organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-Ethyl N′-(3,4-di­meth­oxy­benzyl­­idene)hydrazine­carboxyl­ate monohydrate

aDepartment of Chemical Engineering, Hangzhou Vocational and Technical College, Hangzhou 310018, People's Republic of China, and bResearch Center of Analysis and Measurement, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
*Correspondence e-mail: zgdhxc@126.com

(Received 12 October 2008; accepted 21 October 2008; online 25 October 2008)

In the title compound, C12H16N2O4·H2O, the mol­ecular skeleton of the hydrazinecarboxyl­ate is nearly planar [within 0.053 (3) Å]. In the crystal, chains propagating along the c axis arise, composed of alternating hydrazinecarboxyl­ate mol­ecules and crystalline water, which inter­act via N—H⋯O and O—H⋯O hydrogen bonds.

Related literature

For general background, see: Parashar et al. (1988[Parashar, R. K., Sharma, R. C., Kumar, A. & Mohanm, G. (1988). Inorg. Chim. Acta, 151, 201-208.]); Hadjoudis et al. (1987[Hadjoudis, E., Vittorakis, M. & Moustakali-Mavridis, J. (1987). Tetrahedron, 43, 1345-1360.]); Borg et al. (1999[Borg, S., Vollinga, R. C., Labarre, M., Payza, K., Terenius, L. & Luthman, K. (1999). J. Med. Chem. 42, 4331-4342.]). For a related structure, see Shang et al. (2007[Shang, Z.-H., Zhang, H.-L. & Ding, Y. (2007). Acta Cryst. E63, o3394.]).

[Scheme 1]

Experimental

Crystal data
  • C12H16N2O4·H2O

  • Mr = 270.28

  • Orthorhombic, P n a 21

  • a = 7.211 (2) Å

  • b = 17.688 (5) Å

  • c = 11.026 (3) Å

  • V = 1406.3 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 193 (2) K

  • 0.27 × 0.25 × 0.23 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2002[Bruker (2002). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.969, Tmax = 0.976

  • 7281 measured reflections

  • 1312 independent reflections

  • 1181 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.085

  • S = 1.07

  • 1312 reflections

  • 180 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.15 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1F⋯O3 0.833 (19) 2.14 (2) 2.899 (3) 151 (3)
N2—H2⋯O1Wi 0.88 2.12 2.899 (3) 148
Symmetry code: (i) [-x, -y+1, z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 2002[Bruker (2002). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Benzaldehydehydrazone derivatives have received considerable attention for a long time due to their pharmacological activity (Parashar et al., 1988) and photochromic properties (Hadjoudis et al., 1987). Meanwhile, it is an important intermediate of 1,3,4-oxadiazoles, which have been reported to be compounds with versatile useful properties (Borg et al., 1999). As a further investigation of this type of derivatives, we report herein the crystal structure of the title compound.

In the title compound, C12H16N2O4 (I) .H2O, the molecular skeleton of (I) is nearly planar. The main molecule, (I), adopts a trans configuration with respect to the CN bond. The hydrazine carboxylic acid methyl ester group is slightly twisted away from the attached ring. The bond lengths and angles of the main molecule agree with those observed in (E)-methyl N'-(4-hydroxybenzylidene)hydrazinecarboxylate (Shang et al., 2007).

The crystal packing exhibits hydrogen-bonded chains extended along c axis and composed from alternating molecules of (I) and crystalline water, which interact via N-H···O [N···O 2.899 (3) Å] and O-H···O [O···O 2.899 (3) Å] hydrogen bonds (Table 1).

Related literature top

For general background, see: Parashar et al. (1988); Hadjoudis et al. (1987); Borg et al. (1999). For a related structure, see Shang et al. (2007).

Experimental top

3,4-Dimethoxybenzaldehyde (1.66g, 0.01mol) and ethyl hydrazinecarboxylate(1.04g, 0.01mol) were dissolved in stirred methanol (20ml) and left for 3h at room temperature. The resulting solid was filtered off and recrystallized from ethanol to give the title compound in 90% yield. Crystals suitable for X-ray analysis were obtained by slow evaporation of a ethanol solution at room temperature (m.p. 458-460 K).

Refinement top

H atoms of the water molecule were located in a difference map and were refined with O-H distances restrained to 0.82 (2) Å, H atoms were included in the riding model approximation with N-H = 0.88 Å. C-bound H atoms were positioned geometrically (C-H = 0.95-0.99 Å) and refined using a riding model, with Uiso(H) = 1.2-1.5Ueq(C). In the absence of significant anomalous scatterers, the 1193 Friedel pairs were merged before the final refinement.

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I), showing 30% probability displacement ellipsoids and the atomic numbering.
(E)-Ethyl N'-(3,4-dimethoxybenzylidene)hydrazinecarboxylate monohydrate top
Crystal data top
C12H16N2O4·H2OF(000) = 576
Mr = 270.28Dx = 1.277 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 1312 reflections
a = 7.211 (2) Åθ = 2.2–25.5°
b = 17.688 (5) ŵ = 0.10 mm1
c = 11.026 (3) ÅT = 193 K
V = 1406.3 (7) Å3Block, colourless
Z = 40.27 × 0.25 × 0.23 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
1312 independent reflections
Radiation source: fine-focus sealed tube1181 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ϕ and ω scansθmax = 25.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 88
Tmin = 0.969, Tmax = 0.976k = 2020
7281 measured reflectionsl = 1312
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.085H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0551P)2 + 0.0753P]
where P = (Fo2 + 2Fc2)/3
1312 reflections(Δ/σ)max < 0.001
180 parametersΔρmax = 0.16 e Å3
3 restraintsΔρmin = 0.15 e Å3
Crystal data top
C12H16N2O4·H2OV = 1406.3 (7) Å3
Mr = 270.28Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 7.211 (2) ŵ = 0.10 mm1
b = 17.688 (5) ÅT = 193 K
c = 11.026 (3) Å0.27 × 0.25 × 0.23 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
1312 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
1181 reflections with I > 2σ(I)
Tmin = 0.969, Tmax = 0.976Rint = 0.026
7281 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0313 restraints
wR(F2) = 0.085H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.16 e Å3
1312 reflectionsΔρmin = 0.15 e Å3
180 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C11.0427 (4)0.67958 (16)0.2893 (3)0.0656 (7)
H1A1.13720.71540.31720.098*
H1B0.99150.69690.21170.098*
H1C1.09890.62960.27860.098*
C20.4765 (4)0.69467 (15)0.6084 (3)0.0610 (6)
H2A0.51170.73190.67010.091*
H2B0.43880.64760.64820.091*
H2C0.37300.71440.56030.091*
C30.6065 (3)0.62962 (12)0.4381 (2)0.0458 (5)
C40.7529 (3)0.62623 (13)0.3535 (2)0.0458 (6)
C50.4527 (3)0.58339 (12)0.4241 (2)0.0462 (5)
H50.35360.58590.48060.055*
C60.7444 (3)0.57723 (14)0.2568 (2)0.0514 (6)
H60.84280.57530.19950.062*
C70.5889 (3)0.53002 (14)0.2433 (2)0.0519 (6)
H70.58330.49590.17690.062*
C80.4438 (3)0.53255 (13)0.3255 (2)0.0469 (5)
C90.2842 (3)0.48227 (14)0.3094 (3)0.0513 (6)
H90.27290.45340.23710.062*
C100.1176 (4)0.42102 (13)0.4535 (2)0.0511 (6)
C110.4016 (4)0.36234 (19)0.5028 (3)0.0719 (8)
H11A0.46990.41050.51300.086*
H11B0.35170.34710.58280.086*
C120.5286 (5)0.3030 (2)0.4560 (4)0.0882 (11)
H12A0.63070.29560.51340.132*
H12B0.46020.25550.44630.132*
H12C0.57860.31880.37730.132*
N10.1595 (3)0.47690 (10)0.3921 (2)0.0520 (5)
N20.0153 (3)0.42736 (11)0.3681 (2)0.0525 (5)
H20.01070.40120.30020.063*
O10.8976 (2)0.67502 (9)0.37704 (18)0.0578 (5)
O20.6305 (2)0.68036 (11)0.53107 (17)0.0620 (5)
O30.1179 (3)0.45274 (11)0.55163 (18)0.0689 (5)
O40.2508 (2)0.37243 (9)0.41722 (18)0.0582 (5)
O1W0.0397 (3)0.59890 (12)0.6111 (2)0.0667 (5)
H1E0.003 (5)0.6288 (18)0.561 (3)0.090 (12)*
H1F0.030 (5)0.5563 (13)0.579 (3)0.088 (12)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0528 (15)0.0662 (16)0.0777 (18)0.0115 (12)0.0121 (14)0.0002 (15)
C20.0693 (16)0.0566 (14)0.0570 (15)0.0026 (12)0.0121 (15)0.0057 (13)
C30.0457 (12)0.0442 (11)0.0474 (12)0.0005 (8)0.0055 (11)0.0020 (10)
C40.0389 (12)0.0447 (10)0.0537 (15)0.0004 (9)0.0033 (10)0.0030 (11)
C50.0414 (11)0.0506 (12)0.0466 (13)0.0001 (9)0.0005 (10)0.0029 (10)
C60.0456 (12)0.0538 (12)0.0548 (15)0.0026 (10)0.0029 (11)0.0000 (12)
C70.0536 (13)0.0510 (12)0.0513 (13)0.0004 (10)0.0048 (12)0.0061 (11)
C80.0430 (12)0.0462 (11)0.0515 (13)0.0010 (9)0.0065 (11)0.0051 (10)
C90.0512 (12)0.0483 (12)0.0543 (14)0.0020 (10)0.0075 (12)0.0013 (11)
C100.0553 (14)0.0453 (11)0.0526 (14)0.0034 (10)0.0067 (12)0.0022 (11)
C110.0618 (17)0.082 (2)0.0724 (19)0.0143 (14)0.0081 (15)0.0022 (15)
C120.0713 (19)0.097 (2)0.096 (3)0.0260 (18)0.004 (2)0.003 (2)
N10.0493 (11)0.0485 (10)0.0582 (13)0.0066 (8)0.0074 (11)0.0029 (9)
N20.0500 (11)0.0521 (11)0.0554 (13)0.0116 (8)0.0024 (10)0.0037 (9)
O10.0451 (9)0.0621 (10)0.0661 (11)0.0105 (7)0.0053 (9)0.0080 (9)
O20.0529 (10)0.0723 (10)0.0607 (12)0.0111 (8)0.0041 (9)0.0181 (10)
O30.0744 (12)0.0770 (11)0.0553 (11)0.0204 (10)0.0011 (10)0.0043 (10)
O40.0546 (10)0.0570 (9)0.0628 (12)0.0138 (7)0.0022 (8)0.0010 (9)
O1W0.0778 (13)0.0662 (12)0.0561 (12)0.0123 (10)0.0078 (11)0.0050 (11)
Geometric parameters (Å, º) top
C1—O11.427 (3)C7—H70.9500
C1—H1A0.9800C8—C91.465 (3)
C1—H1B0.9800C9—N11.284 (3)
C1—H1C0.9800C9—H90.9500
C2—O21.423 (3)C10—O31.219 (3)
C2—H2A0.9800C10—N21.348 (3)
C2—H2B0.9800C10—O41.350 (3)
C2—H2C0.9800C11—O41.451 (4)
C3—O21.374 (3)C11—C121.485 (5)
C3—C51.387 (3)C11—H11A0.9900
C3—C41.410 (3)C11—H11B0.9900
C4—C61.376 (4)C12—H12A0.9800
C4—O11.379 (3)C12—H12B0.9800
C5—C81.412 (4)C12—H12C0.9800
C5—H50.9500N1—N21.385 (3)
C6—C71.406 (4)N2—H20.8800
C6—H60.9500O1W—H1E0.812 (19)
C7—C81.385 (3)O1W—H1F0.833 (19)
O1—C1—H1A109.5C7—C8—C9119.6 (2)
O1—C1—H1B109.5C5—C8—C9121.0 (2)
H1A—C1—H1B109.5N1—C9—C8120.6 (2)
O1—C1—H1C109.5N1—C9—H9119.7
H1A—C1—H1C109.5C8—C9—H9119.7
H1B—C1—H1C109.5O3—C10—N2125.7 (2)
O2—C2—H2A109.5O3—C10—O4123.7 (2)
O2—C2—H2B109.5N2—C10—O4110.6 (2)
H2A—C2—H2B109.5O4—C11—C12108.8 (3)
O2—C2—H2C109.5O4—C11—H11A109.9
H2A—C2—H2C109.5C12—C11—H11A109.9
H2B—C2—H2C109.5O4—C11—H11B109.9
O2—C3—C5124.7 (2)C12—C11—H11B109.9
O2—C3—C4115.30 (19)H11A—C11—H11B108.3
C5—C3—C4120.0 (2)C11—C12—H12A109.5
C6—C4—O1125.0 (2)C11—C12—H12B109.5
C6—C4—C3120.4 (2)H12A—C12—H12B109.5
O1—C4—C3114.5 (2)C11—C12—H12C109.5
C3—C5—C8119.8 (2)H12A—C12—H12C109.5
C3—C5—H5120.1H12B—C12—H12C109.5
C8—C5—H5120.1C9—N1—N2115.9 (2)
C4—C6—C7119.5 (2)C10—N2—N1116.9 (2)
C4—C6—H6120.3C10—N2—H2121.5
C7—C6—H6120.3N1—N2—H2121.5
C8—C7—C6120.9 (2)C4—O1—C1117.5 (2)
C8—C7—H7119.5C3—O2—C2117.7 (2)
C6—C7—H7119.5C10—O4—C11114.8 (2)
C7—C8—C5119.3 (2)H1E—O1W—H1F106 (4)
O2—C3—C4—C6179.8 (2)C7—C8—C9—N1171.3 (2)
C5—C3—C4—C60.0 (3)C5—C8—C9—N18.3 (3)
O2—C3—C4—O10.4 (3)C8—C9—N1—N2179.5 (2)
C5—C3—C4—O1179.8 (2)O3—C10—N2—N13.1 (4)
O2—C3—C5—C8179.2 (2)O4—C10—N2—N1178.61 (19)
C4—C3—C5—C80.5 (3)C9—N1—N2—C10179.8 (2)
O1—C4—C6—C7179.7 (2)C6—C4—O1—C15.4 (3)
C3—C4—C6—C70.5 (3)C3—C4—O1—C1174.4 (2)
C4—C6—C7—C80.5 (4)C5—C3—O2—C29.6 (3)
C6—C7—C8—C50.0 (4)C4—C3—O2—C2170.6 (2)
C6—C7—C8—C9179.6 (2)O3—C10—O4—C112.3 (3)
C3—C5—C8—C70.5 (3)N2—C10—O4—C11179.4 (2)
C3—C5—C8—C9179.1 (2)C12—C11—O4—C10175.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1F···O30.83 (2)2.14 (2)2.899 (3)151 (3)
O1W—H1E···O1i0.81 (2)2.31 (2)3.086 (3)160 (4)
N2—H2···O1Wii0.882.122.899 (3)148
Symmetry codes: (i) x1, y, z; (ii) x, y+1, z1/2.

Experimental details

Crystal data
Chemical formulaC12H16N2O4·H2O
Mr270.28
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)193
a, b, c (Å)7.211 (2), 17.688 (5), 11.026 (3)
V3)1406.3 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.27 × 0.25 × 0.23
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2002)
Tmin, Tmax0.969, 0.976
No. of measured, independent and
observed [I > 2σ(I)] reflections
7281, 1312, 1181
Rint0.026
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.085, 1.07
No. of reflections1312
No. of parameters180
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.16, 0.15

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1F···O30.833 (19)2.14 (2)2.899 (3)151 (3)
N2—H2···O1Wi0.882.122.899 (3)147.6
Symmetry code: (i) x, y+1, z1/2.
 

Acknowledgements

The authors thank Hangzhou Vocational and Technical College, China, for financial support.

References

First citationBorg, S., Vollinga, R. C., Labarre, M., Payza, K., Terenius, L. & Luthman, K. (1999). J. Med. Chem. 42, 4331–4342.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2002). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHadjoudis, E., Vittorakis, M. & Moustakali-Mavridis, J. (1987). Tetrahedron, 43, 1345–1360.  CrossRef CAS Web of Science Google Scholar
First citationParashar, R. K., Sharma, R. C., Kumar, A. & Mohanm, G. (1988). Inorg. Chim. Acta, 151, 201–208.  CrossRef CAS Web of Science Google Scholar
First citationShang, Z.-H., Zhang, H.-L. & Ding, Y. (2007). Acta Cryst. E63, o3394.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds