metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-Ferrocenylmeth­yl-1H-imidazole

aSchool of Chemistry, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban 4000, South Africa
*Correspondence e-mail: bala@ukzn.ac.za

(Received 8 September 2008; accepted 11 September 2008; online 22 October 2008)

In the title compound, [Fe(C5H5)(C9H9N2)], the distances of the Fe atom from the centroids of the unsubstituted and the substituted cyclo­penta­dienyl (cp) rings are 1.639 (1) and 1.647 (1) Å, respectively. The ferrocenyl unit deviates from an eclipsed geometry with tilted cp rings; the inter­planar angle between the cp and imidazole rings is 114.11 (4)°.

Related literature

For a related structure, see: Hua et al. (2004[Hua, H., Huang, G.-S., Liang, Y.-M., Wu, X.-L., Ma, Y.-X. & Chen, B.-H. (2004). Acta Cryst. E60, m761-m763.]). For applications of aryl­imidazoles, see: Broggini & Togni (2002[Broggini, D. & Togni, A. (2002). Helv. Chim. Acta, 85, 2518-2522.]); César et al. (2004[César, V., Bellemin-Laponnaz, S. & Gade, L. H. (2004). Chem. Soc. Rev. 33, 619-636.]); Cozzi et al. (1993[Cozzi, P., Carganico, G., Fusar, D., Menichincheri, M., Pinciroli, V., Tonani, R., Vaghi, F. & Salvati, P. (1993). J. Med. Chem. 36, 2964-2972.]); Herrmann & Köcher (1997[Herrmann, W. A. & Köcher, C. (1997). Angew. Chem. Int. Ed. Engl. 36, 2162-2187.]); Lee & Nolan (2000[Lee, H. M. & Nolan, S. P. (2000). Org. Lett. 2, 2053-2055.]); Ohmori et al. (1996[Ohmori, J., Shimizu-Sasamata, M., Okada, M. & Sakamoto, S. (1996). J. Med. Chem. 39, 3971-3979.]); Snegur et al. (2004[Snegur, L. V., Simenel, A. A., Nekrasov, Y. S., Morozova, E. A., Starikova, Z. A., Peregudova, S. M., Kuzmenko, Y. V., Babin, V. N., Ostrovskaya, L. A., Bluchterova, N. V. & Fomina, M. M. (2004). J. Organomet. Chem. 689, 2473-2479.]).

[Scheme 1]

Experimental

Crystal data
  • [Fe(C5H5)(C9H9N2)]

  • Mr = 266.12

  • Monoclinic, P 21 /c

  • a = 14.8914 (6) Å

  • b = 7.5587 (3) Å

  • c = 10.7854 (4) Å

  • β = 96.862 (2)°

  • V = 1205.30 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.23 mm−1

  • T = 293 (2) K

  • 0.39 × 0.26 × 0.05 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: integration (XPREP; Bruker, 2005[Bruker (2005). APEX2, SAINT-Plus.and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.646, Tmax = 0.941

  • 17808 measured reflections

  • 2904 independent reflections

  • 1852 reflections with I > 2σ(I)

  • Rint = 0.054

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.114

  • S = 1.00

  • 2904 reflections

  • 154 parameters

  • H-atom parameters constrained

  • Δρmax = 0.63 e Å−3

  • Δρmin = −0.38 e Å−3

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT-Plus.and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2005[Bruker (2005). APEX2, SAINT-Plus.and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]) and ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The synthesis of arylimidazole compounds is of importance because of their significance in pharmaceutical (Ohmori et al. 1996), biological (Cozzi et al. 1993) and the synthesis of fine chemicals (Lee & Nolan, 2000; Herrmann & Köcher, 1997). Ferrocenyl compounds with an N-heterocycle group such as ferrocenylmethyl benzimidazole have been studied and found to exhibit anticancer activity (Snegur et al. 2004). The ferrocenylimidazolium salts have also found uses in catalysis as precursors for the synthesis of N-heterocyclic carbenes (César et al., 2004; Broggini & Togni, 2002).

In the title compound (I, Fig. 1), the distance of the Fe atom from the centroids of the substituted (C1—C5) and the unsubstituted (C6—C10) cyclopentadienyl rings are 1.639 (1) and 1.647 (1) Å respectively, indicating a slight shotening of the substituted cp—Fe bond length due to the substitution of the imidazole unit. The plane of the imidazole ring in (I) is tilted at an angle of 114.11 (4)° away from the plane of the C1—C5 cp ring. The strain on the substituted ring results in a corresponding tilt of 3.87 (2)° between the planes of the two cp rings. The cp rings also deviate significantly from an eclipsed conformation with torsion angles ranging from 19.98 (2)–24.90 (2)°. This could be due to the fact that the C1—C5 cp ring twists in order to accommodate the bulky imidazole unit, hence putting it out of coplanarity with the unsubstituted C10—C14 cp ring.

Related literature top

For a related structure, see: Hua et al. (2004). For applications of arylimidazoles, see: Broggini & Togni (2002); César et al. (2004); Cozzi et al. (1993); Herrmann & Köcher (1997); Lee & Nolan (2000); Ohmori et al. (1996); Snegur et al. (2004).

Experimental top

A mixture of equimolar amounts of ferrocenylmethanol (501 mg, 2.34 mmol) and N,N'-carbonyldiimidazole (379 mg, 2.34 mmol) in anhydrous dichloromethane was heated under reflux for 1 h. The resulting mass was cooled and then diethyl ether (50 cm3) was added and the resultant solution was allowed to stir for 3 minutes before being transferred to a separating funnel. The reaction mixture was then flushed with phosphoric acid (2 x 50 cm3). The aqueous phase fractions were then combined and the pH of the solution was adjusted to 5 using dilute sodium hydroxide. The aqueous solution was then extracted using dichloromethane (3 x 50 cm3). The dichloromethane extracts were combined, dried over anhydrous sodium sulfate, filtered and the solvent was removed in vacuo. The resulting product was subjected to column chromatography on a column of silica gel. Diethyl either was used to elute unreacted starting material and a mixture of ethyl acetate and methanol provided the title compound 1-(Ferrocenymethyl)-1H-imidazole. Yield: (398 mg, 64%); Yellow crystals mp 66–67 °C; IR νmax(KBr cm-1)3095, 1644, 1511, 1463, 1439, 1391, 1336, 1322,1279, 1238, 1221, 1104, 1079, 1040, 1027, 1002, 916, 811, 744, 752, 697, 662, 503, 482; 1H-NMR (CDCl3, 300 MHz) 7.50 (1H, s, NCH), 7.06 (1H, s, NCH), 6.94 (1H, s, NCH),4.88 (2H, s, CH2), 4.20 (4H, s, C5H4); 4.17(5H, s,C5H5); 13C-NMR (CDCl3, 300 MHz), 137.25, 129.67, 119.36, 83.09, 69.19, 69.16,68.93, 47.15; EI–MS 70 eV m/z 266 (M+,100%), 200 (12), 199 (70), 188 (23), 120 (52); (Found: [M+],266.050638. C14H14N2Fe requires [M+],266.050668).

Refinement top

All H atoms attached to C atoms were fixed geometrically and treated as riding with C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT-Plus (Bruker, 2005); data reduction: SAINT-Plus (Bruker, 2005; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003) and ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title complex with the atom labelling scheme. Ellipsoids are drawn at the 50% probability level.
1-Ferrocenylmethyl-1H-imidazole top
Crystal data top
[Fe(C5H5)(C9H9N2)]F(000) = 552
Mr = 266.12Dx = 1.467 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3993 reflections
a = 14.8914 (6) Åθ = 2.8–26.6°
b = 7.5587 (3) ŵ = 1.23 mm1
c = 10.7854 (4) ÅT = 293 K
β = 96.862 (2)°Plate, yellow
V = 1205.30 (8) Å30.39 × 0.26 × 0.05 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2904 independent reflections
Radiation source: fine-focus sealed tube1852 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.054
ϕ and ω scansθmax = 28.0°, θmin = 1.4°
Absorption correction: integration
(XPREP; Bruker, 2005)
h = 1918
Tmin = 0.646, Tmax = 0.941k = 99
17808 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.114H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0573P)2 + 0.4185P]
where P = (Fo2 + 2Fc2)/3
2904 reflections(Δ/σ)max = 0.015
154 parametersΔρmax = 0.63 e Å3
0 restraintsΔρmin = 0.38 e Å3
Crystal data top
[Fe(C5H5)(C9H9N2)]V = 1205.30 (8) Å3
Mr = 266.12Z = 4
Monoclinic, P21/cMo Kα radiation
a = 14.8914 (6) ŵ = 1.23 mm1
b = 7.5587 (3) ÅT = 293 K
c = 10.7854 (4) Å0.39 × 0.26 × 0.05 mm
β = 96.862 (2)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2904 independent reflections
Absorption correction: integration
(XPREP; Bruker, 2005)
1852 reflections with I > 2σ(I)
Tmin = 0.646, Tmax = 0.941Rint = 0.054
17808 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.114H-atom parameters constrained
S = 1.00Δρmax = 0.63 e Å3
2904 reflectionsΔρmin = 0.38 e Å3
154 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.74936 (18)0.0973 (4)0.4338 (2)0.0367 (6)
C20.7628 (2)0.2266 (4)0.3419 (3)0.0426 (7)
H20.71770.27800.28630.051*
C30.8561 (2)0.2636 (4)0.3494 (3)0.0464 (7)
H30.88320.34340.29960.056*
C40.9012 (2)0.1589 (4)0.4453 (3)0.0465 (7)
H40.96330.15680.46950.056*
C50.8361 (2)0.0576 (4)0.4985 (3)0.0412 (7)
H50.84770.02160.56450.049*
C60.6610 (2)0.0148 (4)0.4525 (3)0.0473 (7)
H6A0.67170.10440.48410.057*
H6B0.62390.00650.37240.057*
C70.5876 (2)0.2876 (4)0.5291 (3)0.0520 (8)
H70.60110.36730.46830.062*
C80.5399 (2)0.3206 (5)0.6267 (3)0.0517 (8)
H80.51500.42960.64340.062*
C90.5771 (2)0.0511 (4)0.6399 (3)0.0483 (8)
H90.58350.06570.66670.058*
C100.7592 (4)0.1645 (8)0.1970 (6)0.104 (2)
H100.69640.17230.18860.125*
C110.8049 (4)0.0625 (7)0.1300 (4)0.0887 (15)
H110.77910.01200.06690.106*
C120.8918 (3)0.0786 (6)0.1630 (4)0.0750 (12)
H120.93650.01840.12680.090*
C130.9071 (4)0.1987 (7)0.2598 (5)0.0973 (18)
H130.96250.23370.30170.117*
C140.8167 (6)0.2588 (5)0.2818 (5)0.123 (3)
H140.80170.34160.33970.148*
N10.61150 (15)0.1138 (3)0.5390 (2)0.0407 (5)
N20.53352 (17)0.1716 (4)0.6965 (2)0.0518 (7)
Fe10.83161 (2)0.00206 (5)0.31303 (3)0.03545 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0351 (14)0.0369 (15)0.0384 (14)0.0031 (12)0.0057 (11)0.0063 (11)
C20.0457 (17)0.0350 (15)0.0472 (16)0.0136 (13)0.0058 (13)0.0007 (12)
C30.0472 (17)0.0345 (15)0.0586 (18)0.0027 (13)0.0106 (14)0.0007 (13)
C40.0345 (15)0.0484 (17)0.0556 (18)0.0019 (13)0.0013 (13)0.0107 (14)
C50.0464 (17)0.0405 (15)0.0359 (14)0.0038 (13)0.0016 (12)0.0027 (11)
C60.0422 (15)0.0494 (18)0.0523 (17)0.0031 (14)0.0142 (13)0.0135 (14)
C70.059 (2)0.0536 (19)0.0461 (17)0.0088 (15)0.0189 (15)0.0071 (14)
C80.0466 (17)0.063 (2)0.0465 (17)0.0092 (15)0.0106 (14)0.0064 (15)
C90.0448 (17)0.0511 (19)0.0506 (18)0.0072 (14)0.0129 (14)0.0042 (14)
C100.090 (3)0.097 (4)0.135 (5)0.044 (3)0.049 (3)0.084 (4)
C110.107 (4)0.097 (3)0.058 (2)0.029 (3)0.009 (2)0.035 (2)
C120.088 (3)0.074 (3)0.072 (3)0.008 (2)0.042 (2)0.024 (2)
C130.107 (4)0.097 (4)0.082 (3)0.069 (3)0.015 (3)0.041 (3)
C140.286 (9)0.0223 (19)0.081 (3)0.009 (3)0.104 (5)0.0110 (18)
N10.0374 (13)0.0450 (14)0.0411 (13)0.0004 (11)0.0108 (10)0.0031 (11)
N20.0479 (15)0.0667 (18)0.0434 (14)0.0045 (13)0.0161 (12)0.0017 (13)
Fe10.0377 (2)0.0310 (2)0.0387 (2)0.00352 (17)0.00896 (15)0.00289 (17)
Geometric parameters (Å, º) top
C1—C21.423 (4)C8—N21.365 (4)
C1—C51.424 (4)C8—H80.9300
C1—C61.492 (4)C9—N21.311 (4)
C1—Fe12.024 (3)C9—N11.343 (4)
C2—C31.410 (4)C9—H90.9300
C2—Fe12.026 (3)C10—C111.303 (7)
C2—H20.9300C10—C141.375 (8)
C3—C41.408 (4)C10—Fe11.998 (4)
C3—Fe12.040 (3)C10—H100.9300
C3—H30.9300C11—C121.305 (6)
C4—C51.410 (4)C11—Fe12.026 (4)
C4—Fe12.040 (3)C11—H110.9300
C4—H40.9300C12—C131.382 (6)
C5—Fe12.037 (3)C12—Fe12.035 (3)
C5—H50.9300C12—H120.9300
C6—N11.463 (3)C13—C141.467 (8)
C6—H6A0.9700C13—Fe12.013 (3)
C6—H6B0.9700C13—H130.9300
C7—C81.361 (4)C14—Fe12.008 (4)
C7—N11.362 (4)C14—H140.9300
C7—H70.9300
C2—C1—C5106.9 (2)Fe1—C12—H12126.3
C2—C1—C6125.5 (3)C12—C13—C14104.7 (4)
C5—C1—C6127.5 (3)C12—C13—Fe170.9 (2)
C2—C1—Fe169.49 (15)C14—C13—Fe168.4 (2)
C5—C1—Fe169.97 (15)C12—C13—H13127.7
C6—C1—Fe1123.35 (19)C14—C13—H13127.7
C3—C2—C1108.4 (2)Fe1—C13—H13124.7
C3—C2—Fe170.25 (16)C10—C14—C13104.1 (4)
C1—C2—Fe169.36 (15)C10—C14—Fe169.5 (2)
C3—C2—H2125.8C13—C14—Fe168.8 (2)
C1—C2—H2125.8C10—C14—H14128.0
Fe1—C2—H2126.2C13—C14—H14128.0
C4—C3—C2108.1 (3)Fe1—C14—H14125.4
C4—C3—Fe169.80 (17)C9—N1—C7106.4 (2)
C2—C3—Fe169.15 (16)C9—N1—C6127.4 (3)
C4—C3—H3126.0C7—N1—C6126.2 (2)
C2—C3—H3126.0C9—N2—C8104.2 (2)
Fe1—C3—H3126.7C10—Fe1—C1440.1 (2)
C3—C4—C5108.3 (3)C10—Fe1—C1368.0 (2)
C3—C4—Fe169.82 (17)C14—Fe1—C1342.8 (2)
C5—C4—Fe169.66 (16)C10—Fe1—C1107.71 (16)
C3—C4—H4125.9C14—Fe1—C1113.20 (19)
C5—C4—H4125.9C13—Fe1—C1148.6 (2)
Fe1—C4—H4126.2C10—Fe1—C2112.3 (2)
C4—C5—C1108.3 (3)C14—Fe1—C2143.2 (3)
C4—C5—Fe169.87 (17)C13—Fe1—C2170.3 (2)
C1—C5—Fe168.97 (15)C1—Fe1—C241.15 (11)
C4—C5—H5125.9C10—Fe1—C1137.8 (2)
C1—C5—H5125.9C14—Fe1—C1166.1 (2)
Fe1—C5—H5126.9C13—Fe1—C1165.89 (18)
N1—C6—C1113.1 (2)C1—Fe1—C11130.50 (18)
N1—C6—H6A109.0C2—Fe1—C11107.92 (16)
C1—C6—H6A109.0C10—Fe1—C1264.48 (18)
N1—C6—H6B109.0C14—Fe1—C1267.83 (18)
C1—C6—H6B109.0C13—Fe1—C1239.91 (19)
H6A—C6—H6B107.8C1—Fe1—C12167.51 (17)
C8—C7—N1105.8 (3)C2—Fe1—C12130.71 (17)
C8—C7—H7127.1C11—Fe1—C1237.50 (18)
N1—C7—H7127.1C10—Fe1—C5134.2 (2)
C7—C8—N2110.7 (3)C14—Fe1—C5110.93 (16)
C7—C8—H8124.7C13—Fe1—C5118.80 (16)
N2—C8—H8124.7C1—Fe1—C541.06 (11)
N2—C9—N1113.0 (3)C2—Fe1—C568.54 (12)
N2—C9—H9123.5C11—Fe1—C5170.4 (2)
N1—C9—H9123.5C12—Fe1—C5151.27 (17)
C11—C10—C14110.5 (5)C10—Fe1—C4174.5 (2)
C11—C10—Fe172.3 (3)C14—Fe1—C4136.4 (3)
C14—C10—Fe170.3 (3)C13—Fe1—C4112.53 (16)
C11—C10—H10124.8C1—Fe1—C468.85 (11)
C14—C10—H10124.8C2—Fe1—C468.27 (12)
Fe1—C10—H10124.2C11—Fe1—C4147.7 (2)
C10—C11—C12111.1 (5)C12—Fe1—C4119.68 (16)
C10—C11—Fe169.9 (3)C5—Fe1—C440.47 (12)
C12—C11—Fe171.6 (2)C10—Fe1—C3143.3 (2)
C10—C11—H11124.4C14—Fe1—C3175.9 (3)
C12—C11—H11124.4C13—Fe1—C3133.8 (2)
Fe1—C11—H11125.6C1—Fe1—C368.89 (12)
C11—C12—C13109.7 (5)C2—Fe1—C340.59 (12)
C11—C12—Fe170.9 (2)C11—Fe1—C3115.5 (2)
C13—C12—Fe169.2 (2)C12—Fe1—C3110.95 (16)
C11—C12—H12125.2C5—Fe1—C368.13 (12)
C13—C12—H12125.2C4—Fe1—C340.37 (12)
C5—C1—C2—C30.7 (3)C5—C1—Fe1—C11173.4 (3)
C6—C1—C2—C3176.6 (3)C6—C1—Fe1—C1151.0 (4)
Fe1—C1—C2—C359.6 (2)C2—C1—Fe1—C1254.4 (7)
C5—C1—C2—Fe160.26 (19)C5—C1—Fe1—C12172.2 (7)
C6—C1—C2—Fe1117.0 (3)C6—C1—Fe1—C1265.4 (8)
C1—C2—C3—C40.1 (3)C2—C1—Fe1—C5117.8 (2)
Fe1—C2—C3—C459.1 (2)C6—C1—Fe1—C5122.4 (3)
C1—C2—C3—Fe159.04 (19)C2—C1—Fe1—C480.75 (18)
C2—C3—C4—C50.5 (3)C5—C1—Fe1—C437.09 (17)
Fe1—C3—C4—C559.3 (2)C6—C1—Fe1—C4159.5 (3)
C2—C3—C4—Fe158.7 (2)C2—C1—Fe1—C337.33 (17)
C3—C4—C5—C10.9 (3)C5—C1—Fe1—C380.52 (19)
Fe1—C4—C5—C158.42 (19)C6—C1—Fe1—C3157.1 (3)
C3—C4—C5—Fe159.4 (2)C3—C2—Fe1—C10148.6 (3)
C2—C1—C5—C41.0 (3)C1—C2—Fe1—C1091.8 (3)
C6—C1—C5—C4176.2 (3)C3—C2—Fe1—C14177.6 (3)
Fe1—C1—C5—C459.0 (2)C1—C2—Fe1—C1458.0 (3)
C2—C1—C5—Fe159.95 (18)C3—C2—Fe1—C1119.6 (2)
C6—C1—C5—Fe1117.2 (3)C3—C2—Fe1—C11108.5 (3)
C2—C1—C6—N189.2 (3)C1—C2—Fe1—C11131.9 (2)
C5—C1—C6—N194.1 (3)C3—C2—Fe1—C1273.8 (3)
Fe1—C1—C6—N1176.54 (19)C1—C2—Fe1—C12166.6 (2)
N1—C7—C8—N20.1 (4)C3—C2—Fe1—C581.00 (19)
C14—C10—C11—C120.3 (5)C1—C2—Fe1—C538.61 (16)
Fe1—C10—C11—C1259.9 (3)C3—C2—Fe1—C437.32 (18)
C14—C10—C11—Fe160.2 (3)C1—C2—Fe1—C482.29 (18)
C10—C11—C12—C130.5 (5)C1—C2—Fe1—C3119.6 (2)
Fe1—C11—C12—C1358.5 (3)C12—C11—Fe1—C10121.7 (5)
C10—C11—C12—Fe158.9 (3)C10—C11—Fe1—C1437.5 (4)
C11—C12—C13—C141.0 (5)C12—C11—Fe1—C1484.2 (4)
Fe1—C12—C13—C1460.5 (2)C10—C11—Fe1—C1384.6 (4)
C11—C12—C13—Fe159.5 (3)C12—C11—Fe1—C1337.1 (3)
C11—C10—C14—C130.9 (5)C10—C11—Fe1—C163.3 (4)
Fe1—C10—C14—C1360.5 (3)C12—C11—Fe1—C1174.9 (3)
C11—C10—C14—Fe161.4 (3)C10—C11—Fe1—C2103.5 (4)
C12—C13—C14—C101.1 (4)C12—C11—Fe1—C2134.8 (3)
Fe1—C13—C14—C1061.0 (3)C10—C11—Fe1—C12121.7 (5)
C12—C13—C14—Fe162.1 (3)C10—C11—Fe1—C4179.0 (3)
N2—C9—N1—C70.6 (4)C12—C11—Fe1—C457.3 (5)
N2—C9—N1—C6177.8 (3)C10—C11—Fe1—C3146.6 (3)
C8—C7—N1—C90.4 (3)C12—C11—Fe1—C391.7 (3)
C8—C7—N1—C6177.6 (3)C11—C12—Fe1—C1035.3 (4)
C1—C6—N1—C9127.7 (3)C13—C12—Fe1—C1085.6 (4)
C1—C6—N1—C755.7 (4)C11—C12—Fe1—C1479.2 (4)
N1—C9—N2—C80.5 (4)C13—C12—Fe1—C1441.6 (3)
C7—C8—N2—C90.3 (4)C11—C12—Fe1—C13120.8 (5)
C11—C10—Fe1—C14120.3 (5)C11—C12—Fe1—C118.1 (9)
C11—C10—Fe1—C1378.7 (3)C13—C12—Fe1—C1138.9 (7)
C14—C10—Fe1—C1341.6 (3)C11—C12—Fe1—C263.0 (4)
C11—C10—Fe1—C1134.5 (3)C13—C12—Fe1—C2176.2 (3)
C14—C10—Fe1—C1105.2 (3)C13—C12—Fe1—C11120.8 (5)
C11—C10—Fe1—C290.8 (3)C11—C12—Fe1—C5172.6 (3)
C14—C10—Fe1—C2148.9 (3)C13—C12—Fe1—C551.8 (5)
C14—C10—Fe1—C11120.3 (5)C11—C12—Fe1—C4148.8 (3)
C11—C10—Fe1—C1235.0 (3)C13—C12—Fe1—C490.3 (3)
C14—C10—Fe1—C1285.3 (3)C11—C12—Fe1—C3105.0 (3)
C11—C10—Fe1—C5172.0 (3)C13—C12—Fe1—C3134.2 (3)
C14—C10—Fe1—C567.7 (4)C4—C5—Fe1—C10178.0 (3)
C11—C10—Fe1—C356.3 (4)C1—C5—Fe1—C1062.0 (3)
C14—C10—Fe1—C3176.6 (3)C4—C5—Fe1—C14138.3 (3)
C13—C14—Fe1—C10115.0 (4)C1—C5—Fe1—C14101.7 (3)
C10—C14—Fe1—C13115.0 (4)C4—C5—Fe1—C1391.7 (3)
C10—C14—Fe1—C190.3 (3)C1—C5—Fe1—C13148.4 (3)
C13—C14—Fe1—C1154.7 (3)C4—C5—Fe1—C1119.9 (2)
C10—C14—Fe1—C252.9 (4)C4—C5—Fe1—C281.24 (19)
C13—C14—Fe1—C2168.0 (2)C1—C5—Fe1—C238.70 (17)
C10—C14—Fe1—C1135.4 (3)C4—C5—Fe1—C1256.6 (4)
C13—C14—Fe1—C1179.7 (3)C1—C5—Fe1—C12176.5 (3)
C10—C14—Fe1—C1276.2 (3)C1—C5—Fe1—C4119.9 (2)
C13—C14—Fe1—C1238.8 (3)C4—C5—Fe1—C337.41 (17)
C10—C14—Fe1—C5134.7 (3)C1—C5—Fe1—C382.53 (18)
C13—C14—Fe1—C5110.3 (3)C3—C4—Fe1—C14176.2 (3)
C10—C14—Fe1—C4173.5 (3)C5—C4—Fe1—C1464.3 (3)
C13—C14—Fe1—C471.5 (3)C3—C4—Fe1—C13132.0 (3)
C12—C13—Fe1—C1076.1 (3)C5—C4—Fe1—C13108.5 (3)
C14—C13—Fe1—C1039.1 (3)C3—C4—Fe1—C181.89 (19)
C12—C13—Fe1—C14115.2 (4)C5—C4—Fe1—C137.61 (17)
C12—C13—Fe1—C1164.2 (3)C3—C4—Fe1—C237.52 (17)
C14—C13—Fe1—C149.0 (4)C5—C4—Fe1—C281.98 (18)
C12—C13—Fe1—C1134.9 (3)C3—C4—Fe1—C1151.9 (4)
C14—C13—Fe1—C1180.2 (3)C5—C4—Fe1—C11171.4 (3)
C14—C13—Fe1—C12115.2 (4)C3—C4—Fe1—C1288.0 (2)
C12—C13—Fe1—C5154.5 (3)C5—C4—Fe1—C12152.5 (2)
C14—C13—Fe1—C590.4 (3)C3—C4—Fe1—C5119.5 (3)
C12—C13—Fe1—C4109.9 (3)C5—C4—Fe1—C3119.5 (3)
C14—C13—Fe1—C4135.0 (3)C4—C3—Fe1—C10173.4 (3)
C12—C13—Fe1—C368.0 (3)C2—C3—Fe1—C1053.8 (3)
C14—C13—Fe1—C3176.8 (3)C4—C3—Fe1—C1372.0 (3)
C2—C1—Fe1—C10103.8 (3)C2—C3—Fe1—C13168.4 (2)
C5—C1—Fe1—C10138.3 (3)C4—C3—Fe1—C181.78 (19)
C6—C1—Fe1—C1015.9 (3)C2—C3—Fe1—C137.83 (17)
C2—C1—Fe1—C14146.4 (3)C4—C3—Fe1—C2119.6 (3)
C5—C1—Fe1—C1495.7 (3)C4—C3—Fe1—C11152.3 (2)
C6—C1—Fe1—C1426.7 (4)C2—C3—Fe1—C1188.1 (2)
C2—C1—Fe1—C13179.6 (3)C4—C3—Fe1—C12111.6 (2)
C5—C1—Fe1—C1361.8 (4)C2—C3—Fe1—C12128.8 (2)
C6—C1—Fe1—C1360.6 (4)C4—C3—Fe1—C537.50 (18)
C5—C1—Fe1—C2117.8 (2)C2—C3—Fe1—C582.10 (18)
C6—C1—Fe1—C2119.7 (3)C2—C3—Fe1—C4119.6 (3)
C2—C1—Fe1—C1168.7 (3)

Experimental details

Crystal data
Chemical formula[Fe(C5H5)(C9H9N2)]
Mr266.12
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)14.8914 (6), 7.5587 (3), 10.7854 (4)
β (°) 96.862 (2)
V3)1205.30 (8)
Z4
Radiation typeMo Kα
µ (mm1)1.23
Crystal size (mm)0.39 × 0.26 × 0.05
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionIntegration
(XPREP; Bruker, 2005)
Tmin, Tmax0.646, 0.941
No. of measured, independent and
observed [I > 2σ(I)] reflections
17808, 2904, 1852
Rint0.054
(sin θ/λ)max1)0.661
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.114, 1.00
No. of reflections2904
No. of parameters154
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.63, 0.38

Computer programs: APEX2 (Bruker, 2005), SAINT-Plus (Bruker, 2005), SAINT-Plus (Bruker, 2005, SHELXTL (Sheldrick, 2008), PLATON (Spek, 2003) and ORTEP-3 (Farrugia, 1997).

 

Acknowledgements

We thank Dr Manuel Fernandez for the data collection, and the University of KwaZulu-Natal and the NRF for financial support.

References

First citationBroggini, D. & Togni, A. (2002). Helv. Chim. Acta, 85, 2518–2522.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2005). APEX2, SAINT-Plus.and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCésar, V., Bellemin-Laponnaz, S. & Gade, L. H. (2004). Chem. Soc. Rev. 33, 619–636.  Web of Science PubMed Google Scholar
First citationCozzi, P., Carganico, G., Fusar, D., Menichincheri, M., Pinciroli, V., Tonani, R., Vaghi, F. & Salvati, P. (1993). J. Med. Chem. 36, 2964–2972.  CrossRef CAS PubMed Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHerrmann, W. A. & Köcher, C. (1997). Angew. Chem. Int. Ed. Engl. 36, 2162–2187.  CrossRef CAS Web of Science Google Scholar
First citationHua, H., Huang, G.-S., Liang, Y.-M., Wu, X.-L., Ma, Y.-X. & Chen, B.-H. (2004). Acta Cryst. E60, m761–m763.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLee, H. M. & Nolan, S. P. (2000). Org. Lett. 2, 2053–2055.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOhmori, J., Shimizu-Sasamata, M., Okada, M. & Sakamoto, S. (1996). J. Med. Chem. 39, 3971–3979.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSnegur, L. V., Simenel, A. A., Nekrasov, Y. S., Morozova, E. A., Starikova, Z. A., Peregudova, S. M., Kuzmenko, Y. V., Babin, V. N., Ostrovskaya, L. A., Bluchterova, N. V. & Fomina, M. M. (2004). J. Organomet. Chem. 689, 2473–2479.  Web of Science CSD CrossRef CAS Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds