organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N′-[4-(2-Fur­yl)but-3-en-2-yl­­idene]­iso­nicotino­hydrazide

aKey Laboratory of Surface and Interface Science of Henan, School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, People's Republic of China
*Correspondence e-mail: yinck@263.net

(Received 9 October 2008; accepted 13 October 2008; online 22 October 2008)

The mol­ecule of the title Schiff base compound, C14H13N3O2, is not perfectly planar; the furyl and pyridine rings are twisted with respect to each other along the C4N2C2 organic chain, making a dihedral angle of 13.3 (1)°. The occurence of N—H⋯O hydrogen bonds builds up a chain developing parallel to the c axis.

Related literature

For background, see: Kahwa et al. (1986[Kahwa, I. A., Selbin, I., Hsieh, T. C. Y. & Laine, R. A. (1986). Inorg. Chim. Acta, 118, 179-185.]); Santos et al. (2001[Santos, M. L. P., Bagatin, I. A., Pereira, E. M. & Ferreira, A. M. D. C. (2001). J. Chem. Soc. Dalton Trans. pp. 838-844.]).

[Scheme 1]

Experimental

Crystal data
  • C14H13N3O2

  • Mr = 255.27

  • Monoclinic, P 21 /c

  • a = 16.6325 (14) Å

  • b = 9.3572 (8) Å

  • c = 8.3554 (7) Å

  • β = 100.912 (1)°

  • V = 1276.87 (19) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 (2) K

  • 0.25 × 0.23 × 0.16 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.965, Tmax = 0.978

  • 11728 measured reflections

  • 3151 independent reflections

  • 2124 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.132

  • S = 1.03

  • 3151 reflections

  • 173 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O2i 0.86 2.26 2.9289 (16) 134
Symmetry code: (i) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]), ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The chemistry of Schiff bases has attracted a great deal of interest in recent years. These compounds play an important role in the development of various proteins and enzymes(Kahwa et al., 1986; Santos et al., 2001). As part of our interest in the study of the coordination chemistry of Schiff bases, we have synthesized the title compound (I) and reported its cyrstal structure.

The molecule of the title compound is not perfectly planar, the furyl and the pyridine rings are twisted to each other along the C5/C6/C7/C8/N1/N2/C9 organic chain making a dihedral angle of 13.3 (1)°(Fig. 1). The organic chain is nearly planar with the largest deviation from the mean plane being 0.039 (1)Å at C7. The occurence of N-H···O hydrogen bonds builts up a chain developing parallel to the c axis (Fig. 2, Table 1).

Related literature top

For background, see: Kahwa et al. (1986); Santos et al. (2001).

Experimental top

Pyridine-4-carboxylic acid hydrazide (1 mmol, 0.137 g) was dissolved in anhydrous methanol, H2SO4 (98% 0.5 ml) was added to this, the mixture was stirred for several minitutes at 351 K, furylideneacetone (1 mmol 0.136 g) in methanol (8 ml) was added dropwise and the mixture was stirred at refluxing temperature for 2 h. The product was isolated and recrystallized in dichloromethane, brown single crystals of (I) was obtained after 5 d.

Refinement top

All H atoms were treated as riding on their parent atoms. Methyl H atoms were placed in calculated position with C—H=0.96Å and refined with Uiso(H)=1.5Ueq(C) Other H atoms were placed in calculated positions with C—H=0.93 Å, N—H=0.86Å and Uiso(H)=1.2Ueq(C,N).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular view of (I) with the atom-labeling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Partial packing view showing the N-H···O hydrogen bondings resulting in the formation of a chain parallel to the c axis. H atoms not involved in hydrogen bondings have been omitted for clarity. H bonds are shown as dashed lines. [Symmetry code: (i) x, -y+3/2, z+1/2]
N'-[4-(2-Furyl)but-3-en-2-ylidene]isonicotinohydrazide top
Crystal data top
C14H13N3O2F(000) = 536
Mr = 255.27Dx = 1.328 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2552 reflections
a = 16.6325 (14) Åθ = 2.2–24.8°
b = 9.3572 (8) ŵ = 0.09 mm1
c = 8.3554 (7) ÅT = 293 K
β = 100.912 (1)°Block, brown
V = 1276.87 (19) Å30.25 × 0.23 × 0.16 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
3151 independent reflections
Radiation source: fine-focus sealed tube2124 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ω scansθmax = 28.3°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
h = 2220
Tmin = 0.965, Tmax = 0.978k = 1212
11728 measured reflectionsl = 1111
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.132H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0611P)2 + 0.1613P]
where P = (Fo2 + 2Fc2)/3
3151 reflections(Δ/σ)max = 0.005
173 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C14H13N3O2V = 1276.87 (19) Å3
Mr = 255.27Z = 4
Monoclinic, P21/cMo Kα radiation
a = 16.6325 (14) ŵ = 0.09 mm1
b = 9.3572 (8) ÅT = 293 K
c = 8.3554 (7) Å0.25 × 0.23 × 0.16 mm
β = 100.912 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3151 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
2124 reflections with I > 2σ(I)
Tmin = 0.965, Tmax = 0.978Rint = 0.026
11728 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.132H-atom parameters constrained
S = 1.03Δρmax = 0.20 e Å3
3151 reflectionsΔρmin = 0.22 e Å3
173 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.34240 (10)0.8729 (3)0.0347 (2)0.0765 (6)
H10.39370.90840.04280.092*
C20.33013 (10)0.7542 (2)0.0421 (2)0.0679 (5)
H20.37000.69290.09700.081*
C30.24415 (10)0.73836 (19)0.0245 (2)0.0606 (4)
H30.21680.66410.06540.073*
C40.20947 (9)0.85094 (17)0.06234 (19)0.0510 (4)
C50.12679 (9)0.89496 (16)0.12619 (19)0.0496 (4)
H50.11900.97390.19490.060*
C60.06062 (8)0.82982 (14)0.09315 (18)0.0454 (3)
H60.06940.75560.01780.055*
C70.02404 (8)0.86343 (14)0.16352 (17)0.0424 (3)
C80.04425 (9)0.98435 (16)0.2800 (2)0.0547 (4)
H8A0.06160.94750.38830.082*
H8B0.00331.04320.27650.082*
H8C0.08751.04030.25030.082*
C90.21798 (8)0.73017 (15)0.13795 (17)0.0439 (3)
C100.30344 (8)0.77406 (15)0.21280 (17)0.0450 (3)
C110.32441 (9)0.90777 (17)0.2786 (2)0.0540 (4)
H110.28420.97590.28290.065*
C120.40575 (10)0.93870 (19)0.3378 (2)0.0653 (5)
H120.41861.02890.38210.078*
C130.44536 (11)0.7198 (2)0.2728 (3)0.0838 (6)
H130.48680.65360.27030.101*
C140.36583 (10)0.67795 (19)0.2110 (2)0.0651 (5)
H140.35470.58650.16890.078*
N10.07718 (7)0.77927 (12)0.11825 (15)0.0466 (3)
N20.15805 (7)0.80590 (12)0.18733 (15)0.0475 (3)
H2A0.17010.87040.26130.057*
N30.46678 (9)0.84786 (19)0.3355 (2)0.0772 (5)
O10.26987 (7)0.93681 (14)0.10076 (15)0.0705 (4)
O20.20525 (6)0.63417 (12)0.03656 (13)0.0573 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0337 (9)0.1172 (16)0.0746 (13)0.0063 (9)0.0004 (8)0.0027 (12)
C20.0450 (10)0.0840 (12)0.0703 (12)0.0101 (9)0.0003 (8)0.0038 (10)
C30.0477 (9)0.0634 (9)0.0681 (11)0.0004 (7)0.0043 (8)0.0046 (8)
C40.0366 (8)0.0627 (9)0.0519 (9)0.0068 (6)0.0039 (6)0.0025 (7)
C50.0401 (8)0.0524 (8)0.0533 (9)0.0031 (6)0.0012 (6)0.0001 (7)
C60.0390 (8)0.0452 (7)0.0489 (8)0.0002 (6)0.0002 (6)0.0010 (6)
C70.0375 (7)0.0415 (7)0.0463 (8)0.0010 (5)0.0033 (6)0.0039 (6)
C80.0425 (8)0.0518 (8)0.0649 (10)0.0036 (6)0.0024 (7)0.0087 (7)
C90.0383 (7)0.0502 (7)0.0421 (8)0.0003 (6)0.0045 (6)0.0005 (6)
C100.0357 (7)0.0553 (8)0.0434 (8)0.0004 (6)0.0059 (6)0.0005 (6)
C110.0382 (8)0.0560 (9)0.0693 (10)0.0045 (6)0.0138 (7)0.0041 (8)
C120.0436 (9)0.0708 (10)0.0827 (12)0.0121 (8)0.0147 (8)0.0144 (9)
C130.0405 (10)0.0959 (14)0.1109 (17)0.0142 (9)0.0039 (10)0.0275 (13)
C140.0449 (9)0.0705 (10)0.0769 (12)0.0066 (8)0.0039 (8)0.0174 (9)
N10.0329 (6)0.0516 (6)0.0526 (7)0.0027 (5)0.0010 (5)0.0038 (5)
N20.0332 (6)0.0528 (7)0.0540 (7)0.0018 (5)0.0021 (5)0.0111 (6)
N30.0382 (8)0.0978 (12)0.0931 (12)0.0041 (7)0.0058 (7)0.0236 (9)
O10.0407 (6)0.0913 (9)0.0753 (8)0.0138 (6)0.0007 (5)0.0177 (7)
O20.0467 (6)0.0676 (7)0.0548 (7)0.0016 (5)0.0025 (5)0.0162 (5)
Geometric parameters (Å, º) top
C1—C21.317 (3)C8—H8C0.9600
C1—O11.366 (2)C9—O21.2253 (17)
C1—H10.9300C9—N21.3496 (18)
C2—C31.417 (2)C9—C101.4980 (19)
C2—H20.9300C10—C141.375 (2)
C3—C41.346 (2)C10—C111.385 (2)
C3—H30.9300C11—C121.380 (2)
C4—O11.3711 (18)C11—H110.9300
C4—C51.438 (2)C12—N31.327 (2)
C5—C61.332 (2)C12—H120.9300
C5—H50.9300C13—N31.330 (2)
C6—C71.4540 (19)C13—C141.382 (2)
C6—H60.9300C13—H130.9300
C7—N11.2926 (18)C14—H140.9300
C7—C81.489 (2)N1—N21.3822 (15)
C8—H8A0.9600N2—H2A0.8600
C8—H8B0.9600
C2—C1—O1111.08 (16)H8B—C8—H8C109.5
C2—C1—H1124.5O2—C9—N2123.73 (13)
O1—C1—H1124.5O2—C9—C10121.05 (13)
C1—C2—C3106.49 (16)N2—C9—C10115.20 (12)
C1—C2—H2126.8C14—C10—C11117.48 (14)
C3—C2—H2126.8C14—C10—C9118.32 (14)
C4—C3—C2107.16 (16)C11—C10—C9124.15 (13)
C4—C3—H3126.4C12—C11—C10119.20 (15)
C2—C3—H3126.4C12—C11—H11120.4
C3—C4—O1109.08 (13)C10—C11—H11120.4
C3—C4—C5134.95 (15)N3—C12—C11124.13 (16)
O1—C4—C5115.91 (13)N3—C12—H12117.9
C6—C5—C4124.18 (14)C11—C12—H12117.9
C6—C5—H5117.9N3—C13—C14124.65 (17)
C4—C5—H5117.9N3—C13—H13117.7
C5—C6—C7126.31 (14)C14—C13—H13117.7
C5—C6—H6116.8C10—C14—C13118.77 (16)
C7—C6—H6116.8C10—C14—H14120.6
N1—C7—C6114.42 (12)C13—C14—H14120.6
N1—C7—C8124.89 (12)C7—N1—N2115.67 (11)
C6—C7—C8120.68 (12)C9—N2—N1119.63 (12)
C7—C8—H8A109.5C9—N2—H2A120.2
C7—C8—H8B109.5N1—N2—H2A120.2
H8A—C8—H8B109.5C12—N3—C13115.76 (15)
C7—C8—H8C109.5C1—O1—C4106.18 (14)
H8A—C8—H8C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O2i0.862.262.9289 (16)134
Symmetry code: (i) x, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC14H13N3O2
Mr255.27
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)16.6325 (14), 9.3572 (8), 8.3554 (7)
β (°) 100.912 (1)
V3)1276.87 (19)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.25 × 0.23 × 0.16
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1998)
Tmin, Tmax0.965, 0.978
No. of measured, independent and
observed [I > 2σ(I)] reflections
11728, 3151, 2124
Rint0.026
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.132, 1.03
No. of reflections3151
No. of parameters173
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.22

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O2i0.862.262.9289 (16)134.2
Symmetry code: (i) x, y+3/2, z+1/2.
 

Acknowledgements

The authors express their deep appreciation to the Outstanding Youth Fund for Henan Natural Scientific Research (grant No. 0512001100) and the Fund for Scientific and Technical Emphasis (grant No. 072102270006).

References

First citationBruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationKahwa, I. A., Selbin, I., Hsieh, T. C. Y. & Laine, R. A. (1986). Inorg. Chim. Acta, 118, 179–185.  CrossRef CAS Web of Science Google Scholar
First citationSantos, M. L. P., Bagatin, I. A., Pereira, E. M. & Ferreira, A. M. D. C. (2001). J. Chem. Soc. Dalton Trans. pp. 838–844.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds