organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,2′-Di­nitro-5,5′-di­thio­di­benzoic acid

aDepartment of Chemistry, Lishui University, Lishui 323000, People's Republic of China
*Correspondence e-mail: lswlj2008@yahoo.cn

(Received 23 September 2008; accepted 30 September 2008; online 4 October 2008)

In the title compound, C14H8N2O8S2, the asymmetric unit contains two independent 2,2′-dinitro-5,5′-dithio­dibenzoic acid (Dina) mol­ecules with roughly the same conformation. In the crystal structure, strong inter­molecular O—H⋯O hydrogen bonds link the organic mol­ecules into a one-dimensional zigzag chain along the a axis. The dihedral angles between the two aromatic rings [109.3 (2) and 103.1 (3)°] are larger than that (88.95°) observed in a structure of the compound with a solvent water mol­ecule [Shefter & Kalman (1969), J. Chem. Soc. D, p. 1027]. Such a difference may be explained by the occurrence of O—H⋯O hydrogen bonds involving the water mol­ecule in the previously reported structure.

Related literature

For general background, see: Gudbjarlson et al. (1991[Gudbjarlson, H., Poirier, K. M. & Zaworotko, M. J. (1991). J. Am. Chem. Soc. 121, 2599-2600.]); Li et al. (2006[Li, H., Zhu, G. S., Guo, X. D., Sun, F. X., Ren, H. & Qiu, S. L. (2006). Eur. J. Inorg. Chem. pp. 4123-4128.]); Luo et al. (2007[Luo, F., Zheng, J. M. & Batten, S. R. (2007). Chem. Commun. pp. 3744-3746.]); Ye et al. (2005[Ye, B. H., Tong, M. L. & Chen, X. M. (2005). Coord. Chem. Rev. 249, 545-565.]). For a related structure, see: Shefter & Kalman (1969[Shefter, E. & Kalman, T. I. (1969). J. Chem. Soc. D, p. 1027.])

[Scheme 1]

Experimental

Crystal data
  • C14H8N2O8S2

  • Mr = 396.34

  • Triclinic, [P \overline 1]

  • a = 7.875 (2) Å

  • b = 14.695 (4) Å

  • c = 15.116 (5) Å

  • α = 111.480 (5)°

  • β = 101.182 (5)°

  • γ = 90.572 (5)°

  • V = 1590.6 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.39 mm−1

  • T = 298 (2) K

  • 0.21 × 0.17 × 0.15 mm

Data collection
  • Bruker APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.921, Tmax = 0.942

  • 8041 measured reflections

  • 5555 independent reflections

  • 3077 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.171

  • S = 0.92

  • 5555 reflections

  • 473 parameters

  • H-atom parameters constrained

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.47 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O11—H1A⋯O22i 0.82 1.83 2.635 (4) 166
O21—H2A⋯O12ii 0.82 1.88 2.688 (4) 169
O31—H3A⋯O42i 0.82 1.85 2.666 (4) 171
O41—H4A⋯O32ii 0.82 1.83 2.618 (4) 160
Symmetry codes: (i) x, y+1, z; (ii) x, y-1, z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]), ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Until now, various flexible carboxylate ligands can often be employed due to their versatile coordination modes and high structural stability. In particular, multi-benzenecarboxylate ligands have been shown to be good building blocks in the design of metal-organic materials (Li et al., 2006; Luo et al., 2007; Gudbjarlson et al., 1991). On the other hand, relative strong hydrogen bondings play an important role in the formation of the ultimate netwrok (Ye et al., 2005). Originally, we attempted to synthesize a complex in the presence of metal salt. However, we only obtain the starting organic material (I).

In the title compound, [C14H8N2O8S]2, the asymmetric unit is built up by two independent 5,5'-dithiobis(2-nitrobenzcic-acid) (Dina) molecules having roughly the same conformation (Fig. 1). The geometric parameters for (I) are in the usual range. The dihedral angles between the two aromatic rings in the molecules are 109.3 (2)° and 103.1 (3)°, respectively, which indicate a twisted conformation between phenyl rings. A similar [C14H8N2O8S, H2O] compound, has been previously published (Shefter & Kalman, 1969). In this previous structure, the occurrence of the water molecule which acts as donor and acceptor, links the organic molecules to build up a sheet whereas in the title compound, the O—H···O hydrogen bonds form chains which develop parallel to the a axis (Table 1, Fig.2). In the previously reported compound, [C14H8N2O8S, H2O], the dihedral angles between the two aromatic rings is slightly smaller (88.95°) than in the title compound. Such difference might result from the occurrence of the water molecule which interconnects the oragnic molecule.

Related literature top

For general background, see: Gudbjarlson et al. (1991); Li et al. (2006); Luo et al. (2007); Ye et al. (2005). For a related structure, see: Shefter & Kalman (1969)

Experimental top

5,5'-dithiobis(2-nitrobenzcic-acid) (21 mg,0.05 mmol), CoSo4 (13 mg, 0.06 mmol). were added in methanol. The mixture was refluxed under stirring for six hours. After cooling the resulting mixture to room temperature, some single crystals appeared within two weeks.

Refinement top

All H atoms attached to C and O atoms were fixed geometrically and treated as riding with C—H = 0.93 Å (aromatic) and O—H = 0.82 Å with Uiso(H) = 1.2Ueq(C, O).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 (Bruker, 2004); data reduction: APEX2 (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular view of (I) with the atom-labeling scheme. scheme. Ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii..
[Figure 2] Fig. 2. Partial packing view showing the formation of the chain though O—H···O hydrogen bonds. H bonds are shown as dashed line. H atoms not involved in H bonds have been omitted for clarity. [Symmetry codes: (i) x, y + 1, z; (ii) x, y - 1, z.]
2,2'-Dinitro-5,5'-dithiodibenzoic acid top
Crystal data top
C14H8N2O8S2Z = 4
Mr = 396.34F(000) = 808
Triclinic, P1Dx = 1.655 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.875 (2) ÅCell parameters from 5555 reflections
b = 14.695 (4) Åθ = 1.5–25.1°
c = 15.116 (5) ŵ = 0.39 mm1
α = 111.480 (5)°T = 298 K
β = 101.182 (5)°Block, colourless
γ = 90.572 (5)°0.21 × 0.17 × 0.15 mm
V = 1590.6 (8) Å3
Data collection top
Bruker APEXII area-detector
diffractometer
5555 independent reflections
Radiation source: fine-focus sealed tube3077 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
ϕ and ω scansθmax = 25.1°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 99
Tmin = 0.921, Tmax = 0.942k = 1716
8041 measured reflectionsl = 1815
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.171H-atom parameters constrained
S = 0.92 w = 1/[σ2(Fo2) + (0.1043P)2]
where P = (Fo2 + 2Fc2)/3
5555 reflections(Δ/σ)max < 0.001
473 parametersΔρmax = 0.37 e Å3
0 restraintsΔρmin = 0.47 e Å3
Crystal data top
C14H8N2O8S2γ = 90.572 (5)°
Mr = 396.34V = 1590.6 (8) Å3
Triclinic, P1Z = 4
a = 7.875 (2) ÅMo Kα radiation
b = 14.695 (4) ŵ = 0.39 mm1
c = 15.116 (5) ÅT = 298 K
α = 111.480 (5)°0.21 × 0.17 × 0.15 mm
β = 101.182 (5)°
Data collection top
Bruker APEXII area-detector
diffractometer
5555 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3077 reflections with I > 2σ(I)
Tmin = 0.921, Tmax = 0.942Rint = 0.031
8041 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.171H-atom parameters constrained
S = 0.92Δρmax = 0.37 e Å3
5555 reflectionsΔρmin = 0.47 e Å3
473 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.01726 (16)0.70300 (8)0.33908 (9)0.0468 (4)
S20.04932 (15)0.59689 (8)0.39126 (9)0.0433 (3)
N10.3900 (5)1.0562 (3)0.6593 (3)0.0487 (11)
N20.5648 (5)0.3610 (3)0.3567 (3)0.0430 (10)
O110.3554 (4)1.1261 (2)0.5124 (3)0.0592 (10)
H1A0.34281.17490.49840.089*
O120.1174 (4)1.0668 (2)0.3939 (3)0.0524 (9)
O130.5428 (5)1.0529 (3)0.6900 (3)0.0876 (15)
O140.3084 (5)1.1242 (3)0.6944 (3)0.0700 (12)
O210.1194 (4)0.2278 (2)0.3491 (3)0.0538 (10)
H2A0.13080.17710.35970.081*
O220.3681 (4)0.2775 (2)0.4591 (3)0.0584 (10)
O230.5385 (5)0.2744 (2)0.3064 (3)0.0657 (11)
O240.7108 (4)0.4035 (2)0.3973 (3)0.0579 (10)
C110.1118 (5)0.8035 (3)0.4363 (3)0.0316 (10)
C120.1199 (5)0.8905 (3)0.4200 (3)0.0332 (10)
H120.05910.89270.36170.040*
C130.2177 (5)0.9741 (3)0.4898 (3)0.0326 (10)
C140.2998 (5)0.9692 (3)0.5775 (3)0.0332 (10)
C150.2940 (5)0.8827 (3)0.5935 (3)0.0364 (11)
H150.35360.88070.65210.044*
C160.2006 (5)0.7996 (3)0.5234 (3)0.0330 (10)
H160.19690.74130.53420.040*
C210.1340 (5)0.5290 (3)0.3762 (3)0.0340 (11)
C220.1208 (6)0.4352 (3)0.3793 (3)0.0403 (12)
H220.01540.40940.38310.048*
C230.2633 (5)0.3803 (3)0.3768 (3)0.0339 (11)
C240.4171 (5)0.4200 (3)0.3685 (3)0.0345 (11)
C250.4336 (6)0.5117 (3)0.3644 (3)0.0380 (11)
H250.53880.53620.35890.046*
C260.2938 (5)0.5661 (3)0.3684 (3)0.0359 (11)
H260.30410.62820.36600.043*
C1310.2281 (5)1.0620 (3)0.4637 (3)0.0342 (10)
C2310.2520 (5)0.2874 (3)0.3953 (3)0.0377 (11)
S30.08887 (17)0.82074 (8)0.15577 (9)0.0454 (4)
S40.02988 (15)0.67435 (8)0.09932 (9)0.0406 (3)
N30.2790 (5)0.9447 (3)0.1503 (3)0.0395 (9)
N40.6705 (5)0.4718 (3)0.1507 (3)0.0427 (10)
O310.2018 (4)1.1464 (2)0.1163 (2)0.0482 (9)
H3A0.20361.20300.11860.072*
O320.3339 (4)1.1224 (2)0.0084 (2)0.0509 (9)
O330.1633 (5)0.9729 (3)0.1961 (3)0.0640 (10)
O340.4258 (4)0.9351 (3)0.1681 (2)0.0581 (10)
O410.3935 (5)0.3091 (2)0.0261 (3)0.0535 (9)
H4A0.39560.25350.02650.080*
O420.2379 (4)0.3353 (2)0.1412 (2)0.0441 (8)
O430.6680 (4)0.4104 (2)0.1883 (3)0.0530 (9)
O440.7995 (4)0.4923 (3)0.1241 (3)0.0688 (11)
C310.1522 (6)0.8507 (3)0.0627 (3)0.0363 (11)
C320.1794 (5)0.9510 (3)0.0841 (3)0.0377 (11)
H320.16710.99590.14410.045*
C330.2250 (5)0.9841 (3)0.0158 (3)0.0330 (10)
C340.2427 (5)0.9141 (3)0.0736 (3)0.0331 (10)
C350.2196 (6)0.8161 (3)0.0944 (4)0.0430 (12)
H350.23380.77120.15400.052*
C360.1747 (6)0.7836 (3)0.0259 (3)0.0412 (12)
H360.15960.71660.03940.049*
C410.2267 (6)0.6214 (3)0.1214 (3)0.0360 (11)
C420.2104 (6)0.5236 (3)0.1103 (3)0.0355 (11)
H420.10020.49250.09810.043*
C430.3533 (5)0.4716 (3)0.1167 (3)0.0314 (10)
C440.5177 (6)0.5213 (3)0.1368 (3)0.0389 (11)
C450.5381 (6)0.6202 (3)0.1518 (3)0.0457 (13)
H450.64840.65210.16650.055*
C460.3911 (6)0.6708 (3)0.1446 (3)0.0422 (12)
H460.40230.73720.15520.051*
C3310.2575 (6)1.0908 (3)0.0403 (4)0.0390 (12)
C4310.3248 (6)0.3645 (3)0.0970 (3)0.0354 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0637 (8)0.0279 (6)0.0414 (7)0.0014 (6)0.0062 (6)0.0134 (6)
S20.0457 (7)0.0277 (6)0.0567 (8)0.0010 (5)0.0101 (6)0.0167 (6)
N10.054 (3)0.035 (2)0.050 (3)0.009 (2)0.002 (2)0.013 (2)
N20.047 (2)0.044 (3)0.045 (2)0.002 (2)0.007 (2)0.026 (2)
O110.067 (2)0.045 (2)0.071 (2)0.0140 (18)0.0039 (19)0.0339 (19)
O120.053 (2)0.044 (2)0.069 (2)0.0025 (16)0.0034 (18)0.0375 (19)
O130.060 (3)0.074 (3)0.100 (3)0.018 (2)0.026 (2)0.021 (3)
O140.095 (3)0.037 (2)0.058 (3)0.003 (2)0.005 (2)0.001 (2)
O210.058 (2)0.0334 (19)0.071 (2)0.0089 (16)0.0007 (18)0.0273 (18)
O220.057 (2)0.051 (2)0.072 (2)0.0115 (17)0.0105 (19)0.040 (2)
O230.073 (2)0.033 (2)0.080 (3)0.0124 (18)0.014 (2)0.009 (2)
O240.0402 (19)0.066 (2)0.074 (3)0.0021 (17)0.0096 (18)0.035 (2)
C110.040 (2)0.022 (2)0.033 (2)0.0046 (19)0.009 (2)0.0091 (19)
C120.037 (2)0.032 (2)0.035 (2)0.0096 (19)0.012 (2)0.016 (2)
C130.031 (2)0.032 (2)0.038 (3)0.0060 (19)0.010 (2)0.016 (2)
C140.027 (2)0.030 (2)0.043 (3)0.0017 (18)0.012 (2)0.012 (2)
C150.044 (3)0.033 (3)0.034 (3)0.007 (2)0.008 (2)0.016 (2)
C160.037 (2)0.025 (2)0.041 (3)0.0098 (18)0.011 (2)0.015 (2)
C210.041 (2)0.025 (2)0.035 (3)0.0025 (19)0.009 (2)0.009 (2)
C220.051 (3)0.028 (2)0.039 (3)0.006 (2)0.003 (2)0.014 (2)
C230.041 (2)0.026 (2)0.035 (3)0.001 (2)0.005 (2)0.015 (2)
C240.037 (2)0.032 (2)0.038 (3)0.003 (2)0.008 (2)0.017 (2)
C250.045 (3)0.032 (3)0.038 (3)0.005 (2)0.007 (2)0.016 (2)
C260.047 (3)0.021 (2)0.040 (3)0.002 (2)0.014 (2)0.010 (2)
C1310.037 (2)0.028 (2)0.042 (3)0.003 (2)0.018 (2)0.013 (2)
C2310.040 (2)0.028 (2)0.047 (3)0.002 (2)0.013 (2)0.016 (2)
S30.0688 (8)0.0302 (6)0.0422 (7)0.0033 (6)0.0186 (6)0.0161 (6)
S40.0442 (7)0.0307 (6)0.0500 (7)0.0005 (5)0.0062 (6)0.0207 (6)
N30.046 (2)0.038 (2)0.037 (2)0.0009 (19)0.010 (2)0.0160 (19)
N40.043 (2)0.032 (2)0.048 (2)0.0015 (19)0.008 (2)0.011 (2)
O310.063 (2)0.0243 (17)0.057 (2)0.0022 (16)0.0247 (18)0.0081 (17)
O320.078 (2)0.0269 (17)0.053 (2)0.0034 (16)0.0255 (19)0.0158 (16)
O330.068 (2)0.076 (3)0.064 (2)0.019 (2)0.014 (2)0.044 (2)
O340.058 (2)0.072 (3)0.051 (2)0.0025 (19)0.0209 (18)0.026 (2)
O410.080 (2)0.0263 (18)0.061 (2)0.0009 (18)0.030 (2)0.0173 (18)
O420.0558 (19)0.0312 (17)0.055 (2)0.0011 (15)0.0257 (17)0.0209 (16)
O430.054 (2)0.048 (2)0.067 (2)0.0120 (16)0.0143 (18)0.0325 (19)
O440.043 (2)0.074 (3)0.109 (3)0.0074 (19)0.035 (2)0.047 (2)
C310.047 (3)0.027 (2)0.035 (3)0.003 (2)0.004 (2)0.015 (2)
C320.042 (2)0.029 (2)0.040 (3)0.002 (2)0.006 (2)0.012 (2)
C330.031 (2)0.027 (2)0.040 (3)0.0004 (18)0.005 (2)0.013 (2)
C340.033 (2)0.031 (2)0.038 (3)0.0006 (19)0.009 (2)0.015 (2)
C350.051 (3)0.034 (3)0.043 (3)0.001 (2)0.013 (2)0.012 (2)
C360.049 (3)0.027 (2)0.051 (3)0.001 (2)0.010 (2)0.019 (2)
C410.048 (3)0.027 (2)0.032 (2)0.005 (2)0.003 (2)0.014 (2)
C420.046 (3)0.023 (2)0.036 (3)0.007 (2)0.004 (2)0.012 (2)
C430.036 (2)0.024 (2)0.035 (2)0.0032 (19)0.0035 (19)0.015 (2)
C440.044 (3)0.035 (3)0.039 (3)0.002 (2)0.003 (2)0.019 (2)
C450.049 (3)0.038 (3)0.049 (3)0.014 (2)0.001 (2)0.022 (2)
C460.047 (3)0.027 (2)0.054 (3)0.004 (2)0.004 (2)0.021 (2)
C3310.048 (3)0.025 (2)0.041 (3)0.000 (2)0.002 (2)0.012 (2)
C4310.041 (3)0.028 (2)0.033 (3)0.002 (2)0.002 (2)0.010 (2)
Geometric parameters (Å, º) top
S1—C111.782 (4)S3—C311.773 (5)
S1—S22.0218 (16)S3—S42.0133 (16)
S2—C211.766 (5)S4—C411.770 (4)
N1—O141.204 (5)N3—O331.205 (4)
N1—O131.211 (5)N3—O341.235 (4)
N1—C141.467 (5)N3—C341.461 (5)
N2—O231.211 (4)N4—O431.231 (4)
N2—O241.233 (4)N4—O441.235 (5)
N2—C241.457 (5)N4—C441.433 (5)
O11—C1311.274 (5)O31—C3311.302 (5)
O11—H1A0.8200O31—H3A0.8200
O12—C1311.256 (5)O32—C3311.238 (5)
O21—C2311.263 (5)O41—C4311.303 (5)
O21—H2A0.8200O41—H4A0.8200
O22—C2311.245 (5)O42—C4311.216 (5)
C11—C161.387 (6)C31—C361.388 (6)
C11—C121.391 (5)C31—C321.393 (5)
C12—C131.390 (5)C32—C331.393 (6)
C12—H120.9300C32—H320.9300
C13—C141.386 (6)C33—C341.400 (6)
C13—C1311.489 (6)C33—C3311.480 (5)
C14—C151.379 (5)C34—C351.359 (5)
C15—C161.374 (5)C35—C361.388 (6)
C15—H150.9300C35—H350.9300
C16—H160.9300C36—H360.9300
C21—C221.400 (5)C41—C421.385 (5)
C21—C261.409 (6)C41—C461.394 (6)
C22—C231.386 (6)C42—C431.374 (6)
C22—H220.9300C42—H420.9300
C23—C241.386 (6)C43—C441.403 (5)
C23—C2311.496 (5)C43—C4311.498 (5)
C24—C251.378 (5)C44—C451.388 (6)
C25—C261.366 (6)C45—C461.390 (6)
C25—H250.9300C45—H450.9300
C26—H260.9300C46—H460.9300
C11—S1—S2106.97 (15)C31—S3—S4105.94 (15)
C21—S2—S1105.54 (15)C41—S4—S3106.38 (14)
O14—N1—O13123.9 (4)O33—N3—O34123.4 (4)
O14—N1—C14119.1 (4)O33—N3—C34119.0 (4)
O13—N1—C14116.9 (4)O34—N3—C34117.5 (4)
O23—N2—O24123.8 (4)O43—N4—O44122.6 (4)
O23—N2—C24118.8 (4)O43—N4—C44118.9 (4)
O24—N2—C24117.4 (4)O44—N4—C44118.5 (4)
C131—O11—H1A109.5C331—O31—H3A109.5
C231—O21—H2A109.5C431—O41—H4A109.5
C16—C11—C12120.1 (4)C36—C31—C32120.0 (4)
C16—C11—S1124.8 (3)C36—C31—S3125.5 (3)
C12—C11—S1115.1 (3)C32—C31—S3114.6 (4)
C13—C12—C11120.8 (4)C31—C32—C33120.1 (4)
C13—C12—H12119.6C31—C32—H32119.9
C11—C12—H12119.6C33—C32—H32119.9
C14—C13—C12117.9 (4)C32—C33—C34118.2 (4)
C14—C13—C131124.9 (4)C32—C33—C331119.6 (4)
C12—C13—C131117.1 (4)C34—C33—C331122.3 (4)
C15—C14—C13121.3 (4)C35—C34—C33122.1 (4)
C15—C14—N1116.8 (4)C35—C34—N3117.4 (4)
C13—C14—N1121.8 (4)C33—C34—N3120.4 (4)
C16—C15—C14120.5 (4)C34—C35—C36119.4 (4)
C16—C15—H15119.8C34—C35—H35120.3
C14—C15—H15119.8C36—C35—H35120.3
C15—C16—C11119.3 (4)C35—C36—C31120.2 (4)
C15—C16—H16120.4C35—C36—H36119.9
C11—C16—H16120.4C31—C36—H36119.9
C22—C21—C26118.9 (4)C42—C41—C46120.1 (4)
C22—C21—S2116.9 (3)C42—C41—S4115.9 (3)
C26—C21—S2124.1 (3)C46—C41—S4124.0 (3)
C23—C22—C21120.8 (4)C43—C42—C41121.5 (4)
C23—C22—H22119.6C43—C42—H42119.2
C21—C22—H22119.6C41—C42—H42119.2
C24—C23—C22118.0 (4)C42—C43—C44117.8 (4)
C24—C23—C231122.4 (4)C42—C43—C431118.4 (3)
C22—C23—C231119.1 (4)C44—C43—C431123.7 (4)
C25—C24—C23122.5 (4)C45—C44—C43121.9 (4)
C25—C24—N2117.7 (4)C45—C44—N4118.3 (4)
C23—C24—N2119.7 (4)C43—C44—N4119.6 (4)
C26—C25—C24119.2 (4)C44—C45—C46119.0 (4)
C26—C25—H25120.4C44—C45—H45120.5
C24—C25—H25120.4C46—C45—H45120.5
C25—C26—C21120.6 (4)C45—C46—C41119.7 (4)
C25—C26—H26119.7C45—C46—H46120.2
C21—C26—H26119.7C41—C46—H46120.2
O12—C131—O11124.3 (4)O32—C331—O31124.1 (4)
O12—C131—C13119.0 (3)O32—C331—C33121.2 (5)
O11—C131—C13116.6 (4)O31—C331—C33114.6 (4)
O22—C231—O21125.0 (4)O42—C431—O41125.6 (4)
O22—C231—C23117.6 (3)O42—C431—C43121.3 (4)
O21—C231—C23117.2 (4)O41—C431—C43113.0 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O11—H1A···O22i0.821.832.635 (4)166
O21—H2A···O12ii0.821.882.688 (4)169
O31—H3A···O42i0.821.852.666 (4)171
O41—H4A···O32ii0.821.832.618 (4)160
Symmetry codes: (i) x, y+1, z; (ii) x, y1, z.

Experimental details

Crystal data
Chemical formulaC14H8N2O8S2
Mr396.34
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)7.875 (2), 14.695 (4), 15.116 (5)
α, β, γ (°)111.480 (5), 101.182 (5), 90.572 (5)
V3)1590.6 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.39
Crystal size (mm)0.21 × 0.17 × 0.15
Data collection
DiffractometerBruker APEXII area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.921, 0.942
No. of measured, independent and
observed [I > 2σ(I)] reflections
8041, 5555, 3077
Rint0.031
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.171, 0.92
No. of reflections5555
No. of parameters473
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.37, 0.47

Computer programs: APEX2 (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O11—H1A···O22i0.821.832.635 (4)165.6
O21—H2A···O12ii0.821.882.688 (4)168.7
O31—H3A···O42i0.821.852.666 (4)170.6
O41—H4A···O32ii0.821.832.618 (4)159.5
Symmetry codes: (i) x, y+1, z; (ii) x, y1, z.
 

Acknowledgements

The author is grateful to Lishui University for financial support.

References

First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGudbjarlson, H., Poirier, K. M. & Zaworotko, M. J. (1991). J. Am. Chem. Soc. 121, 2599–2600.  Google Scholar
First citationLi, H., Zhu, G. S., Guo, X. D., Sun, F. X., Ren, H. & Qiu, S. L. (2006). Eur. J. Inorg. Chem. pp. 4123–4128.  Web of Science CSD CrossRef Google Scholar
First citationLuo, F., Zheng, J. M. & Batten, S. R. (2007). Chem. Commun. pp. 3744–3746.  Web of Science CSD CrossRef Google Scholar
First citationShefter, E. & Kalman, T. I. (1969). J. Chem. Soc. D, p. 1027.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYe, B. H., Tong, M. L. & Chen, X. M. (2005). Coord. Chem. Rev. 249, 545–565.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds