metal-organic compounds
1-Ferrocenylmethyl-1H-imidazole
aSchool of Chemistry, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban 4000, South Africa
*Correspondence e-mail: bala@ukzn.ac.za
In the title compound, [Fe(C5H5)(C9H9N2)], the distances of the Fe atom from the centroids of the unsubstituted and the substituted cyclopentadienyl (cp) rings are 1.639 (1) and 1.647 (1) Å, respectively. The ferrocenyl unit deviates from an eclipsed geometry with tilted cp rings; the interplanar angle between the cp and imidazole rings is 114.11 (4)°.
Related literature
For a related structure, see: Hua et al. (2004). For applications of arylimidazoles, see: Broggini & Togni (2002); César et al. (2004); Cozzi et al. (1993); Herrmann & Köcher (1997); Lee & Nolan (2000); Ohmori et al. (1996); Snegur et al. (2004).
Experimental
Crystal data
|
Data collection: APEX2 (Bruker, 2005); cell SAINT-Plus (Bruker, 2005); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: PLATON (Spek, 2003) and ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536808029231/dn2373sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808029231/dn2373Isup2.hkl
A mixture of equimolar amounts of ferrocenylmethanol (501 mg, 2.34 mmol) and N,N'-carbonyldiimidazole (379 mg, 2.34 mmol) in anhydrous dichloromethane was heated under reflux for 1 h. The resulting mass was cooled and then diethyl ether (50 cm3) was added and the resultant solution was allowed to stir for 3 minutes before being transferred to a separating funnel. The reaction mixture was then flushed with phosphoric acid (2 x 50 cm3). The aqueous phase fractions were then combined and the pH of the solution was adjusted to 5 using dilute sodium hydroxide. The aqueous solution was then extracted using dichloromethane (3 x 50 cm3). The dichloromethane extracts were combined, dried over anhydrous sodium sulfate, filtered and the solvent was removed in vacuo. The resulting product was subjected to νmax(KBr cm-1)3095, 1644, 1511, 1463, 1439, 1391, 1336, 1322,1279, 1238, 1221, 1104, 1079, 1040, 1027, 1002, 916, 811, 744, 752, 697, 662, 503, 482; 1H-NMR (CDCl3, 300 MHz) 7.50 (1H, s, NCH), 7.06 (1H, s, NCH), 6.94 (1H, s, NCH),4.88 (2H, s, CH2), 4.20 (4H, s, C5H4); 4.17(5H, s,C5H5); 13C-NMR (CDCl3, 300 MHz), 137.25, 129.67, 119.36, 83.09, 69.19, 69.16,68.93, 47.15; EI–MS 70 eV m/z 266 (M+,100%), 200 (12), 199 (70), 188 (23), 120 (52); (Found: [M+],266.050638. C14H14N2Fe requires [M+],266.050668).
on a column of silica gel. Diethyl either was used to elute unreacted starting material and a mixture of ethyl acetate and methanol provided the title compound 1-(Ferrocenymethyl)-1H-imidazole. Yield: (398 mg, 64%); Yellow crystals mp 66–67 °C; IRAll H atoms attached to C atoms were fixed geometrically and treated as riding with C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C).
Data collection: APEX2 (Bruker, 2005); cell
SAINT-Plus (Bruker, 2005); data reduction: SAINT-Plus (Bruker, 2005; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003) and ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. Molecular structure of the title complex with the atom labelling scheme. Ellipsoids are drawn at the 50% probability level. |
[Fe(C5H5)(C9H9N2)] | F(000) = 552 |
Mr = 266.12 | Dx = 1.467 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 3993 reflections |
a = 14.8914 (6) Å | θ = 2.8–26.6° |
b = 7.5587 (3) Å | µ = 1.23 mm−1 |
c = 10.7854 (4) Å | T = 293 K |
β = 96.862 (2)° | Plate, yellow |
V = 1205.30 (8) Å3 | 0.39 × 0.26 × 0.05 mm |
Z = 4 |
Bruker APEXII CCD area-detector diffractometer | 2904 independent reflections |
Radiation source: fine-focus sealed tube | 1852 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.054 |
ϕ and ω scans | θmax = 28.0°, θmin = 1.4° |
Absorption correction: integration (XPREP; Bruker, 2005) | h = −19→18 |
Tmin = 0.646, Tmax = 0.941 | k = −9→9 |
17808 measured reflections | l = −14→14 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.040 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.114 | H-atom parameters constrained |
S = 1.00 | w = 1/[σ2(Fo2) + (0.0573P)2 + 0.4185P] where P = (Fo2 + 2Fc2)/3 |
2904 reflections | (Δ/σ)max = 0.015 |
154 parameters | Δρmax = 0.63 e Å−3 |
0 restraints | Δρmin = −0.38 e Å−3 |
[Fe(C5H5)(C9H9N2)] | V = 1205.30 (8) Å3 |
Mr = 266.12 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 14.8914 (6) Å | µ = 1.23 mm−1 |
b = 7.5587 (3) Å | T = 293 K |
c = 10.7854 (4) Å | 0.39 × 0.26 × 0.05 mm |
β = 96.862 (2)° |
Bruker APEXII CCD area-detector diffractometer | 2904 independent reflections |
Absorption correction: integration (XPREP; Bruker, 2005) | 1852 reflections with I > 2σ(I) |
Tmin = 0.646, Tmax = 0.941 | Rint = 0.054 |
17808 measured reflections |
R[F2 > 2σ(F2)] = 0.040 | 0 restraints |
wR(F2) = 0.114 | H-atom parameters constrained |
S = 1.00 | Δρmax = 0.63 e Å−3 |
2904 reflections | Δρmin = −0.38 e Å−3 |
154 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.74936 (18) | −0.0973 (4) | 0.4338 (2) | 0.0367 (6) | |
C2 | 0.7628 (2) | −0.2266 (4) | 0.3419 (3) | 0.0426 (7) | |
H2 | 0.7177 | −0.2780 | 0.2863 | 0.051* | |
C3 | 0.8561 (2) | −0.2636 (4) | 0.3494 (3) | 0.0464 (7) | |
H3 | 0.8832 | −0.3434 | 0.2996 | 0.056* | |
C4 | 0.9012 (2) | −0.1589 (4) | 0.4453 (3) | 0.0465 (7) | |
H4 | 0.9633 | −0.1568 | 0.4695 | 0.056* | |
C5 | 0.8361 (2) | −0.0576 (4) | 0.4985 (3) | 0.0412 (7) | |
H5 | 0.8477 | 0.0216 | 0.5645 | 0.049* | |
C6 | 0.6610 (2) | −0.0148 (4) | 0.4525 (3) | 0.0473 (7) | |
H6A | 0.6717 | 0.1044 | 0.4841 | 0.057* | |
H6B | 0.6239 | −0.0065 | 0.3724 | 0.057* | |
C7 | 0.5876 (2) | −0.2876 (4) | 0.5291 (3) | 0.0520 (8) | |
H7 | 0.6011 | −0.3673 | 0.4683 | 0.062* | |
C8 | 0.5399 (2) | −0.3206 (5) | 0.6267 (3) | 0.0517 (8) | |
H8 | 0.5150 | −0.4296 | 0.6434 | 0.062* | |
C9 | 0.5771 (2) | −0.0511 (4) | 0.6399 (3) | 0.0483 (8) | |
H9 | 0.5835 | 0.0657 | 0.6667 | 0.058* | |
C10 | 0.7592 (4) | 0.1645 (8) | 0.1970 (6) | 0.104 (2) | |
H10 | 0.6964 | 0.1723 | 0.1886 | 0.125* | |
C11 | 0.8049 (4) | 0.0625 (7) | 0.1300 (4) | 0.0887 (15) | |
H11 | 0.7791 | −0.0120 | 0.0669 | 0.106* | |
C12 | 0.8918 (3) | 0.0786 (6) | 0.1630 (4) | 0.0750 (12) | |
H12 | 0.9365 | 0.0184 | 0.1268 | 0.090* | |
C13 | 0.9071 (4) | 0.1987 (7) | 0.2598 (5) | 0.0973 (18) | |
H13 | 0.9625 | 0.2337 | 0.3017 | 0.117* | |
C14 | 0.8167 (6) | 0.2588 (5) | 0.2818 (5) | 0.123 (3) | |
H14 | 0.8017 | 0.3416 | 0.3397 | 0.148* | |
N1 | 0.61150 (15) | −0.1138 (3) | 0.5390 (2) | 0.0407 (5) | |
N2 | 0.53352 (17) | −0.1716 (4) | 0.6965 (2) | 0.0518 (7) | |
Fe1 | 0.83161 (2) | −0.00206 (5) | 0.31303 (3) | 0.03545 (14) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0351 (14) | 0.0369 (15) | 0.0384 (14) | −0.0031 (12) | 0.0057 (11) | 0.0063 (11) |
C2 | 0.0457 (17) | 0.0350 (15) | 0.0472 (16) | −0.0136 (13) | 0.0058 (13) | −0.0007 (12) |
C3 | 0.0472 (17) | 0.0345 (15) | 0.0586 (18) | 0.0027 (13) | 0.0106 (14) | 0.0007 (13) |
C4 | 0.0345 (15) | 0.0484 (17) | 0.0556 (18) | 0.0019 (13) | 0.0013 (13) | 0.0107 (14) |
C5 | 0.0464 (17) | 0.0405 (15) | 0.0359 (14) | −0.0038 (13) | 0.0016 (12) | 0.0027 (11) |
C6 | 0.0422 (15) | 0.0494 (18) | 0.0523 (17) | 0.0031 (14) | 0.0142 (13) | 0.0135 (14) |
C7 | 0.059 (2) | 0.0536 (19) | 0.0461 (17) | −0.0088 (15) | 0.0189 (15) | −0.0071 (14) |
C8 | 0.0466 (17) | 0.063 (2) | 0.0465 (17) | −0.0092 (15) | 0.0106 (14) | 0.0064 (15) |
C9 | 0.0448 (17) | 0.0511 (19) | 0.0506 (18) | 0.0072 (14) | 0.0129 (14) | −0.0042 (14) |
C10 | 0.090 (3) | 0.097 (4) | 0.135 (5) | 0.044 (3) | 0.049 (3) | 0.084 (4) |
C11 | 0.107 (4) | 0.097 (3) | 0.058 (2) | −0.029 (3) | −0.009 (2) | 0.035 (2) |
C12 | 0.088 (3) | 0.074 (3) | 0.072 (3) | 0.008 (2) | 0.042 (2) | 0.024 (2) |
C13 | 0.107 (4) | 0.097 (4) | 0.082 (3) | −0.069 (3) | −0.015 (3) | 0.041 (3) |
C14 | 0.286 (9) | 0.0223 (19) | 0.081 (3) | 0.009 (3) | 0.104 (5) | 0.0110 (18) |
N1 | 0.0374 (13) | 0.0450 (14) | 0.0411 (13) | −0.0004 (11) | 0.0108 (10) | 0.0031 (11) |
N2 | 0.0479 (15) | 0.0667 (18) | 0.0434 (14) | 0.0045 (13) | 0.0161 (12) | 0.0017 (13) |
Fe1 | 0.0377 (2) | 0.0310 (2) | 0.0387 (2) | −0.00352 (17) | 0.00896 (15) | 0.00289 (17) |
C1—C2 | 1.423 (4) | C8—N2 | 1.365 (4) |
C1—C5 | 1.424 (4) | C8—H8 | 0.9300 |
C1—C6 | 1.492 (4) | C9—N2 | 1.311 (4) |
C1—Fe1 | 2.024 (3) | C9—N1 | 1.343 (4) |
C2—C3 | 1.410 (4) | C9—H9 | 0.9300 |
C2—Fe1 | 2.026 (3) | C10—C11 | 1.303 (7) |
C2—H2 | 0.9300 | C10—C14 | 1.375 (8) |
C3—C4 | 1.408 (4) | C10—Fe1 | 1.998 (4) |
C3—Fe1 | 2.040 (3) | C10—H10 | 0.9300 |
C3—H3 | 0.9300 | C11—C12 | 1.305 (6) |
C4—C5 | 1.410 (4) | C11—Fe1 | 2.026 (4) |
C4—Fe1 | 2.040 (3) | C11—H11 | 0.9300 |
C4—H4 | 0.9300 | C12—C13 | 1.382 (6) |
C5—Fe1 | 2.037 (3) | C12—Fe1 | 2.035 (3) |
C5—H5 | 0.9300 | C12—H12 | 0.9300 |
C6—N1 | 1.463 (3) | C13—C14 | 1.467 (8) |
C6—H6A | 0.9700 | C13—Fe1 | 2.013 (3) |
C6—H6B | 0.9700 | C13—H13 | 0.9300 |
C7—C8 | 1.361 (4) | C14—Fe1 | 2.008 (4) |
C7—N1 | 1.362 (4) | C14—H14 | 0.9300 |
C7—H7 | 0.9300 | ||
C2—C1—C5 | 106.9 (2) | Fe1—C12—H12 | 126.3 |
C2—C1—C6 | 125.5 (3) | C12—C13—C14 | 104.7 (4) |
C5—C1—C6 | 127.5 (3) | C12—C13—Fe1 | 70.9 (2) |
C2—C1—Fe1 | 69.49 (15) | C14—C13—Fe1 | 68.4 (2) |
C5—C1—Fe1 | 69.97 (15) | C12—C13—H13 | 127.7 |
C6—C1—Fe1 | 123.35 (19) | C14—C13—H13 | 127.7 |
C3—C2—C1 | 108.4 (2) | Fe1—C13—H13 | 124.7 |
C3—C2—Fe1 | 70.25 (16) | C10—C14—C13 | 104.1 (4) |
C1—C2—Fe1 | 69.36 (15) | C10—C14—Fe1 | 69.5 (2) |
C3—C2—H2 | 125.8 | C13—C14—Fe1 | 68.8 (2) |
C1—C2—H2 | 125.8 | C10—C14—H14 | 128.0 |
Fe1—C2—H2 | 126.2 | C13—C14—H14 | 128.0 |
C4—C3—C2 | 108.1 (3) | Fe1—C14—H14 | 125.4 |
C4—C3—Fe1 | 69.80 (17) | C9—N1—C7 | 106.4 (2) |
C2—C3—Fe1 | 69.15 (16) | C9—N1—C6 | 127.4 (3) |
C4—C3—H3 | 126.0 | C7—N1—C6 | 126.2 (2) |
C2—C3—H3 | 126.0 | C9—N2—C8 | 104.2 (2) |
Fe1—C3—H3 | 126.7 | C10—Fe1—C14 | 40.1 (2) |
C3—C4—C5 | 108.3 (3) | C10—Fe1—C13 | 68.0 (2) |
C3—C4—Fe1 | 69.82 (17) | C14—Fe1—C13 | 42.8 (2) |
C5—C4—Fe1 | 69.66 (16) | C10—Fe1—C1 | 107.71 (16) |
C3—C4—H4 | 125.9 | C14—Fe1—C1 | 113.20 (19) |
C5—C4—H4 | 125.9 | C13—Fe1—C1 | 148.6 (2) |
Fe1—C4—H4 | 126.2 | C10—Fe1—C2 | 112.3 (2) |
C4—C5—C1 | 108.3 (3) | C14—Fe1—C2 | 143.2 (3) |
C4—C5—Fe1 | 69.87 (17) | C13—Fe1—C2 | 170.3 (2) |
C1—C5—Fe1 | 68.97 (15) | C1—Fe1—C2 | 41.15 (11) |
C4—C5—H5 | 125.9 | C10—Fe1—C11 | 37.8 (2) |
C1—C5—H5 | 125.9 | C14—Fe1—C11 | 66.1 (2) |
Fe1—C5—H5 | 126.9 | C13—Fe1—C11 | 65.89 (18) |
N1—C6—C1 | 113.1 (2) | C1—Fe1—C11 | 130.50 (18) |
N1—C6—H6A | 109.0 | C2—Fe1—C11 | 107.92 (16) |
C1—C6—H6A | 109.0 | C10—Fe1—C12 | 64.48 (18) |
N1—C6—H6B | 109.0 | C14—Fe1—C12 | 67.83 (18) |
C1—C6—H6B | 109.0 | C13—Fe1—C12 | 39.91 (19) |
H6A—C6—H6B | 107.8 | C1—Fe1—C12 | 167.51 (17) |
C8—C7—N1 | 105.8 (3) | C2—Fe1—C12 | 130.71 (17) |
C8—C7—H7 | 127.1 | C11—Fe1—C12 | 37.50 (18) |
N1—C7—H7 | 127.1 | C10—Fe1—C5 | 134.2 (2) |
C7—C8—N2 | 110.7 (3) | C14—Fe1—C5 | 110.93 (16) |
C7—C8—H8 | 124.7 | C13—Fe1—C5 | 118.80 (16) |
N2—C8—H8 | 124.7 | C1—Fe1—C5 | 41.06 (11) |
N2—C9—N1 | 113.0 (3) | C2—Fe1—C5 | 68.54 (12) |
N2—C9—H9 | 123.5 | C11—Fe1—C5 | 170.4 (2) |
N1—C9—H9 | 123.5 | C12—Fe1—C5 | 151.27 (17) |
C11—C10—C14 | 110.5 (5) | C10—Fe1—C4 | 174.5 (2) |
C11—C10—Fe1 | 72.3 (3) | C14—Fe1—C4 | 136.4 (3) |
C14—C10—Fe1 | 70.3 (3) | C13—Fe1—C4 | 112.53 (16) |
C11—C10—H10 | 124.8 | C1—Fe1—C4 | 68.85 (11) |
C14—C10—H10 | 124.8 | C2—Fe1—C4 | 68.27 (12) |
Fe1—C10—H10 | 124.2 | C11—Fe1—C4 | 147.7 (2) |
C10—C11—C12 | 111.1 (5) | C12—Fe1—C4 | 119.68 (16) |
C10—C11—Fe1 | 69.9 (3) | C5—Fe1—C4 | 40.47 (12) |
C12—C11—Fe1 | 71.6 (2) | C10—Fe1—C3 | 143.3 (2) |
C10—C11—H11 | 124.4 | C14—Fe1—C3 | 175.9 (3) |
C12—C11—H11 | 124.4 | C13—Fe1—C3 | 133.8 (2) |
Fe1—C11—H11 | 125.6 | C1—Fe1—C3 | 68.89 (12) |
C11—C12—C13 | 109.7 (5) | C2—Fe1—C3 | 40.59 (12) |
C11—C12—Fe1 | 70.9 (2) | C11—Fe1—C3 | 115.5 (2) |
C13—C12—Fe1 | 69.2 (2) | C12—Fe1—C3 | 110.95 (16) |
C11—C12—H12 | 125.2 | C5—Fe1—C3 | 68.13 (12) |
C13—C12—H12 | 125.2 | C4—Fe1—C3 | 40.37 (12) |
C5—C1—C2—C3 | −0.7 (3) | C5—C1—Fe1—C11 | −173.4 (3) |
C6—C1—C2—C3 | 176.6 (3) | C6—C1—Fe1—C11 | −51.0 (4) |
Fe1—C1—C2—C3 | 59.6 (2) | C2—C1—Fe1—C12 | 54.4 (7) |
C5—C1—C2—Fe1 | −60.26 (19) | C5—C1—Fe1—C12 | 172.2 (7) |
C6—C1—C2—Fe1 | 117.0 (3) | C6—C1—Fe1—C12 | −65.4 (8) |
C1—C2—C3—C4 | 0.1 (3) | C2—C1—Fe1—C5 | −117.8 (2) |
Fe1—C2—C3—C4 | 59.1 (2) | C6—C1—Fe1—C5 | 122.4 (3) |
C1—C2—C3—Fe1 | −59.04 (19) | C2—C1—Fe1—C4 | −80.75 (18) |
C2—C3—C4—C5 | 0.5 (3) | C5—C1—Fe1—C4 | 37.09 (17) |
Fe1—C3—C4—C5 | 59.3 (2) | C6—C1—Fe1—C4 | 159.5 (3) |
C2—C3—C4—Fe1 | −58.7 (2) | C2—C1—Fe1—C3 | −37.33 (17) |
C3—C4—C5—C1 | −0.9 (3) | C5—C1—Fe1—C3 | 80.52 (19) |
Fe1—C4—C5—C1 | 58.42 (19) | C6—C1—Fe1—C3 | −157.1 (3) |
C3—C4—C5—Fe1 | −59.4 (2) | C3—C2—Fe1—C10 | 148.6 (3) |
C2—C1—C5—C4 | 1.0 (3) | C1—C2—Fe1—C10 | −91.8 (3) |
C6—C1—C5—C4 | −176.2 (3) | C3—C2—Fe1—C14 | −177.6 (3) |
Fe1—C1—C5—C4 | −59.0 (2) | C1—C2—Fe1—C14 | −58.0 (3) |
C2—C1—C5—Fe1 | 59.95 (18) | C3—C2—Fe1—C1 | −119.6 (2) |
C6—C1—C5—Fe1 | −117.2 (3) | C3—C2—Fe1—C11 | 108.5 (3) |
C2—C1—C6—N1 | 89.2 (3) | C1—C2—Fe1—C11 | −131.9 (2) |
C5—C1—C6—N1 | −94.1 (3) | C3—C2—Fe1—C12 | 73.8 (3) |
Fe1—C1—C6—N1 | 176.54 (19) | C1—C2—Fe1—C12 | −166.6 (2) |
N1—C7—C8—N2 | 0.1 (4) | C3—C2—Fe1—C5 | −81.00 (19) |
C14—C10—C11—C12 | 0.3 (5) | C1—C2—Fe1—C5 | 38.61 (16) |
Fe1—C10—C11—C12 | −59.9 (3) | C3—C2—Fe1—C4 | −37.32 (18) |
C14—C10—C11—Fe1 | 60.2 (3) | C1—C2—Fe1—C4 | 82.29 (18) |
C10—C11—C12—C13 | 0.5 (5) | C1—C2—Fe1—C3 | 119.6 (2) |
Fe1—C11—C12—C13 | −58.5 (3) | C12—C11—Fe1—C10 | 121.7 (5) |
C10—C11—C12—Fe1 | 58.9 (3) | C10—C11—Fe1—C14 | −37.5 (4) |
C11—C12—C13—C14 | −1.0 (5) | C12—C11—Fe1—C14 | 84.2 (4) |
Fe1—C12—C13—C14 | −60.5 (2) | C10—C11—Fe1—C13 | −84.6 (4) |
C11—C12—C13—Fe1 | 59.5 (3) | C12—C11—Fe1—C13 | 37.1 (3) |
C11—C10—C14—C13 | −0.9 (5) | C10—C11—Fe1—C1 | 63.3 (4) |
Fe1—C10—C14—C13 | 60.5 (3) | C12—C11—Fe1—C1 | −174.9 (3) |
C11—C10—C14—Fe1 | −61.4 (3) | C10—C11—Fe1—C2 | 103.5 (4) |
C12—C13—C14—C10 | 1.1 (4) | C12—C11—Fe1—C2 | −134.8 (3) |
Fe1—C13—C14—C10 | −61.0 (3) | C10—C11—Fe1—C12 | −121.7 (5) |
C12—C13—C14—Fe1 | 62.1 (3) | C10—C11—Fe1—C4 | −179.0 (3) |
N2—C9—N1—C7 | 0.6 (4) | C12—C11—Fe1—C4 | −57.3 (5) |
N2—C9—N1—C6 | 177.8 (3) | C10—C11—Fe1—C3 | 146.6 (3) |
C8—C7—N1—C9 | −0.4 (3) | C12—C11—Fe1—C3 | −91.7 (3) |
C8—C7—N1—C6 | −177.6 (3) | C11—C12—Fe1—C10 | −35.3 (4) |
C1—C6—N1—C9 | 127.7 (3) | C13—C12—Fe1—C10 | 85.6 (4) |
C1—C6—N1—C7 | −55.7 (4) | C11—C12—Fe1—C14 | −79.2 (4) |
N1—C9—N2—C8 | −0.5 (4) | C13—C12—Fe1—C14 | 41.6 (3) |
C7—C8—N2—C9 | 0.3 (4) | C11—C12—Fe1—C13 | −120.8 (5) |
C11—C10—Fe1—C14 | 120.3 (5) | C11—C12—Fe1—C1 | 18.1 (9) |
C11—C10—Fe1—C13 | 78.7 (3) | C13—C12—Fe1—C1 | 138.9 (7) |
C14—C10—Fe1—C13 | −41.6 (3) | C11—C12—Fe1—C2 | 63.0 (4) |
C11—C10—Fe1—C1 | −134.5 (3) | C13—C12—Fe1—C2 | −176.2 (3) |
C14—C10—Fe1—C1 | 105.2 (3) | C13—C12—Fe1—C11 | 120.8 (5) |
C11—C10—Fe1—C2 | −90.8 (3) | C11—C12—Fe1—C5 | −172.6 (3) |
C14—C10—Fe1—C2 | 148.9 (3) | C13—C12—Fe1—C5 | −51.8 (5) |
C14—C10—Fe1—C11 | −120.3 (5) | C11—C12—Fe1—C4 | 148.8 (3) |
C11—C10—Fe1—C12 | 35.0 (3) | C13—C12—Fe1—C4 | −90.3 (3) |
C14—C10—Fe1—C12 | −85.3 (3) | C11—C12—Fe1—C3 | 105.0 (3) |
C11—C10—Fe1—C5 | −172.0 (3) | C13—C12—Fe1—C3 | −134.2 (3) |
C14—C10—Fe1—C5 | 67.7 (4) | C4—C5—Fe1—C10 | −178.0 (3) |
C11—C10—Fe1—C3 | −56.3 (4) | C1—C5—Fe1—C10 | 62.0 (3) |
C14—C10—Fe1—C3 | −176.6 (3) | C4—C5—Fe1—C14 | −138.3 (3) |
C13—C14—Fe1—C10 | −115.0 (4) | C1—C5—Fe1—C14 | 101.7 (3) |
C10—C14—Fe1—C13 | 115.0 (4) | C4—C5—Fe1—C13 | −91.7 (3) |
C10—C14—Fe1—C1 | −90.3 (3) | C1—C5—Fe1—C13 | 148.4 (3) |
C13—C14—Fe1—C1 | 154.7 (3) | C4—C5—Fe1—C1 | 119.9 (2) |
C10—C14—Fe1—C2 | −52.9 (4) | C4—C5—Fe1—C2 | 81.24 (19) |
C13—C14—Fe1—C2 | −168.0 (2) | C1—C5—Fe1—C2 | −38.70 (17) |
C10—C14—Fe1—C11 | 35.4 (3) | C4—C5—Fe1—C12 | −56.6 (4) |
C13—C14—Fe1—C11 | −79.7 (3) | C1—C5—Fe1—C12 | −176.5 (3) |
C10—C14—Fe1—C12 | 76.2 (3) | C1—C5—Fe1—C4 | −119.9 (2) |
C13—C14—Fe1—C12 | −38.8 (3) | C4—C5—Fe1—C3 | 37.41 (17) |
C10—C14—Fe1—C5 | −134.7 (3) | C1—C5—Fe1—C3 | −82.53 (18) |
C13—C14—Fe1—C5 | 110.3 (3) | C3—C4—Fe1—C14 | −176.2 (3) |
C10—C14—Fe1—C4 | −173.5 (3) | C5—C4—Fe1—C14 | 64.3 (3) |
C13—C14—Fe1—C4 | 71.5 (3) | C3—C4—Fe1—C13 | −132.0 (3) |
C12—C13—Fe1—C10 | −76.1 (3) | C5—C4—Fe1—C13 | 108.5 (3) |
C14—C13—Fe1—C10 | 39.1 (3) | C3—C4—Fe1—C1 | 81.89 (19) |
C12—C13—Fe1—C14 | −115.2 (4) | C5—C4—Fe1—C1 | −37.61 (17) |
C12—C13—Fe1—C1 | −164.2 (3) | C3—C4—Fe1—C2 | 37.52 (17) |
C14—C13—Fe1—C1 | −49.0 (4) | C5—C4—Fe1—C2 | −81.98 (18) |
C12—C13—Fe1—C11 | −34.9 (3) | C3—C4—Fe1—C11 | −51.9 (4) |
C14—C13—Fe1—C11 | 80.2 (3) | C5—C4—Fe1—C11 | −171.4 (3) |
C14—C13—Fe1—C12 | 115.2 (4) | C3—C4—Fe1—C12 | −88.0 (2) |
C12—C13—Fe1—C5 | 154.5 (3) | C5—C4—Fe1—C12 | 152.5 (2) |
C14—C13—Fe1—C5 | −90.4 (3) | C3—C4—Fe1—C5 | 119.5 (3) |
C12—C13—Fe1—C4 | 109.9 (3) | C5—C4—Fe1—C3 | −119.5 (3) |
C14—C13—Fe1—C4 | −135.0 (3) | C4—C3—Fe1—C10 | −173.4 (3) |
C12—C13—Fe1—C3 | 68.0 (3) | C2—C3—Fe1—C10 | −53.8 (3) |
C14—C13—Fe1—C3 | −176.8 (3) | C4—C3—Fe1—C13 | 72.0 (3) |
C2—C1—Fe1—C10 | 103.8 (3) | C2—C3—Fe1—C13 | −168.4 (2) |
C5—C1—Fe1—C10 | −138.3 (3) | C4—C3—Fe1—C1 | −81.78 (19) |
C6—C1—Fe1—C10 | −15.9 (3) | C2—C3—Fe1—C1 | 37.83 (17) |
C2—C1—Fe1—C14 | 146.4 (3) | C4—C3—Fe1—C2 | −119.6 (3) |
C5—C1—Fe1—C14 | −95.7 (3) | C4—C3—Fe1—C11 | 152.3 (2) |
C6—C1—Fe1—C14 | 26.7 (4) | C2—C3—Fe1—C11 | −88.1 (2) |
C2—C1—Fe1—C13 | −179.6 (3) | C4—C3—Fe1—C12 | 111.6 (2) |
C5—C1—Fe1—C13 | −61.8 (4) | C2—C3—Fe1—C12 | −128.8 (2) |
C6—C1—Fe1—C13 | 60.6 (4) | C4—C3—Fe1—C5 | −37.50 (18) |
C5—C1—Fe1—C2 | 117.8 (2) | C2—C3—Fe1—C5 | 82.10 (18) |
C6—C1—Fe1—C2 | −119.7 (3) | C2—C3—Fe1—C4 | 119.6 (3) |
C2—C1—Fe1—C11 | 68.7 (3) |
Experimental details
Crystal data | |
Chemical formula | [Fe(C5H5)(C9H9N2)] |
Mr | 266.12 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 293 |
a, b, c (Å) | 14.8914 (6), 7.5587 (3), 10.7854 (4) |
β (°) | 96.862 (2) |
V (Å3) | 1205.30 (8) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 1.23 |
Crystal size (mm) | 0.39 × 0.26 × 0.05 |
Data collection | |
Diffractometer | Bruker APEXII CCD area-detector diffractometer |
Absorption correction | Integration (XPREP; Bruker, 2005) |
Tmin, Tmax | 0.646, 0.941 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 17808, 2904, 1852 |
Rint | 0.054 |
(sin θ/λ)max (Å−1) | 0.661 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.040, 0.114, 1.00 |
No. of reflections | 2904 |
No. of parameters | 154 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.63, −0.38 |
Computer programs: APEX2 (Bruker, 2005), SAINT-Plus (Bruker, 2005), SAINT-Plus (Bruker, 2005, SHELXTL (Sheldrick, 2008), PLATON (Spek, 2003) and ORTEP-3 (Farrugia, 1997).
Acknowledgements
We thank Dr Manuel Fernandez for the data collection, and the University of KwaZulu-Natal and the NRF for financial support.
References
Broggini, D. & Togni, A. (2002). Helv. Chim. Acta, 85, 2518–2522. Web of Science CSD CrossRef CAS Google Scholar
Bruker (2005). APEX2, SAINT-Plus.and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
César, V., Bellemin-Laponnaz, S. & Gade, L. H. (2004). Chem. Soc. Rev. 33, 619–636. Web of Science PubMed Google Scholar
Cozzi, P., Carganico, G., Fusar, D., Menichincheri, M., Pinciroli, V., Tonani, R., Vaghi, F. & Salvati, P. (1993). J. Med. Chem. 36, 2964–2972. CrossRef CAS PubMed Web of Science Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Herrmann, W. A. & Köcher, C. (1997). Angew. Chem. Int. Ed. Engl. 36, 2162–2187. CrossRef CAS Web of Science Google Scholar
Hua, H., Huang, G.-S., Liang, Y.-M., Wu, X.-L., Ma, Y.-X. & Chen, B.-H. (2004). Acta Cryst. E60, m761–m763. Web of Science CSD CrossRef IUCr Journals Google Scholar
Lee, H. M. & Nolan, S. P. (2000). Org. Lett. 2, 2053–2055. Web of Science CrossRef PubMed CAS Google Scholar
Ohmori, J., Shimizu-Sasamata, M., Okada, M. & Sakamoto, S. (1996). J. Med. Chem. 39, 3971–3979. CrossRef CAS PubMed Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Snegur, L. V., Simenel, A. A., Nekrasov, Y. S., Morozova, E. A., Starikova, Z. A., Peregudova, S. M., Kuzmenko, Y. V., Babin, V. N., Ostrovskaya, L. A., Bluchterova, N. V. & Fomina, M. M. (2004). J. Organomet. Chem. 689, 2473–2479. Web of Science CSD CrossRef CAS Google Scholar
Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The synthesis of arylimidazole compounds is of importance because of their significance in pharmaceutical (Ohmori et al. 1996), biological (Cozzi et al. 1993) and the synthesis of fine chemicals (Lee & Nolan, 2000; Herrmann & Köcher, 1997). Ferrocenyl compounds with an N-heterocycle group such as ferrocenylmethyl benzimidazole have been studied and found to exhibit anticancer activity (Snegur et al. 2004). The ferrocenylimidazolium salts have also found uses in catalysis as precursors for the synthesis of N-heterocyclic carbenes (César et al., 2004; Broggini & Togni, 2002).
In the title compound (I, Fig. 1), the distance of the Fe atom from the centroids of the substituted (C1—C5) and the unsubstituted (C6—C10) cyclopentadienyl rings are 1.639 (1) and 1.647 (1) Å respectively, indicating a slight shotening of the substituted cp—Fe bond length due to the substitution of the imidazole unit. The plane of the imidazole ring in (I) is tilted at an angle of 114.11 (4)° away from the plane of the C1—C5 cp ring. The strain on the substituted ring results in a corresponding tilt of 3.87 (2)° between the planes of the two cp rings. The cp rings also deviate significantly from an eclipsed conformation with torsion angles ranging from 19.98 (2)–24.90 (2)°. This could be due to the fact that the C1—C5 cp ring twists in order to accommodate the bulky imidazole unit, hence putting it out of coplanarity with the unsubstituted C10—C14 cp ring.