organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,6-Di­chloro­benzaldehyde oxime

aDepartment of Applied Chemistry, College of Science, Henan Agricultural University, Zhengzhou 450002, People's Republic of China
*Correspondence e-mail: bfyu2008@yahoo.com.cn

(Received 10 October 2008; accepted 13 October 2008; online 18 October 2008)

In the title compound, C7H5Cl2NO, there are two mol­ecules in the asymmetric unit. The mol­ecules are essentially identical. Each mol­ecule is connected to a symmetry-related mol­ecule through an inversion center by O—H⋯N hydrogen bonds, building an R22(6) graph-set motif.

Related literature

For related literature, see: Xu & Jin (1999[Xu, J. & Jin, S. (1999). Acta Cryst. C55, 1579-1581.]). For graph-set notation, see: Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]); Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C7H5Cl2NO

  • Mr = 190.02

  • Triclinic, [P \overline 1]

  • a = 3.8074 (1) Å

  • b = 14.3712 (2) Å

  • c = 14.3835 (3) Å

  • α = 89.108 (1)°

  • β = 88.545 (1)°

  • γ = 85.296 (1)°

  • V = 784.04 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.76 mm−1

  • T = 296 (2) K

  • 0.26 × 0.24 × 0.16 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.818, Tmax = 0.884

  • 11107 measured reflections

  • 3235 independent reflections

  • 2809 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.085

  • S = 1.06

  • 3235 reflections

  • 201 parameters

  • H-atom parameters constrained

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1i 0.82 2.14 2.854 (2) 145
O2—H2⋯N2ii 0.82 2.15 2.850 (2) 144
Symmetry codes: (i) -x, -y+1, -z+2; (ii) -x+1, -y+2, -z+1.

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]), ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

2,6-Dichlorobenzaldehyde oxime, is an important intermediate for organic synthesis(Xu & Jin,1999). As part of our task, we have synthesized the title compound (I) .

In the title compound, C7H6Cl2NO, there are two molecules in the asymmetric unit. Both molecules are roughly identical, the oxime fragment is twisted with respect to the dichlorobenzene ring by 53.83 (11)° and 42.99 (14)° respectively (Fig. 1).

Each molecule is connected to its symmetry related one through inversion center by O-H···N hydrogen bonds building a R22(6) graph-set motif (Etter et al., 1990; Bernstein et al., 1995) (Fig. 2 and Table 1).

Related literature top

For related literature, see: Xu & Jin (1999). For graph-set notation, see: Etter et al. (1990); Bernstein et al. (1995).

Experimental top

2,6-dichlorobenzaldehyde (1 mmol) was dissolved in anhydrous methanol, hydroxylamine hydrochloride and sodium carbonate were added to this, the mixture was stirred for 3 h at room temperature. The product was isolated and recrystallized in dichloromethane, colourless single crystals of (I) was obtained after 5 d.

Refinement top

All H atoms were placed in calculated position and treated as riding on their parent atoms with C—H=0.93Å or O—H=0.82 Å with Uiso(H)=1.2Ueq(C) or 1.5Ueq(O) for the hydroxyl H atom.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I) with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Partial packing view of compound ( I ), showing the formation of dimer through R22(6) graph set motif. H bonds are represented as dashed lines. H atoms not involved in hydrogen bonding have been omitted. [Symmetry codes: (i) -x, -y+1, -z+2; (ii) -x+1 , -y+2, -z+1.]
2,6-Dichlorobenzaldehyde oxime top
Crystal data top
C7H5Cl2NOZ = 4
Mr = 190.02F(000) = 384
Triclinic, P1Dx = 1.610 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 3.8074 (1) ÅCell parameters from 5529 reflections
b = 14.3712 (2) Åθ = 2.8–27.4°
c = 14.3835 (3) ŵ = 0.76 mm1
α = 89.108 (1)°T = 296 K
β = 88.545 (1)°Block, colourless
γ = 85.296 (1)°0.26 × 0.24 × 0.16 mm
V = 784.04 (3) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
3235 independent reflections
Radiation source: fine-focus sealed tube2809 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
ω scansθmax = 26.5°, θmin = 1.4°
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
h = 44
Tmin = 0.818, Tmax = 0.884k = 1717
11107 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.085H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0352P)2 + 0.3155P]
where P = (Fo2 + 2Fc2)/3
3235 reflections(Δ/σ)max = 0.001
201 parametersΔρmax = 0.40 e Å3
0 restraintsΔρmin = 0.31 e Å3
Crystal data top
C7H5Cl2NOγ = 85.296 (1)°
Mr = 190.02V = 784.04 (3) Å3
Triclinic, P1Z = 4
a = 3.8074 (1) ÅMo Kα radiation
b = 14.3712 (2) ŵ = 0.76 mm1
c = 14.3835 (3) ÅT = 296 K
α = 89.108 (1)°0.26 × 0.24 × 0.16 mm
β = 88.545 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3235 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
2809 reflections with I > 2σ(I)
Tmin = 0.818, Tmax = 0.884Rint = 0.018
11107 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.085H-atom parameters constrained
S = 1.06Δρmax = 0.40 e Å3
3235 reflectionsΔρmin = 0.31 e Å3
201 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.16981 (16)0.12516 (3)1.04669 (4)0.06328 (16)
Cl20.28140 (15)0.39071 (3)0.79443 (4)0.05813 (16)
N10.0849 (4)0.39836 (10)0.99884 (10)0.0430 (3)
O10.2185 (4)0.44211 (9)1.07941 (9)0.0574 (4)
H10.17790.49731.07740.086*
C10.0441 (4)0.25470 (11)0.91699 (11)0.0371 (4)
C20.1056 (5)0.16371 (12)0.93282 (13)0.0426 (4)
C30.2132 (6)0.10360 (13)0.86200 (16)0.0551 (5)
H30.31280.04370.87520.066*
C40.1703 (7)0.13390 (15)0.77145 (16)0.0653 (6)
H40.24310.09430.72290.078*
C50.0202 (6)0.22243 (15)0.75209 (14)0.0599 (5)
H50.01050.24220.69080.072*
C60.0839 (5)0.28136 (12)0.82397 (13)0.0434 (4)
C70.1573 (5)0.31429 (12)0.99624 (12)0.0416 (4)
H70.28470.28951.04540.050*
Cl30.60840 (16)0.62545 (3)0.44764 (4)0.06139 (16)
Cl40.35612 (19)0.88605 (4)0.71520 (4)0.07117 (19)
N20.4237 (4)0.89871 (10)0.50330 (10)0.0429 (3)
O20.2629 (4)0.94385 (9)0.42708 (9)0.0538 (3)
H20.30790.99870.42560.081*
C80.5024 (4)0.75283 (11)0.58413 (11)0.0384 (4)
C90.6303 (5)0.66160 (12)0.56212 (13)0.0421 (4)
C100.7785 (5)0.59945 (13)0.62661 (16)0.0546 (5)
H100.86050.53930.60930.065*
C110.8035 (6)0.62748 (15)0.71651 (16)0.0618 (6)
H110.90700.58640.76040.074*
C120.6773 (6)0.71567 (15)0.74256 (14)0.0612 (6)
H120.69310.73400.80390.073*
C130.5265 (5)0.77725 (12)0.67727 (13)0.0477 (4)
C140.3507 (5)0.81491 (11)0.51094 (12)0.0406 (4)
H140.19730.79190.46930.049*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0848 (4)0.0441 (3)0.0602 (3)0.0013 (2)0.0151 (3)0.0096 (2)
Cl20.0817 (4)0.0398 (3)0.0525 (3)0.0009 (2)0.0155 (2)0.0047 (2)
N10.0565 (9)0.0348 (7)0.0375 (8)0.0012 (6)0.0006 (6)0.0057 (6)
O10.0891 (11)0.0393 (7)0.0429 (7)0.0001 (7)0.0089 (7)0.0099 (6)
C10.0395 (9)0.0296 (8)0.0428 (9)0.0062 (6)0.0018 (7)0.0032 (7)
C20.0440 (10)0.0329 (8)0.0514 (10)0.0052 (7)0.0040 (8)0.0010 (7)
C30.0587 (12)0.0330 (9)0.0729 (14)0.0009 (8)0.0011 (10)0.0095 (9)
C40.0859 (16)0.0477 (12)0.0617 (13)0.0014 (11)0.0098 (12)0.0206 (10)
C50.0861 (16)0.0497 (11)0.0445 (11)0.0080 (10)0.0018 (10)0.0081 (9)
C60.0516 (10)0.0331 (8)0.0462 (10)0.0065 (7)0.0038 (8)0.0026 (7)
C70.0480 (10)0.0349 (9)0.0417 (9)0.0035 (7)0.0023 (7)0.0002 (7)
Cl30.0811 (4)0.0450 (3)0.0574 (3)0.0006 (2)0.0000 (3)0.0139 (2)
Cl40.1140 (5)0.0476 (3)0.0511 (3)0.0031 (3)0.0111 (3)0.0128 (2)
N20.0526 (9)0.0351 (7)0.0403 (8)0.0002 (6)0.0031 (6)0.0031 (6)
O20.0744 (9)0.0380 (7)0.0486 (7)0.0001 (6)0.0127 (7)0.0071 (6)
C80.0419 (9)0.0317 (8)0.0422 (9)0.0069 (7)0.0001 (7)0.0022 (7)
C90.0444 (10)0.0337 (8)0.0488 (10)0.0068 (7)0.0008 (8)0.0002 (7)
C100.0569 (12)0.0343 (9)0.0728 (14)0.0048 (8)0.0082 (10)0.0080 (9)
C110.0744 (15)0.0481 (11)0.0644 (13)0.0124 (10)0.0206 (11)0.0208 (10)
C120.0871 (16)0.0552 (12)0.0443 (11)0.0219 (11)0.0113 (10)0.0082 (9)
C130.0630 (12)0.0371 (9)0.0441 (10)0.0105 (8)0.0017 (8)0.0001 (7)
C140.0451 (10)0.0346 (9)0.0422 (9)0.0027 (7)0.0020 (7)0.0020 (7)
Geometric parameters (Å, º) top
Cl1—C21.7376 (19)Cl3—C91.7403 (19)
Cl2—C61.7370 (18)Cl4—C131.7336 (19)
N1—C71.262 (2)N2—C141.261 (2)
N1—O11.3919 (19)N2—O21.3945 (18)
O1—H10.8200O2—H20.8200
C1—C61.394 (2)C8—C131.397 (2)
C1—C21.401 (2)C8—C91.399 (2)
C1—C71.471 (2)C8—C141.468 (2)
C2—C31.378 (3)C9—C101.377 (3)
C3—C41.376 (3)C10—C111.368 (3)
C3—H30.9300C10—H100.9300
C4—C51.379 (3)C11—C121.372 (3)
C4—H40.9300C11—H110.9300
C5—C61.376 (3)C12—C131.383 (3)
C5—H50.9300C12—H120.9300
C7—H70.9300C14—H140.9300
C7—N1—O1111.93 (15)C14—N2—O2111.98 (15)
N1—O1—H1109.5N2—O2—H2109.5
C6—C1—C2115.78 (16)C13—C8—C9115.73 (16)
C6—C1—C7124.33 (15)C13—C8—C14124.76 (16)
C2—C1—C7119.86 (15)C9—C8—C14119.50 (15)
C3—C2—C1123.02 (18)C10—C9—C8122.98 (18)
C3—C2—Cl1118.10 (15)C10—C9—Cl3118.38 (15)
C1—C2—Cl1118.86 (14)C8—C9—Cl3118.63 (14)
C4—C3—C2118.71 (18)C11—C10—C9119.02 (19)
C4—C3—H3120.6C11—C10—H10120.5
C2—C3—H3120.6C9—C10—H10120.5
C3—C4—C5120.56 (19)C10—C11—C12120.62 (19)
C3—C4—H4119.7C10—C11—H11119.7
C5—C4—H4119.7C12—C11—H11119.7
C6—C5—C4119.7 (2)C11—C12—C13119.8 (2)
C6—C5—H5120.2C11—C12—H12120.1
C4—C5—H5120.2C13—C12—H12120.1
C5—C6—C1122.23 (17)C12—C13—C8121.80 (18)
C5—C6—Cl2117.14 (15)C12—C13—Cl4117.71 (16)
C1—C6—Cl2120.61 (13)C8—C13—Cl4120.46 (14)
N1—C7—C1121.30 (16)N2—C14—C8121.45 (16)
N1—C7—H7119.4N2—C14—H14119.3
C1—C7—H7119.4C8—C14—H14119.3
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N1i0.822.142.854 (2)145
O2—H2···N2ii0.822.152.850 (2)144
Symmetry codes: (i) x, y+1, z+2; (ii) x+1, y+2, z+1.

Experimental details

Crystal data
Chemical formulaC7H5Cl2NO
Mr190.02
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)3.8074 (1), 14.3712 (2), 14.3835 (3)
α, β, γ (°)89.108 (1), 88.545 (1), 85.296 (1)
V3)784.04 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.76
Crystal size (mm)0.26 × 0.24 × 0.16
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1998)
Tmin, Tmax0.818, 0.884
No. of measured, independent and
observed [I > 2σ(I)] reflections
11107, 3235, 2809
Rint0.018
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.085, 1.06
No. of reflections3235
No. of parameters201
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.40, 0.31

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N1i0.822.142.854 (2)145.0
O2—H2···N2ii0.822.152.850 (2)143.6
Symmetry codes: (i) x, y+1, z+2; (ii) x+1, y+2, z+1.
 

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXu, J. & Jin, S. (1999). Acta Cryst. C55, 1579–1581.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds