6)C31—H310.9300
C5—H50.9300C32—C331.368 (7)
C6—H60.9300C32—H320.9300
C7—H7A0.9300C33—H330.9300
C8—C131.412 (5)C34—C351.382 (8)
C8—C91.416 (6)C34—H340.9300
C8—C141.431 (5)C35—C361.366 (10)
C9—C101.357 (6)C35—H350.9300
C9—H90.9300C36—C371.396 (10)
C10—C111.378 (7)C36—H360.9300
C10—H100.9300C37—C381.382 (7)
C11—C121.354 (7)C37—H370.9300
C11—H110.9300C38—H380.9300
C12—C131.416 (6)C39—H39A0.9600
C12—H120.9300C39—H39B0.9600
C14—H140.9300C39—H39C0.9600
O1—Co1—O287.05 (11)N1—C15—H15107.5
O1—Co1—N2178.89 (13)C17—C15—H15107.5
O2—Co1—N293.08 (12)C16—C15—H15107.5
O1—Co1—N195.62 (12)N2—C16—C23115.1 (3)
O2—Co1—N1177.32 (12)N2—C16—C15106.6 (3)
N2—Co1—N184.24 (13)C23—C16—C15112.3 (3)
O1—Co1—N486.43 (14)N2—C16—H16107.5
O2—Co1—N488.66 (15)C23—C16—H16107.5
N2—Co1—N492.48 (14)C15—C16—H16107.5
N1—Co1—N491.49 (14)C18—C17—C22118.1 (4)
O1—Co1—N387.91 (13)C18—C17—C15123.1 (4)
O2—Co1—N388.89 (14)C22—C17—C15118.7 (3)
N2—Co1—N393.19 (12)C19—C18—C17121.2 (5)
N1—Co1—N391.22 (13)C19—C18—H18119.4
N4—Co1—N3173.94 (14)C17—C18—H18119.4
O5—Cl1—O4110.2 (4)C20—C19—C18121.2 (5)
O5—Cl1—O6109.3 (3)C20—C19—H19119.4
O4—Cl1—O6109.2 (3)C18—C19—H19119.4
O5—Cl1—O3110.5 (4)C19—C20—C21119.9 (4)
O4—Cl1—O3109.2 (3)C19—C20—H20120.0
O6—Cl1—O3108.4 (3)C21—C20—H20120.0
C2—O1—Co1124.0 (3)C20—C21—C22118.8 (4)
C13—O2—Co1121.5 (2)C20—C21—H21120.6
C39—O7—H7109.5C22—C21—H21120.6
H8C—O8—H8D108.3C17—C22—C21120.6 (4)
C7—N1—C15119.7 (3)C17—C22—H22119.7
C7—N1—Co1123.9 (3)C21—C22—H22119.7
C15—N1—Co1115.3 (2)C28—C23—C24119.1 (4)
C14—N2—C16123.1 (3)C28—C23—C16120.1 (4)
C14—N2—Co1124.3 (2)C24—C23—C16120.7 (4)
C16—N2—Co1112.6 (2)C23—C24—C25118.2 (5)
C29—N3—C33117.6 (4)C23—C24—H24120.9
C29—N3—Co1124.2 (3)C25—C24—H24120.9
C33—N3—Co1118.2 (3)C26—C25—C24122.4 (6)
C34—N4—C38116.9 (4)C26—C25—H25118.8
C34—N4—Co1123.4 (3)C24—C25—H25118.8
C38—N4—Co1119.6 (3)C25—C26—C27118.8 (6)
C6—C1—C2119.6 (4)C25—C26—H26120.6
C6—C1—C7117.5 (4)C27—C26—H26120.6
C2—C1—C7122.7 (3)C26—C27—C28120.9 (6)
O1—C2—C1124.9 (3)C26—C27—H27119.5
O1—C2—C3117.4 (4)C28—C27—H27119.5
C1—C2—C3117.6 (4)C23—C28—C27120.5 (5)
C4—C3—C2120.6 (4)C23—C28—H28119.7
C4—C3—H3119.7C27—C28—H28119.7
C2—C3—H3119.7N3—C29—C30124.1 (4)
C3—C4—C5121.1 (4)N3—C29—H29117.9
C3—C4—H4119.5C30—C29—H29117.9
C5—C4—H4119.5C31—C30—C29117.7 (5)
C6—C5—C4120.4 (4)C31—C30—H30121.1
C6—C5—H5119.8C29—C30—H30121.1
C4—C5—H5119.8C30—C31—C32118.6 (5)
C5—C6—C1120.7 (4)C30—C31—H31120.7
C5—C6—H6119.7C32—C31—H31120.7
C1—C6—H6119.7C33—C32—C31120.5 (5)
N1—C7—C1125.0 (4)C33—C32—H32119.8
N1—C7—H7A117.5C31—C32—H32119.8
C1—C7—H7A117.5N3—C33—C32121.5 (5)
C13—C8—C9119.0 (3)N3—C33—H33119.2
C13—C8—C14122.4 (3)C32—C33—H33119.2
C9—C8—C14118.5 (3)N4—C34—C35124.3 (6)
C10—C9—C8121.7 (4)N4—C34—H34117.9
C10—C9—H9119.2C35—C34—H34117.9
C8—C9—H9119.2C36—C35—C34118.6 (6)
C9—C10—C11118.7 (4)C36—C35—H35120.7
C9—C10—H10120.6C34—C35—H35120.7
C11—C10—H10120.6C35—C36—C37119.6 (6)
C12—C11—C10122.1 (4)C35—C36—H36120.2
C12—C11—H11118.9C37—C36—H36120.2
C10—C11—H11118.9C38—C37—C36117.4 (6)
C11—C12—C13121.0 (4)C38—C37—H37121.3
C11—C12—H12119.5C36—C37—H37121.3
C13—C12—H12119.5N4—C38—C37123.2 (5)
O2—C13—C8123.2 (3)N4—C38—H38118.4
O2—C13—C12119.4 (4)C37—C38—H38118.4
C8—C13—C12117.4 (4)O7—C39—H39A109.5
N2—C14—C8124.4 (3)O7—C39—H39B109.5
N2—C14—H14117.8H39A—C39—H39B109.5
C8—C14—H14117.8O7—C39—H39C109.5
N1—C15—C17114.8 (3)H39A—C39—H39C109.5
N1—C15—C16108.0 (3)H39B—C39—H39C109.5
C17—C15—C16111.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O8—H8D···O6i0.851.982.831 (14)178
O8—H8C···O70.851.962.807 (19)177
O7—H7···O20.822.082.897 (11)171
Symmetry code: (i) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Co(C28H22N2O2)(C5H5N)2]ClO4·0.5CH4O·0.5H2O
Mr760.09
Crystal system, space groupOrthorhombic, P212121
Temperature (K)273
a, b, c (Å)10.8900 (3), 18.6219 (5), 18.6557 (6)
V3)3783.24 (19)
Z4
Radiation typeMo Kα
µ (mm1)0.58
Crystal size (mm)0.18 × 0.16 × 0.14
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.903, 0.924
No. of measured, independent and
observed [I > 2σ(I)] reflections
42911, 7407, 5476
Rint0.064
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.145, 1.02
No. of reflections7407
No. of parameters463
No. of restraints13
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.48, 0.37
Absolute structureFlack (1983), 3248 Friedel pairs
Absolute structure parameter0.03 (2)

Computer programs: APEX2 (Bruker, 2004), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP (Sheldrick, 1998).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O8—H8D···O6i0.851.982.831 (14)177.5
O8—H8C···O70.851.962.807 (19)177.2
O7—H7···O20.822.082.897 (11)171.1
Symmetry code: (i) x+1, y, z.
 

Acknowledgements

This work was supported by the Natural Science Foundation of China.

References

First citationAmirnasr, M., Schenk, K. J., Gorji, A. & Vafazadef, R. (2001). Polyhedron, 20, 695–702.  Web of Science CSD CrossRef CAS Google Scholar
First citationBotteher, A., Takeuchi, T., Hardcastle, K. I., Meade, T. J. & Gray, H. B. (1997). Inorg. Chem. 36, 2498–2504.  Google Scholar
First citationBruker (2001). SAINT-Plus. Bruker AXS Inc., Madison,Wisconsin, USA.  Google Scholar
First citationBruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCmi, R., Moore, S. J. & Marzilli, L. G. (1998). Inorg. Chem. 37, 6890–6897.  PubMed Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHenson, N. J., Hay, P. J. & Redondo, A. (1999). Inorg. Chem. 38, 1618–1626.  Web of Science CrossRef CAS Google Scholar
First citationKorendovych, I. V. & Rybak-Akimova, E. V. (2003). Acta Cryst. E59, o1498–o1500.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPolson, S. M., Cini, R., Pifferi, C. & Marzilli, L. G. (1997). Inorg. Chem. 36, 314–322.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (1998). XP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShi, X.-H., You, X.-Z., Li, C., Song, B.-L., Li, T.-H. & Huang, X.-Y. (1995). Acta Cryst. C51, 206–207.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationYamada, S. (1999). Coord. Chem. Rev. 191–192, 537–555.  CrossRef Google Scholar
First citationZhang, W., Loebach, J. L., Wilson, S. R. & Jacobsen, E. N. (1990). J. Am. Chem. Soc. 112, 2801–2803.  CSD CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 11| November 2008| Pages m1377-m1378
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds