organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 11| November 2008| Pages o2089-o2090

(3RS,4SR)-Methyl 4-(2-chloro-5,8-di­meth­oxy­quinolin-3-yl)-1-phenyl­pyrrolidine-3-carboxyl­ate

aLaboratoire des Produits Naturels, d'Origine Végétale et de Synthèse Organique, PHYSYNOR, Université Mentouri–Constantine, 25000 Constantine, Algeria, and bDépartement de Chimie, Faculté des Sciences et Sciences de l'Ingénieur, Université A. Mira de Béjaia, Route Targua Ouzmour, 06000 Béjaia, Algeria
*Correspondence e-mail: bouacida_sofiane@yahoo.fr

(Received 21 September 2008; accepted 2 October 2008; online 9 October 2008)

The mol­ecule of the title compound, C23H23ClN2O4, contains a quinolyl unit linked to a functionalized pyrrolidine system with a 3,4-trans arrangement of the substituents. The unit cell contains two stereoisomers that have the absolute stereochemistry 3S,4R and 3R,4S. The pyrrolidine ring adopts a twist conformation with pseudo-rotation parameters P = 258.2 (3)° and τ(M) = 35.3 (1)°. The packing is stabilized by C—H⋯π inter­actions and offset ππ stacking (centroid-to-centroid distance = 3.849 Å, inter­planar distance = 3.293 Å and slippage = 1.994 Å) between phenyl rings, leading to a two-dimensional network.

Related literature

For general background, see: Padwa et al. (1999[Padwa, A., Brodney, M. A., Liu, B., Satake, K. & Wu, T. (1999). J. Org. Chem. 64, 3595-3607.]); Sahu et al. (2002[Sahu, N. P., Pal, C., Mandal, N. B., Banerjee, S., Raha, M., Kundu, A. P., Basu, A., Ghosh, M., Roy, K. & Bandyopadhyay, S. (2002). Bioorg. Med. Chem. 10, 1687-1693.]); Robert & Meunier (1998[Robert, A. & Meunier, B. (1998). Chem. Soc. Rev. 27, 273-274.]); Dow et al. (2006[Dow, G. S., et al. (2006). Antimicrob. Agents Chemother. 50, 4132-4143.]); Witherup et al. (1995[Witherup, K., Ranson, R. W., Graham, A. C., Barnard, A. M., Salvatore, M. J., Limma, W. C., Anderson, P. S., Pitzenberger, S. M. & Varga, S. L. (1995). J. Am. Chem. Soc. 117, 6682-6685.]); Kravchenko et al. (2005[Kravchenko, D. V., Kysil, V. M., Tkachenko, S. E., Maliarchouk, S., Okun, I. M. & Ivachtchenko, A. V. (2005). Eur. J. Med. Chem. 40, 1377-1383.]); Bouraiou et al. (2008[Bouraiou, A., Debache, A., Rhouati, S., Carboni, B. & Belfaitah, A. (2008). J. Heterocycl. Chem. 45, 329-333.]); Rezig et al. (2000[Rezig, R., Chebah, M., Rhouati, S., Ducki, S. & Lawrence, N. (2000). J. Soc. Alger. Chim. 10, 111-120.]); Moussaoui et al. (2002[Moussaoui, F., Belfaitah, A., Debache, A. & Rhouati, S. (2002). J. Soc. Alger. Chim. 12, 71-78.]); Menasra et al. (2005[Menasra, H., Kedjadja, A., Debache, A., Rhouati, S., Carboni, B. & Belfaitah, A. (2005). Synth. Commun. 35, 2779-2788.]); Rao et al. (1981[Rao, S. T., Westhof, E. & Sundaralingam, M. (1981). Acta Cryst. A37, 421-425.]). For related structures, see: Belfaitah et al. (2006[Belfaitah, A., Ladraa, S., Bouraiou, A., Benali-Cherif, N., Debache, A. & Rhouati, S. (2006). Acta Cryst. E62, o1355-o1357.]); Bouraiou et al. (2007a[Bouraiou, A., Belfaitah, A., Bouacida, S., Benard-Rocherulle, P. & Carboni, B. (2007a). Acta Cryst. E63, o2133-o2135.],b[Bouraiou, A., Belfaitah, A., Bouacida, S., Benard-Rocherulle, P. & Carboni, B. (2007b). Acta Cryst. E63, o1626-o1628.]).

[Scheme 1]

Experimental

Crystal data
  • C23H23ClN2O4

  • Mr = 426.88

  • Monoclinic, P 21 /c

  • a = 9.579 (1) Å

  • b = 17.518 (1) Å

  • c = 12.944 (2) Å

  • β = 109.01 (2)°

  • V = 2053.6 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.22 mm−1

  • T = 296 (2) K

  • 0.15 × 0.06 × 0.05 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: none

  • 9271 measured reflections

  • 4717 independent reflections

  • 3062 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.178

  • S = 1.03

  • 4717 reflections

  • 274 parameters

  • H-atom parameters constrained

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C17–C22 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12BCg1i 0.96 2.67 3.601 (3) 164
Symmetry code: (i) [x+1, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and SCALEPACK; program(s) used to solve structure: SIR2002 (Burla et al., 2003[Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]), ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and CAMERON (Pearce et al., 2000[Pearce, L., Prout, C. K. & Watkin, D. J. (2000). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.]); software used to prepare material for publication: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]) and WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Quinolines derivatives have attracted considerable interest for many years due to their presence in the skeleton of a large number of bioactive compounds and natural products (Padwa et al., 1999; Sahu et al. 2002). For example, quinoline alkaloids, such as quinine, chloroquin, mefloquine and amodiaquine, are used as efficient drugs for the treatment of malaria (Robert & Meunier, 1998; Dow et al., 2006). On the other hand, pyrrolidine containing compounds are also of significant importance because of their biological activities and widespread employment in catalysis (Witherup et al., 1995; Kravchenko et al., 2005). As a part of our program related to the preparation and biological evaluation of quinolyl derivatives (Belfaitah et al., 2006; Bouraiou et al., 2008, 2007a,b; Rezig et al., 2000; Moussaoui et al., 2002), we have previously reported the preparation of some 3-pyrrolylquinoline derivatives via an 1,3-dipolar cycloaddition/oxydation key sequence from quinolinyl α,β-unsaturated esters as starting materials (Menasra et al., 2005). In a continuation of our efforts in this area, we report here the crystal structure of new N-phenylpyrrolidine derivative bearing a quinoline ring at C-3 and ester group at C-4 via an 1,3-dipolar cycloaddition reaction.

The asymmetric unit of title compound contains a quinolyl unit linked to a functionalized pyrrolidine system with a 3,4-trans arrangement of the substituents (Fig. 1). The two rings of quinolyl moiety are fused in an axial fashion and form a dihedral angle of 0.67 (6)° and this quasi plane system forms dihedral angles of 83.76 (7)° with the phenyl ring.The pyrrolidine was obtained with conservation of the stereochemistry of starting alkene, giving only one diastereoisomer with no evidence of any other isomers in the 1H NMR spectra or thin-layer chromatography of the crude product. X-ray crystallography of (I) showed an asymmetric unit which contains only one stereoisomer and the analysis of the unit cell demonstrate that the second stereoisomer is generated via a symmetry element. The two stereoisomers have for each one, the absolute stereochemistry 3S,4R and 3R,4S of the new stereocenters created in the cycloaddition reactions.

The pyrrolidine ring adopts twist conformation on C13—C14 with pseudorotation parameters P = 258.2 (3)° and τ(M) = 35.3 (1)° (Rao et al., 1981), the C13 atom deviates by 0.213 (2)Å from the mean plane through the remaining atoms.

The packing is stabilized by C—H···π interaction involving the C17—C22 phenyl ring (Table 1). Offset π···π stacking between this phenyl ring and the symmetry (-x, -y, -z) related ring might also be considered with a centroid-to-centroid distance of 3.849 Å, an interplanar distance of 3.293Å and a slippage of 1.994Å (Spek, 2003). These weak interactions build up a two dimensional network (Fig. 2).

Related literature top

For general background, see: Padwa et al. (1999); Sahu et al. (2002); Robert & Meunier (1998); Dow et al. (2006); Witherup et al. (1995); Kravchenko et al. (2005); Bouraiou et al. (2008); Rezig et al. (2000); Moussaoui et al. (2002); Menasra et al. (2005); Rao et al. (1981). For related structures, see: Belfaitah et al. (2006); Bouraiou et al. (2007a,b).

Experimental top

The title compound I was synthesized by refluxing 1.0 mmol of (E)-methyl 3-(2-chloro-5,8-dimethoxyquinolin-3-yl) acrylate, 2.0 mmol of N-phenylglycine, and 5.0 mmol of CH2O in dry toluene (5.10-3 M). The contents were then cooled and filtered off and the filtrate was concentrated under reduced pressure. The residue was subjected to column chromatography (silica gel, eluent: CH2Cl2) to afford pure product. Crystals suitable for X-ray analysis were obtained by slow evaporation of a dichloromethane solution of (I).

Refinement top

All H atoms were localized on Fourier maps but introduced in calculated positions and treated as riding on their parent C atom.

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and CAMERON (Pearce et al., 2000); software used to prepare material for publication: PLATON (Spek, 2003) and WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound with the atom-labeling scheme.Displacement ellipsoids are drawn at the 50% probability level. H atoms are represnted as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Partial packing view showing the C—H···π and π-π interactions drawn as dashed lines. H atoms not involved in H bonding interactions have been omitted for clarity.
(3RS,4SR)-Methyl 4-(2-chloro-5,8-dimethoxyquinolin-3-yl)-1-phenylpyrrolidine-3-carboxylate top
Crystal data top
C23H23ClN2O4F(000) = 896
Mr = 426.88Dx = 1.381 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4717 reflections
a = 9.579 (1) Åθ = 2.0–27.5°
b = 17.518 (1) ŵ = 0.22 mm1
c = 12.944 (2) ÅT = 296 K
β = 109.01 (2)°Needle, white
V = 2053.6 (5) Å30.15 × 0.06 × 0.05 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
3062 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.026
Graphite monochromatorθmax = 27.5°, θmin = 2.0°
ϕ scans, and ω scans with κ offsetsh = 1212
9271 measured reflectionsk = 2222
4717 independent reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.178H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.102P)2 + 0.336P]
where P = (Fo2 + 2Fc2)/3
4717 reflections(Δ/σ)max < 0.001
274 parametersΔρmax = 0.38 e Å3
0 restraintsΔρmin = 0.33 e Å3
Crystal data top
C23H23ClN2O4V = 2053.6 (5) Å3
Mr = 426.88Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.579 (1) ŵ = 0.22 mm1
b = 17.518 (1) ÅT = 296 K
c = 12.944 (2) Å0.15 × 0.06 × 0.05 mm
β = 109.01 (2)°
Data collection top
Nonius KappaCCD
diffractometer
3062 reflections with I > 2σ(I)
9271 measured reflectionsRint = 0.026
4717 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0550 restraints
wR(F2) = 0.178H-atom parameters constrained
S = 1.03Δρmax = 0.38 e Å3
4717 reflectionsΔρmin = 0.33 e Å3
274 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C20.4396 (2)0.31838 (12)0.07671 (19)0.0457 (5)
C30.3691 (3)0.26052 (12)0.03567 (19)0.0482 (5)
C40.3895 (3)0.18796 (12)0.0673 (2)0.0494 (5)
H40.34460.14730.04430.059*
C50.4777 (2)0.17338 (11)0.13446 (18)0.0417 (5)
C60.5028 (3)0.09863 (12)0.16864 (19)0.0463 (5)
C70.5869 (3)0.08969 (13)0.2347 (2)0.0514 (5)
H70.60210.04110.25800.062*
C80.6515 (3)0.15355 (14)0.2683 (2)0.0526 (6)
H80.70890.14610.31310.063*
C90.6317 (2)0.22567 (13)0.23653 (18)0.0465 (5)
C100.5433 (2)0.23684 (12)0.16778 (17)0.0417 (5)
C110.4590 (4)0.03500 (14)0.1605 (3)0.0733 (8)
H11A0.42390.03940.23870.110*
H11B0.40540.06970.13000.110*
H11C0.56230.04730.13340.110*
C120.7822 (3)0.28219 (17)0.3307 (3)0.0708 (8)
H12A0.85970.24640.29730.106*
H12B0.82470.33080.33770.106*
H12C0.72440.26400.40170.106*
C130.2718 (3)0.27974 (13)0.0337 (2)0.0520 (6)
H130.31020.32510.07810.062*
C140.1144 (3)0.29516 (14)0.0433 (2)0.0559 (6)
H140.11700.31620.11290.067*
C150.0444 (3)0.21579 (13)0.0605 (2)0.0548 (6)
H15A0.05960.21880.06820.066*
H15B0.05440.19210.12550.066*
C160.2513 (3)0.21506 (13)0.10654 (19)0.0487 (5)
H16A0.33850.18300.13050.058*
H16B0.23140.23510.17020.058*
C170.0583 (2)0.11625 (12)0.08000 (18)0.0441 (5)
C180.0791 (3)0.08503 (13)0.0195 (2)0.0500 (5)
H180.12770.10230.05110.060*
C190.1420 (3)0.02882 (15)0.0646 (2)0.0619 (7)
H190.23330.00890.02370.074*
C200.0738 (3)0.00156 (15)0.1677 (3)0.0694 (8)
H200.11820.03610.19710.083*
C210.0624 (3)0.03104 (15)0.2276 (2)0.0651 (7)
H210.11040.01270.29760.078*
C220.1281 (3)0.08755 (13)0.1845 (2)0.0519 (6)
H220.21990.10660.22590.062*
C230.0291 (3)0.34891 (17)0.0089 (3)0.0662 (7)
C240.1671 (4)0.4343 (2)0.0293 (4)0.1079 (13)
H24A0.25170.40480.02970.162*
H24B0.19850.47690.07810.162*
H24C0.11760.45270.04330.162*
Cl10.41733 (7)0.41375 (3)0.04310 (5)0.0582 (2)
N10.5228 (2)0.30920 (10)0.13716 (15)0.0447 (4)
N20.1249 (2)0.17236 (11)0.03698 (15)0.0487 (5)
O10.4375 (2)0.04110 (9)0.13011 (16)0.0635 (5)
O20.6896 (2)0.29035 (10)0.26382 (16)0.0650 (5)
O30.0479 (4)0.3523 (2)0.1042 (3)0.1496 (14)
O40.0678 (3)0.38737 (15)0.0644 (2)0.0947 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C20.0513 (12)0.0368 (10)0.0521 (12)0.0025 (9)0.0211 (10)0.0011 (9)
C30.0518 (13)0.0418 (11)0.0572 (14)0.0015 (9)0.0262 (11)0.0001 (9)
C40.0542 (13)0.0390 (10)0.0623 (14)0.0046 (9)0.0292 (11)0.0025 (10)
C50.0422 (11)0.0385 (10)0.0478 (12)0.0029 (8)0.0192 (9)0.0003 (8)
C60.0469 (12)0.0387 (11)0.0562 (13)0.0012 (9)0.0210 (10)0.0010 (9)
C70.0578 (14)0.0439 (11)0.0571 (14)0.0027 (10)0.0249 (11)0.0048 (10)
C80.0566 (14)0.0570 (13)0.0535 (13)0.0023 (11)0.0306 (11)0.0002 (10)
C90.0472 (12)0.0485 (12)0.0480 (12)0.0020 (9)0.0215 (10)0.0055 (9)
C100.0404 (11)0.0412 (11)0.0447 (12)0.0007 (8)0.0155 (9)0.0037 (8)
C110.088 (2)0.0378 (12)0.106 (2)0.0050 (13)0.0492 (18)0.0099 (13)
C120.0718 (18)0.0793 (18)0.0783 (19)0.0021 (14)0.0476 (16)0.0170 (15)
C130.0581 (14)0.0469 (12)0.0550 (14)0.0054 (10)0.0239 (11)0.0039 (10)
C140.0670 (15)0.0525 (13)0.0547 (14)0.0026 (11)0.0288 (12)0.0043 (11)
C150.0602 (14)0.0527 (13)0.0488 (13)0.0032 (11)0.0142 (11)0.0016 (10)
C160.0485 (12)0.0512 (12)0.0483 (12)0.0079 (10)0.0183 (10)0.0035 (9)
C170.0476 (12)0.0414 (10)0.0514 (12)0.0012 (9)0.0270 (10)0.0052 (9)
C180.0488 (13)0.0509 (12)0.0552 (13)0.0036 (10)0.0238 (11)0.0106 (10)
C190.0585 (15)0.0552 (13)0.0839 (19)0.0132 (12)0.0394 (14)0.0167 (13)
C200.081 (2)0.0564 (15)0.089 (2)0.0128 (14)0.0530 (18)0.0000 (14)
C210.0787 (18)0.0627 (15)0.0649 (16)0.0021 (14)0.0386 (14)0.0115 (12)
C220.0537 (13)0.0528 (13)0.0548 (14)0.0039 (10)0.0252 (11)0.0017 (10)
C230.0716 (17)0.0722 (17)0.0677 (18)0.0082 (14)0.0403 (15)0.0035 (14)
C240.075 (2)0.119 (3)0.134 (3)0.026 (2)0.040 (2)0.042 (3)
Cl10.0772 (4)0.0366 (3)0.0688 (4)0.0023 (3)0.0349 (3)0.0035 (2)
N10.0473 (10)0.0404 (9)0.0491 (10)0.0048 (8)0.0194 (8)0.0008 (7)
N20.0488 (10)0.0526 (11)0.0449 (10)0.0100 (8)0.0153 (8)0.0012 (8)
O10.0766 (12)0.0357 (8)0.0950 (14)0.0065 (8)0.0510 (11)0.0048 (8)
O20.0799 (12)0.0537 (10)0.0820 (13)0.0051 (9)0.0546 (11)0.0084 (8)
O30.196 (3)0.168 (3)0.098 (2)0.098 (3)0.065 (2)0.008 (2)
O40.0841 (15)0.1037 (17)0.0949 (17)0.0388 (13)0.0272 (13)0.0179 (13)
Geometric parameters (Å, º) top
C2—N11.296 (3)C13—H130.9800
C2—C31.414 (3)C14—C151.528 (3)
C2—Cl11.757 (2)C14—C231.540 (4)
C3—C41.369 (3)C14—H140.9800
C3—C131.528 (3)C15—N21.460 (3)
C4—C51.419 (3)C15—H15A0.9700
C4—H40.9300C15—H15B0.9700
C5—C101.412 (3)C16—N21.458 (3)
C5—C61.427 (3)C16—H16A0.9700
C6—C71.362 (3)C16—H16B0.9700
C6—O11.363 (3)C17—N21.384 (3)
C7—C81.413 (3)C17—C221.393 (3)
C7—H70.9300C17—C181.405 (3)
C8—C91.361 (3)C18—C191.379 (3)
C8—H80.9300C18—H180.9300
C9—O21.358 (3)C19—C201.368 (4)
C9—C101.427 (3)C19—H190.9300
C10—N11.361 (3)C20—C211.382 (4)
C11—O11.424 (3)C20—H200.9300
C11—H11A0.9600C21—C221.384 (3)
C11—H11B0.9600C21—H210.9300
C11—H11C0.9600C22—H220.9300
C12—O21.434 (3)C23—O31.190 (4)
C12—H12A0.9600C23—O41.281 (4)
C12—H12B0.9600C24—O41.439 (3)
C12—H12C0.9600C24—H24A0.9600
C13—C161.527 (3)C24—H24B0.9600
C13—C141.536 (4)C24—H24C0.9600
N1—C2—C3126.9 (2)C13—C14—H14110.4
N1—C2—Cl1114.55 (15)C23—C14—H14110.4
C3—C2—Cl1118.52 (17)N2—C15—C14105.40 (19)
C4—C3—C2114.9 (2)N2—C15—H15A110.7
C4—C3—C13123.70 (19)C14—C15—H15A110.7
C2—C3—C13121.36 (19)N2—C15—H15B110.7
C3—C4—C5121.5 (2)C14—C15—H15B110.7
C3—C4—H4119.3H15A—C15—H15B108.8
C5—C4—H4119.3N2—C16—C13104.32 (19)
C10—C5—C4117.30 (19)N2—C16—H16A110.9
C10—C5—C6119.41 (18)C13—C16—H16A110.9
C4—C5—C6123.29 (18)N2—C16—H16B110.9
C7—C6—O1125.5 (2)C13—C16—H16B110.9
C7—C6—C5119.60 (19)H16A—C16—H16B108.9
O1—C6—C5114.91 (18)N2—C17—C22120.6 (2)
C6—C7—C8120.6 (2)N2—C17—C18121.5 (2)
C6—C7—H7119.7C22—C17—C18117.8 (2)
C8—C7—H7119.7C19—C18—C17120.1 (2)
C9—C8—C7121.6 (2)C19—C18—H18120.0
C9—C8—H8119.2C17—C18—H18120.0
C7—C8—H8119.2C20—C19—C18121.8 (3)
O2—C9—C8126.0 (2)C20—C19—H19119.1
O2—C9—C10115.04 (19)C18—C19—H19119.1
C8—C9—C10118.99 (19)C19—C20—C21118.7 (2)
N1—C10—C5121.56 (18)C19—C20—H20120.6
N1—C10—C9118.70 (18)C21—C20—H20120.6
C5—C10—C9119.73 (19)C20—C21—C22120.8 (3)
O1—C11—H11A109.5C20—C21—H21119.6
O1—C11—H11B109.5C22—C21—H21119.6
H11A—C11—H11B109.5C21—C22—C17120.8 (2)
O1—C11—H11C109.5C21—C22—H22119.6
H11A—C11—H11C109.5C17—C22—H22119.6
H11B—C11—H11C109.5O3—C23—O4124.8 (3)
O2—C12—H12A109.5O3—C23—C14124.3 (3)
O2—C12—H12B109.5O4—C23—C14110.9 (2)
H12A—C12—H12B109.5O4—C24—H24A109.5
O2—C12—H12C109.5O4—C24—H24B109.5
H12A—C12—H12C109.5H24A—C24—H24B109.5
H12B—C12—H12C109.5O4—C24—H24C109.5
C16—C13—C3115.15 (19)H24A—C24—H24C109.5
C16—C13—C14103.61 (19)H24B—C24—H24C109.5
C3—C13—C14108.3 (2)C2—N1—C10117.82 (18)
C16—C13—H13109.8C17—N2—C16120.98 (18)
C3—C13—H13109.8C17—N2—C15122.38 (19)
C14—C13—H13109.8C16—N2—C15111.38 (18)
C15—C14—C13103.03 (19)C6—O1—C11117.75 (19)
C15—C14—C23110.5 (2)C9—O2—C12117.3 (2)
C13—C14—C23111.8 (2)C23—O4—C24117.5 (3)
C15—C14—H14110.4
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12B···Cg1i0.962.673.601 (3)164
Symmetry code: (i) x+1, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC23H23ClN2O4
Mr426.88
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)9.579 (1), 17.518 (1), 12.944 (2)
β (°) 109.01 (2)
V3)2053.6 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.22
Crystal size (mm)0.15 × 0.06 × 0.05
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
9271, 4717, 3062
Rint0.026
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.178, 1.03
No. of reflections4717
No. of parameters274
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.38, 0.33

Computer programs: COLLECT (Nonius, 1998), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SIR2002 (Burla et al., 2003), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and CAMERON (Pearce et al., 2000), PLATON (Spek, 2003) and WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12B···Cg1i0.962.673.601 (3)164.2
Symmetry code: (i) x+1, y+1/2, z1/2.
 

Footnotes

Correspondence address: Laboratoire de Chimie Moléculaire, du Contrôle de l'Environnement et de Mesures Physico-Chimiques, Faculté des Sciences, Département de Chimie, Université Mentouri, 25000 Constantine, Algeria.

Acknowledgements

We are grateful to Professor Lahcéne Ouahab (Organométalliques et Materiaux Moléculaire, Université de Rennes I, France) for data collection facilities and Professor Abdelmadjid Debache (PHYSYNOR, Université Mentouri, Constantine, Algeria) for his assistance. Thanks are due to MESRS (Ministére de l'Enseignement Supérieur et de la Recherche Scientifique) for financial support.

References

First citationBelfaitah, A., Ladraa, S., Bouraiou, A., Benali-Cherif, N., Debache, A. & Rhouati, S. (2006). Acta Cryst. E62, o1355–o1357.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBouraiou, A., Belfaitah, A., Bouacida, S., Benard-Rocherulle, P. & Carboni, B. (2007a). Acta Cryst. E63, o2133–o2135.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBouraiou, A., Belfaitah, A., Bouacida, S., Benard-Rocherulle, P. & Carboni, B. (2007b). Acta Cryst. E63, o1626–o1628.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBouraiou, A., Debache, A., Rhouati, S., Carboni, B. & Belfaitah, A. (2008). J. Heterocycl. Chem. 45, 329–333.  CrossRef CAS Google Scholar
First citationBurla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.  CrossRef IUCr Journals Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationDow, G. S., et al. (2006). Antimicrob. Agents Chemother. 50, 4132–4143.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationKravchenko, D. V., Kysil, V. M., Tkachenko, S. E., Maliarchouk, S., Okun, I. M. & Ivachtchenko, A. V. (2005). Eur. J. Med. Chem. 40, 1377–1383.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMenasra, H., Kedjadja, A., Debache, A., Rhouati, S., Carboni, B. & Belfaitah, A. (2005). Synth. Commun. 35, 2779–2788.  Web of Science CrossRef CAS Google Scholar
First citationMoussaoui, F., Belfaitah, A., Debache, A. & Rhouati, S. (2002). J. Soc. Alger. Chim. 12, 71–78.  CAS Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPadwa, A., Brodney, M. A., Liu, B., Satake, K. & Wu, T. (1999). J. Org. Chem. 64, 3595–3607.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPearce, L., Prout, C. K. & Watkin, D. J. (2000). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.  Google Scholar
First citationRao, S. T., Westhof, E. & Sundaralingam, M. (1981). Acta Cryst. A37, 421–425.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationRezig, R., Chebah, M., Rhouati, S., Ducki, S. & Lawrence, N. (2000). J. Soc. Alger. Chim. 10, 111–120.  CAS Google Scholar
First citationRobert, A. & Meunier, B. (1998). Chem. Soc. Rev. 27, 273–274.  Web of Science CrossRef CAS Google Scholar
First citationSahu, N. P., Pal, C., Mandal, N. B., Banerjee, S., Raha, M., Kundu, A. P., Basu, A., Ghosh, M., Roy, K. & Bandyopadhyay, S. (2002). Bioorg. Med. Chem. 10, 1687–1693.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWitherup, K., Ranson, R. W., Graham, A. C., Barnard, A. M., Salvatore, M. J., Limma, W. C., Anderson, P. S., Pitzenberger, S. M. & Varga, S. L. (1995). J. Am. Chem. Soc. 117, 6682–6685.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 11| November 2008| Pages o2089-o2090
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds