metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Dicarbon­yl(η5-cyclo­penta­dien­yl)bis­­(tri­methyl­phosphine)molybdenum(II) tri­fluoro­methane­sulfonate

aSchool of Chemistry, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban 4000, South Africa
*Correspondence e-mail: bala@ukzn.ac.za

(Received 1 October 2008; accepted 9 October 2008; online 15 October 2008)

In the title compound, [Mo(C5H5)(CO)2(C3H9P)2]CF3SO3, the cationic complex displays a classical four-legged piano-stool square-pyramidal geometry with a trans configuration of the basal ligands around the Mo atom. The cyclo­penta­dienyl (Cp) ligand occupies the apical position of the piano-stool configuration. The average Mo—P bond length of the two trans PMe3 ligands is 2.474 (5) Å and the Mo—Cp centroid distance is 2.003 (2) Å.

Related literature

For similar crystal structures, see: Fettinger et al. (1998[Fettinger, J. C., Kraatz, H.-B. & Poli, R. (1998). Acta Cryst. C54, 181-183.]); Schubert et al. (1982[Schubert, U., Ackerman, K., Janta, R. & Voran, S. (1982). Chem. Ber. 115, 2003-2008;]). For general discussion of piano-stool complexes, see: Kubáček et al. (1982[Kubáček, P., Hoffmann, R. & Havlas, Z. (1982). Organometallics, 1, 180-188.]); Haines et al. (1967[Haines, R. J., Nyholm, R. S., Stiddard, M. H. B. & Ramsay, W. (1967). J. Chem. Soc. A, pp. 94-98.]); Treichel et al. (1967[Treichel, P. M., Barnett, K. W. & Shubkin, R. L. (1967). J. Organomet. Chem. 7, 449-459.]). For our previous work in this area, see: Changamu et al. (2006[Changamu, E. O., Friedrich, H. B., Onani, M. O. & Rademeyer, M. (2006). J. Organomet. Chem. 691, 4615-4625.]). For the synthesis of the starting compound, see: Markham et al. (1985[Markham, J., Menard, K. & Cutler, A. (1985). Inorg. Chem. 24, 1581-1587.]).

[Scheme 1]

Experimental

Crystal data
  • [Mo(C5H5)(CO)2(C3H9P)2]CF3SO3

  • Mr = 518.26

  • Monoclinic, P 21 /n

  • a = 10.8919 (5) Å

  • b = 8.0864 (3) Å

  • c = 23.4132 (10) Å

  • β = 95.464 (1)°

  • V = 2052.78 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.94 mm−1

  • T = 296 (2) K

  • 0.48 × 0.23 × 0.16 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: integration (XPREP; Bruker, 2005[Bruker (2005). APEX2 and SAINT-Plus (includes XPREP and SADABS). Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.660, Tmax = 0.864

  • 20835 measured reflections

  • 4960 independent reflections

  • 4542 reflections with I > 2σ(I)

  • Rint = 0.042

Refinement
  • R[F2 > 2σ(F2)] = 0.024

  • wR(F2) = 0.054

  • S = 1.09

  • 4960 reflections

  • 241 parameters

  • H-atom parameters constrained

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.48 e Å−3

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2 and SAINT-Plus (includes XPREP and SADABS). Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2005[Bruker (2005). APEX2 and SAINT-Plus (includes XPREP and SADABS). Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]) and ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title compound was prepared as part of our ongoing study on mixed ligand complexes (Changamu et al., 2006). It crystallizes in a monoclinic P21/n space group having a square-pyramidal geometry of ligands around Mo typical of four-legged piano-stool CpMoL4 complexes (Kubáček et al., 1982; Fettinger et al.,1998). The complex shows a trans orientation of the two phosphine ligands.

A cation-anion paired complex [Mo(C5H5)(CO)2(PMe3)2][Mo(C5H5)(CO)3] also having a similar arrangement of ligands around the cationic moiety has been previously reported (Schubert et al., 1982).

The title compound forms an adduct pair with trifluorosulphonic acid (trifluoromethanesulfonate) group. Generally these complexes may be considered as disubstituted derivatives of [CpMo(CO)4]+ in which double CO-substitution leads to either a cis or a trans product (Treichel et al.,1967; Haines et al., 1967). However, due to unfavourable steric interactions between bulky ligands only the trans isomer was observed in the title complex. The influence of steric size on the spatial orientation of the ligands is further evidenced by the large difference in the angles between the dissimilar trans ligands. Hence the P12—Mo1—P13 bonds angle is 130.34 (4)° while the C16—Mo1—C17 bonds angle is only 110.75 (4)°. The crystal of (I) is stabilized by a series of short inter-molecular contacts between neighbouring molecules.

Related literature top

For similar crystal structures, see: Fettinger et al. (1998); Schubert et al. (1982). For general discussion of piano-stool complexes, see: Kubáček et al. (1982); Haines et al. (1967); Treichel et al. (1967). For our previous work in this area, see: Changamu et al. (2006). For the synthesis of the starting compound, see: Markham et al. (1985).

Experimental top

To a dark purple solution of 0.85 g (2.15 mmol) of [CpMo(CO)3][SO3CF3] (Markham et al., 1985) in dichloromethane was added 1 ml (0.735 g, 9.66 mmol) of PMe3 at room temperature. The reaction was stirred overnight. The resulting yellow solution was transferred to an ether–hexane mixture (10: 1), cooled to -78°C. A yellow solid precipitate resulted. Room temperature recrystallization from hexane–dichloromethane afforded yellow crystals of (I) suitable for X-ray analysis.

Refinement top

All H atoms attached to C atoms were fixed geometrically and treated as riding with C—H = 0.98 Å (methyl) and 0.95 Å (Cp) with Uiso(H) = 1.2Ueq(Cp) or Uiso(H) = 1.5Ueq(methyl).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT-Plus (Bruker, 2005); data reduction: SAINT-Plus (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003) and ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title complex with the atom labelling scheme. Hydrogen atoms are omitted for clarity. Ellipsoids are drawn at the 50% probability level.
Dicarbonyl(η5-cyclopentadienyl)bis(trimethylphosphine)molybdenum(II) trifluoromethanesulfonate top
Crystal data top
[Mo(C5H5)(CO)2(C3H9P)2]CF3SO3F(000) = 1048
Mr = 518.26Dx = 1.677 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 6234 reflections
a = 10.8919 (5) Åθ = 1.8–28.0°
b = 8.0864 (3) ŵ = 0.94 mm1
c = 23.4132 (10) ÅT = 296 K
β = 95.464 (1)°Block, yellow
V = 2052.78 (15) Å30.48 × 0.23 × 0.16 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
4960 independent reflections
Radiation source: fine-focus sealed tube4542 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
ϕ and ω scansθmax = 28.0°, θmin = 1.8°
Absorption correction: integration
(SADABS; Bruker, 2005)
h = 1414
Tmin = 0.660, Tmax = 0.864k = 1010
20835 measured reflectionsl = 2930
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.054H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0157P)2 + 1.38P]
where P = (Fo2 + 2Fc2)/3
4960 reflections(Δ/σ)max = 0.003
241 parametersΔρmax = 0.43 e Å3
0 restraintsΔρmin = 0.48 e Å3
Crystal data top
[Mo(C5H5)(CO)2(C3H9P)2]CF3SO3V = 2052.78 (15) Å3
Mr = 518.26Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.8919 (5) ŵ = 0.94 mm1
b = 8.0864 (3) ÅT = 296 K
c = 23.4132 (10) Å0.48 × 0.23 × 0.16 mm
β = 95.464 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
4960 independent reflections
Absorption correction: integration
(SADABS; Bruker, 2005)
4542 reflections with I > 2σ(I)
Tmin = 0.660, Tmax = 0.864Rint = 0.042
20835 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0240 restraints
wR(F2) = 0.054H-atom parameters constrained
S = 1.09Δρmax = 0.43 e Å3
4960 reflectionsΔρmin = 0.48 e Å3
241 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mo10.085336 (12)0.084776 (17)0.865019 (6)0.01416 (4)
S40.41202 (4)0.53406 (6)1.12198 (2)0.02194 (10)
P120.29392 (4)0.03890 (6)0.87511 (2)0.01945 (10)
P130.11979 (4)0.04769 (6)0.84825 (2)0.01899 (10)
O110.07705 (14)0.1616 (2)0.96710 (6)0.0382 (4)
O120.10322 (15)0.1046 (2)0.75064 (7)0.0429 (4)
O410.33084 (14)0.6492 (2)1.14629 (7)0.0394 (4)
O420.53050 (12)0.59896 (17)1.11112 (7)0.0318 (3)
O430.41363 (13)0.37125 (19)1.14704 (7)0.0341 (3)
F410.33337 (16)0.6369 (2)1.01893 (6)0.0600 (4)
F420.39519 (15)0.3859 (2)1.02214 (6)0.0547 (4)
F430.22046 (12)0.4479 (2)1.05128 (6)0.0522 (4)
C110.0608 (2)0.3282 (2)0.91851 (10)0.0372 (5)
H110.04510.32590.95770.045*
C120.17744 (19)0.3326 (2)0.89736 (10)0.0322 (5)
H120.25470.33240.91990.039*
C130.1599 (2)0.3372 (2)0.83737 (10)0.0350 (5)
H130.22330.34160.81220.042*
C140.0330 (2)0.3343 (3)0.82086 (11)0.0382 (5)
H140.00490.33630.78260.046*
C150.02827 (19)0.3280 (2)0.87089 (12)0.0388 (6)
H150.11510.32420.87230.047*
C160.08055 (16)0.0733 (2)0.92869 (8)0.0222 (4)
C170.09558 (16)0.0397 (2)0.79389 (8)0.0236 (4)
C210.2917 (2)0.2612 (2)0.86869 (12)0.0390 (5)
H21A0.37640.30330.87270.059*
H21B0.25140.29240.83100.059*
H21C0.24600.30850.89890.059*
C220.39704 (18)0.0273 (3)0.82312 (9)0.0312 (4)
H22A0.47070.04300.82630.047*
H22B0.42130.14250.83060.047*
H22C0.35490.01810.78440.047*
C230.38690 (19)0.0031 (3)0.94249 (9)0.0359 (5)
H23A0.34080.03780.97440.054*
H23B0.40670.11480.94630.054*
H23C0.46340.06710.94320.054*
C310.11193 (18)0.2684 (2)0.83587 (10)0.0320 (5)
H31A0.19530.31510.83290.048*
H31B0.06190.32070.86790.048*
H31C0.07430.28900.80010.048*
C320.21945 (17)0.0306 (3)0.90569 (9)0.0274 (4)
H32A0.24050.08580.91110.041*
H32B0.17670.07420.94130.041*
H32C0.29510.09420.89580.041*
C330.21636 (19)0.0275 (3)0.78623 (9)0.0340 (5)
H33A0.29290.03680.78160.051*
H33B0.17240.01540.75180.051*
H33C0.23580.14430.79180.051*
C410.3370 (2)0.4999 (3)1.04982 (9)0.0338 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mo10.01406 (7)0.01252 (7)0.01594 (7)0.00108 (5)0.00169 (5)0.00056 (5)
S40.01749 (19)0.0219 (2)0.0267 (2)0.00263 (16)0.00369 (17)0.00058 (17)
P120.0156 (2)0.0171 (2)0.0252 (2)0.00222 (16)0.00038 (17)0.00011 (17)
P130.0158 (2)0.0189 (2)0.0222 (2)0.00024 (16)0.00109 (17)0.00368 (17)
O430.0266 (7)0.0312 (8)0.0444 (9)0.0025 (6)0.0025 (6)0.0111 (7)
O420.0240 (7)0.0291 (7)0.0429 (8)0.0053 (6)0.0064 (6)0.0003 (6)
O110.0392 (8)0.0433 (9)0.0321 (8)0.0005 (7)0.0036 (7)0.0186 (7)
O410.0342 (8)0.0435 (9)0.0409 (9)0.0151 (7)0.0064 (7)0.0108 (7)
O120.0372 (8)0.0633 (11)0.0285 (8)0.0020 (8)0.0053 (7)0.0207 (8)
F420.0582 (9)0.0639 (10)0.0435 (8)0.0006 (8)0.0121 (7)0.0247 (7)
F430.0294 (7)0.0817 (11)0.0439 (8)0.0119 (7)0.0053 (6)0.0059 (8)
F410.0748 (11)0.0613 (10)0.0415 (8)0.0009 (9)0.0075 (8)0.0212 (8)
C140.0466 (13)0.0209 (10)0.0458 (13)0.0084 (9)0.0025 (11)0.0122 (9)
C120.0299 (10)0.0149 (9)0.0508 (13)0.0020 (8)0.0020 (9)0.0052 (9)
C210.0284 (10)0.0194 (10)0.0687 (16)0.0076 (8)0.0017 (10)0.0008 (10)
C310.0248 (9)0.0219 (9)0.0497 (13)0.0063 (8)0.0061 (9)0.0119 (9)
C110.0564 (14)0.0157 (9)0.0429 (12)0.0026 (9)0.0228 (11)0.0097 (8)
C410.0334 (11)0.0375 (12)0.0305 (11)0.0011 (9)0.0034 (9)0.0002 (9)
C150.0217 (9)0.0141 (9)0.0820 (18)0.0046 (7)0.0123 (10)0.0014 (10)
C170.0167 (8)0.0299 (10)0.0241 (9)0.0026 (7)0.0021 (7)0.0020 (8)
C320.0225 (9)0.0294 (10)0.0315 (10)0.0022 (8)0.0091 (8)0.0018 (8)
C160.0192 (8)0.0237 (9)0.0235 (9)0.0004 (7)0.0009 (7)0.0008 (7)
C220.0224 (9)0.0383 (11)0.0339 (11)0.0003 (8)0.0089 (8)0.0013 (9)
C330.0246 (9)0.0478 (13)0.0279 (10)0.0080 (9)0.0055 (8)0.0055 (9)
C130.0372 (11)0.0162 (9)0.0549 (14)0.0009 (8)0.0217 (10)0.0089 (9)
C230.0265 (10)0.0458 (13)0.0331 (11)0.0017 (9)0.0088 (9)0.0016 (10)
Geometric parameters (Å, º) top
Mo1—C171.9581 (19)C14—H140.9500
Mo1—C161.9683 (19)C12—C131.400 (3)
Mo1—C132.3123 (19)C12—C111.407 (3)
Mo1—C142.314 (2)C12—H120.9500
Mo1—C152.3346 (19)C21—H21A0.9800
Mo1—C122.3348 (19)C21—H21B0.9800
Mo1—C112.362 (2)C21—H21C0.9800
Mo1—P122.4729 (5)C31—H31A0.9800
Mo1—P132.4751 (5)C31—H31B0.9800
S4—O421.4379 (14)C31—H31C0.9800
S4—O411.4384 (15)C11—C151.406 (3)
S4—O431.4408 (15)C11—H110.9500
S4—C411.826 (2)C15—H150.9500
P12—C211.804 (2)C32—H32A0.9800
P12—C221.814 (2)C32—H32B0.9800
P12—C231.815 (2)C32—H32C0.9800
P13—C311.812 (2)C22—H22A0.9800
P13—C321.8122 (19)C22—H22B0.9800
P13—C331.815 (2)C22—H22C0.9800
O11—C161.152 (2)C33—H33A0.9800
O12—C171.150 (2)C33—H33B0.9800
F42—C411.323 (3)C33—H33C0.9800
F43—C411.341 (3)C13—H130.9500
F41—C411.321 (3)C23—H23A0.9800
C14—C131.399 (3)C23—H23B0.9800
C14—C151.403 (3)C23—H23C0.9800
C17—Mo1—C16108.55 (8)C11—C12—H12125.9
C17—Mo1—C1399.54 (8)Mo1—C12—H12120.6
C16—Mo1—C13145.16 (8)P12—C21—H21A109.5
C17—Mo1—C1495.73 (8)P12—C21—H21B109.5
C16—Mo1—C14151.85 (8)H21A—C21—H21B109.5
C13—Mo1—C1435.22 (8)P12—C21—H21C109.5
C17—Mo1—C15123.82 (9)H21A—C21—H21C109.5
C16—Mo1—C15116.75 (8)H21B—C21—H21C109.5
C13—Mo1—C1558.33 (7)P13—C31—H31A109.5
C14—Mo1—C1535.14 (9)P13—C31—H31B109.5
C17—Mo1—C12131.26 (8)H31A—C31—H31B109.5
C16—Mo1—C12110.69 (8)P13—C31—H31C109.5
C13—Mo1—C1235.06 (8)H31A—C31—H31C109.5
C14—Mo1—C1258.41 (8)H31B—C31—H31C109.5
C15—Mo1—C1258.10 (7)C15—C11—C12107.4 (2)
C17—Mo1—C11153.87 (8)C15—C11—Mo171.51 (11)
C16—Mo1—C1197.31 (8)C12—C11—Mo171.51 (11)
C13—Mo1—C1158.21 (8)C15—C11—H11126.3
C14—Mo1—C1158.30 (9)C12—C11—H11126.3
C15—Mo1—C1134.84 (9)Mo1—C11—H11122.4
C12—Mo1—C1134.86 (7)F41—C41—F42107.85 (19)
C17—Mo1—P1275.35 (5)F41—C41—F43107.34 (19)
C16—Mo1—P1275.84 (5)F42—C41—F43107.02 (19)
C13—Mo1—P1292.28 (5)F41—C41—S4111.54 (16)
C14—Mo1—P12125.47 (6)F42—C41—S4111.43 (15)
C15—Mo1—P12145.32 (5)F43—C41—S4111.42 (15)
C12—Mo1—P1287.35 (5)C14—C15—C11108.34 (19)
C11—Mo1—P12115.83 (6)C14—C15—Mo171.62 (11)
C17—Mo1—P1376.49 (5)C11—C15—Mo173.65 (11)
C16—Mo1—P1375.55 (5)C14—C15—H15125.8
C13—Mo1—P13132.34 (6)C11—C15—H15125.8
C14—Mo1—P1397.26 (6)Mo1—C15—H15120.6
C15—Mo1—P1384.17 (5)O12—C17—Mo1176.13 (18)
C12—Mo1—P13140.93 (5)P13—C32—H32A109.5
C11—Mo1—P13107.38 (6)P13—C32—H32B109.5
P12—Mo1—P13130.342 (16)H32A—C32—H32B109.5
O42—S4—O41115.43 (10)P13—C32—H32C109.5
O42—S4—O43115.41 (9)H32A—C32—H32C109.5
O41—S4—O43114.49 (10)H32B—C32—H32C109.5
O42—S4—C41102.81 (10)O11—C16—Mo1177.79 (17)
O41—S4—C41103.07 (10)P12—C22—H22A109.5
O43—S4—C41103.04 (10)P12—C22—H22B109.5
C21—P12—C22104.03 (11)H22A—C22—H22B109.5
C21—P12—C23103.48 (11)P12—C22—H22C109.5
C22—P12—C23101.91 (10)H22A—C22—H22C109.5
C21—P12—Mo1112.96 (7)H22B—C22—H22C109.5
C22—P12—Mo1116.01 (7)P13—C33—H33A109.5
C23—P12—Mo1116.75 (8)P13—C33—H33B109.5
C31—P13—C32103.58 (10)H33A—C33—H33B109.5
C31—P13—C33103.56 (11)P13—C33—H33C109.5
C32—P13—C33103.05 (10)H33A—C33—H33C109.5
C31—P13—Mo1113.33 (7)H33B—C33—H33C109.5
C32—P13—Mo1116.40 (7)C14—C13—C12108.3 (2)
C33—P13—Mo1115.32 (8)C14—C13—Mo172.45 (12)
C13—C14—C15107.8 (2)C12—C13—Mo173.35 (11)
C13—C14—Mo172.33 (11)C14—C13—H13125.9
C15—C14—Mo173.24 (12)C12—C13—H13125.9
C13—C14—H14126.1Mo1—C13—H13120.1
C15—C14—H14126.1P12—C23—H23A109.5
Mo1—C14—H14120.2P12—C23—H23B109.5
C13—C12—C11108.2 (2)H23A—C23—H23B109.5
C13—C12—Mo171.59 (11)P12—C23—H23C109.5
C11—C12—Mo173.63 (11)H23A—C23—H23C109.5
C13—C12—H12125.9H23B—C23—H23C109.5
C17—Mo1—P12—C2157.17 (11)C13—Mo1—C12—C11116.16 (19)
C16—Mo1—P12—C2156.73 (11)C14—Mo1—C12—C1178.67 (15)
C13—Mo1—P12—C21156.44 (11)C15—Mo1—C12—C1137.08 (14)
C14—Mo1—P12—C21143.76 (12)P12—Mo1—C12—C11146.07 (14)
C15—Mo1—P12—C21173.54 (15)P13—Mo1—C12—C1120.12 (18)
C12—Mo1—P12—C21168.84 (11)C13—C12—C11—C150.8 (2)
C11—Mo1—P12—C21148.08 (11)Mo1—C12—C11—C1562.93 (14)
P13—Mo1—P12—C210.23 (10)C13—C12—C11—Mo163.70 (14)
C17—Mo1—P12—C2262.81 (10)C17—Mo1—C11—C1544.2 (2)
C16—Mo1—P12—C22176.71 (10)C16—Mo1—C11—C15127.59 (13)
C13—Mo1—P12—C2236.45 (10)C13—Mo1—C11—C1579.01 (14)
C14—Mo1—P12—C2223.77 (11)C14—Mo1—C11—C1537.34 (13)
C15—Mo1—P12—C2266.48 (14)C12—Mo1—C11—C15116.36 (19)
C12—Mo1—P12—C2271.18 (10)P12—Mo1—C11—C15154.64 (11)
C11—Mo1—P12—C2291.94 (10)P13—Mo1—C11—C1550.51 (13)
P13—Mo1—P12—C22120.21 (8)C17—Mo1—C11—C1272.2 (2)
C17—Mo1—P12—C23176.98 (11)C16—Mo1—C11—C12116.05 (14)
C16—Mo1—P12—C2363.08 (11)C13—Mo1—C11—C1237.35 (13)
C13—Mo1—P12—C2383.76 (11)C14—Mo1—C11—C1279.02 (15)
C14—Mo1—P12—C2396.44 (12)C15—Mo1—C11—C12116.36 (19)
C15—Mo1—P12—C2353.74 (15)P12—Mo1—C11—C1238.28 (15)
C12—Mo1—P12—C2349.03 (11)P13—Mo1—C11—C12166.87 (12)
C11—Mo1—P12—C2328.27 (11)O42—S4—C41—F4156.27 (18)
P13—Mo1—P12—C23119.58 (9)O41—S4—C41—F4164.05 (18)
C17—Mo1—P13—C3151.37 (10)O43—S4—C41—F41176.57 (16)
C16—Mo1—P13—C3162.19 (10)O42—S4—C41—F4264.33 (18)
C13—Mo1—P13—C31142.04 (11)O41—S4—C41—F42175.35 (16)
C14—Mo1—P13—C31145.55 (11)O43—S4—C41—F4255.97 (18)
C15—Mo1—P13—C31178.23 (11)O42—S4—C41—F43176.21 (16)
C12—Mo1—P13—C31167.35 (12)O41—S4—C41—F4355.89 (18)
C11—Mo1—P13—C31155.46 (10)O43—S4—C41—F4363.49 (18)
P12—Mo1—P13—C315.58 (9)C13—C14—C15—C110.4 (2)
C17—Mo1—P13—C32171.34 (10)Mo1—C14—C15—C1165.00 (14)
C16—Mo1—P13—C3257.78 (10)C13—C14—C15—Mo164.55 (14)
C13—Mo1—P13—C3297.99 (11)C12—C11—C15—C140.8 (2)
C14—Mo1—P13—C3294.48 (10)Mo1—C11—C15—C1463.68 (14)
C15—Mo1—P13—C3261.79 (10)C12—C11—C15—Mo162.93 (14)
C12—Mo1—P13—C3247.38 (12)C17—Mo1—C15—C1442.02 (16)
C11—Mo1—P13—C3235.49 (10)C16—Mo1—C15—C14177.95 (13)
P12—Mo1—P13—C32114.39 (8)C13—Mo1—C15—C1437.68 (14)
C17—Mo1—P13—C3367.75 (10)C12—Mo1—C15—C1479.19 (15)
C16—Mo1—P13—C33178.69 (10)C11—Mo1—C15—C14116.29 (19)
C13—Mo1—P13—C3322.92 (11)P12—Mo1—C15—C1473.65 (19)
C14—Mo1—P13—C3326.43 (10)P13—Mo1—C15—C14111.46 (14)
C15—Mo1—P13—C3359.12 (10)C17—Mo1—C15—C11158.31 (13)
C12—Mo1—P13—C3373.53 (12)C16—Mo1—C15—C1161.66 (14)
C11—Mo1—P13—C3385.42 (10)C13—Mo1—C15—C1178.61 (14)
P12—Mo1—P13—C33124.70 (8)C14—Mo1—C15—C11116.29 (19)
C17—Mo1—C14—C1398.44 (15)C12—Mo1—C15—C1137.11 (13)
C16—Mo1—C14—C13111.66 (19)P12—Mo1—C15—C1142.64 (19)
C15—Mo1—C14—C13115.5 (2)P13—Mo1—C15—C11132.24 (13)
C12—Mo1—C14—C1337.32 (13)C15—C14—C13—C120.0 (2)
C11—Mo1—C14—C1378.53 (15)Mo1—C14—C13—C1265.11 (14)
P12—Mo1—C14—C1322.36 (17)C15—C14—C13—Mo165.15 (14)
P13—Mo1—C14—C13175.50 (13)C11—C12—C13—C140.5 (2)
C17—Mo1—C14—C15146.02 (14)Mo1—C12—C13—C1464.52 (14)
C16—Mo1—C14—C153.9 (2)C11—C12—C13—Mo165.03 (14)
C13—Mo1—C14—C15115.5 (2)C17—Mo1—C13—C1486.41 (15)
C12—Mo1—C14—C1578.22 (15)C16—Mo1—C13—C14129.86 (16)
C11—Mo1—C14—C1537.02 (13)C15—Mo1—C13—C1437.60 (14)
P12—Mo1—C14—C15137.90 (12)C12—Mo1—C13—C14115.95 (19)
P13—Mo1—C14—C1568.96 (13)C11—Mo1—C13—C1478.82 (15)
C17—Mo1—C12—C1329.95 (16)P12—Mo1—C13—C14161.94 (14)
C16—Mo1—C12—C13171.56 (12)P13—Mo1—C13—C146.05 (18)
C14—Mo1—C12—C1337.49 (13)C17—Mo1—C13—C12157.63 (12)
C15—Mo1—C12—C1379.07 (14)C16—Mo1—C13—C1213.9 (2)
C11—Mo1—C12—C13116.16 (19)C14—Mo1—C13—C12115.95 (19)
P12—Mo1—C12—C1397.78 (12)C15—Mo1—C13—C1278.35 (14)
P13—Mo1—C12—C1396.03 (14)C11—Mo1—C13—C1237.13 (13)
C17—Mo1—C12—C11146.11 (14)P12—Mo1—C13—C1282.11 (12)
C16—Mo1—C12—C1172.28 (15)P13—Mo1—C13—C12122.01 (12)

Experimental details

Crystal data
Chemical formula[Mo(C5H5)(CO)2(C3H9P)2]CF3SO3
Mr518.26
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)10.8919 (5), 8.0864 (3), 23.4132 (10)
β (°) 95.464 (1)
V3)2052.78 (15)
Z4
Radiation typeMo Kα
µ (mm1)0.94
Crystal size (mm)0.48 × 0.23 × 0.16
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionIntegration
(SADABS; Bruker, 2005)
Tmin, Tmax0.660, 0.864
No. of measured, independent and
observed [I > 2σ(I)] reflections
20835, 4960, 4542
Rint0.042
(sin θ/λ)max1)0.661
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.054, 1.09
No. of reflections4960
No. of parameters241
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.43, 0.48

Computer programs: APEX2 (Bruker, 2005), SAINT-Plus (Bruker, 2005), SHELXTL (Sheldrick, 2008), PLATON (Spek, 2003) and ORTEP-3 (Farrugia, 1997).

 

Acknowledgements

We thank Dr Manuel Fernandez for the data collection, and SASOL, THRIP and the University of KwaZulu-Natal for support.

References

First citationBruker (2005). APEX2 and SAINT-Plus (includes XPREP and SADABS). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChangamu, E. O., Friedrich, H. B., Onani, M. O. & Rademeyer, M. (2006). J. Organomet. Chem. 691, 4615–4625.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFettinger, J. C., Kraatz, H.-B. & Poli, R. (1998). Acta Cryst. C54, 181–183.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationHaines, R. J., Nyholm, R. S., Stiddard, M. H. B. & Ramsay, W. (1967). J. Chem. Soc. A, pp. 94–98.  CrossRef Google Scholar
First citationKubáček, P., Hoffmann, R. & Havlas, Z. (1982). Organometallics, 1, 180–188.  Google Scholar
First citationMarkham, J., Menard, K. & Cutler, A. (1985). Inorg. Chem. 24, 1581–1587.  CrossRef CAS Web of Science Google Scholar
First citationSchubert, U., Ackerman, K., Janta, R. & Voran, S. (1982). Chem. Ber. 115, 2003–2008;  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTreichel, P. M., Barnett, K. W. & Shubkin, R. L. (1967). J. Organomet. Chem. 7, 449–459.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds