organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 11| November 2008| Pages o2211-o2212

4-Chloro-2-((1R)-1-{[(R)-(2-chloro­phen­yl)(cyclo­pent­yl)meth­yl]amino}eth­yl)phenol

aSchool of Chemistry, Jinan University, Jinan 250022, People's Republic of China, bQilu Pharmaceutical Co. Ltd, Shandong Province, Shandong 250100, People's Republic of China, and cGraduate School of Science and Engineering, Saitama University, 255 Shimo-ohkubo, Sakura, Saitama 338-8570, Japan
*Correspondence e-mail: yangting365@126.com

(Received 11 October 2008; accepted 23 October 2008; online 25 October 2008)

The title compound, C20H23Cl2NO, was prepared by condensation of (R)-1-(2-chloro­phen­yl)-1-cyclo­pentyl­methanamine with 1-(5-chloro-2-hydroxy­phen­yl)ethanone, resulting in the formation of a new chiral center. The structural analysis confirms the absolute configuration of the title compound and the formation of the (R,R) diastereoisomer. There is an intra­molecular O—H⋯N hydrogen bond which stabilizes the conformation of the mol­ecule. The mol­ecules are linked to each other through weak C—H⋯π inter­actions.

Related literature

For general background, see: Ager et al. (1996[Ager, D. J., Prakash, I. & Schaad, D. R. (1996). Chem. Rev. 96, 835-875.]); Berrisford et al. (1995[Berrisford, D. J., Bolm, C. & Sharpless, K. B. (1995). Angew. Chem. Int. Ed. Engl. 34, 1059-1070.]); Cimarelli & Palmieri (1998[Cimarelli, C. & Palmieri, G. (1998). Tetrahedron, 54, 15711-15720.]); Cimarelli et al. (2001[Cimarelli, C., Mazzanti, A., Palmieri, G. & Volpini, E. (2001). J. Org. Chem. 66, 4759-4765.], 2002[Cimarelli, C., Palmieri, G. & Volpini, E. (2002). Tetrahedron Asymmetry, 13, 2011-2018.]); Hayase et al. (1997[Hayase, T., Sugiyama, T., Suzuki, M., Shibata, T. & Soai, K. (1997). J. Fluorine Chem. 84, 1-5.]); Nakano et al. (1997[Nakano, H., Kumagai, N., Matsuzaki, H., Kabuto, C. & Hongo, V. (1997). Tetrahedron Asymmetry, 8, 1391-1401.]); Palmieri (1999[Palmieri, G. (1999). Eur. J. Org. Chem. pp. 805-811.], 2000[Palmieri, G. (2000). Tetrahedron Asymmetry, 11, 3361-3373.]); Soai & Niwa (1992[Soai, K. & Niwa, S. (1992). Chem. Rev. 92, 833-856.]); Watanabe et al. (1991[Watanabe, V., Araki, V. & Butsugan, V. (1991). J. Org. Chem. 56, 2218-2224.]); Xu & Pu (2004[Xu, M. H. & Pu, L. (2004). Org. Lett. 4, 4555-4557.]); Yang et al. (2005[Yang, X.-F., Zhang, G.-Y., Zhang, Y., Zhao, J.-Y. & Wang, X.-B. (2005). Acta Cryst. C61, o262-o264.]).

[Scheme 1]

Experimental

Crystal data
  • C20H23Cl2NO

  • Mr = 364.29

  • Orthorhombic, P 21 21 21

  • a = 11.286 (2) Å

  • b = 11.539 (2) Å

  • c = 14.740 (3) Å

  • V = 1919.5 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.34 mm−1

  • T = 298 (2) K

  • 0.42 × 0.29 × 0.18 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.869, Tmax = 0.941

  • 10145 measured reflections

  • 3573 independent reflections

  • 2761 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.113

  • S = 1.02

  • 3573 reflections

  • 219 parameters

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.22 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1629 Friedel pairs

  • Flack parameter: 0.03 (8)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯N1 0.82 1.92 2.639 (3) 146
C3—H3⋯Cg1i 0.93 2.76 3.661 (3) 164
Symmetry code: (i) [-x+{\script{3\over 2}}, -y+2, z-{\script{1\over 2}}]. Cg is the centroid of the C15–C20 benzene ring

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]) and ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The synthesis of enantiopure amine alcohols with a variety of functionalities is an important subject of research because this class of compounds has found widespread application in biological systems showing pharmacological activity. These compounds are used as resolving agents, chiral bases and auxiliaries in asymmetric synthesis (Cimarelli et al.,2002), and most have been derived from new readily available natural products (Ager et al.,1996). Chiral aminophenols, which are similar to aminoalcohols, are important building blocks in organic synthesis, and have attracted increasing attention in recent years owing to their effects in asymmetric synthesis and asymmetric induction (Cimarelli et al.,2001; Palmieri, 1999, 2000; Xu & Pu, 2004; Berrisford et al., 1995; Cimarelli & Palmieri, 1998; Hayase et al., 1997; Nakano et al.,1997; Soai et al., 1992; Watanabe et al., 1991).

As part of our continuing studies of chiral aminophenols, we have established the molecular structure of the title compound which was intially synthesized to test its asymmetric catalytic activity. The compound has been prepared by conventional condensation of (R)-1-(2-chlorophenyl)-1-cyclopentylmethanamine with 1-(5-chloro-2-hydroxyphenyl)ethanone, resulting in the formation of a new chiral center as shown in Fig. 1.

The structural analyses confirms the absolute configuration of the title compound and the formation of the (R,R) diastereoisomer. There is an intramolecular O-H···N hydrogen bond which stabilizes the conformation of the molecule. The molecules are linked to each other through weak C-H···π interaction involving the C15-C20 benzene ring (Table 1).

Related literature top

For general background, see: Ager et al. (1996); Berrisford et al. (1995); Cimarelli & Palmieri (1998); Cimarelli et al. (2001, 2002); Hayase et al. (1997); Nakano et al. (1997); Palmieri (1999, 2000); Soai & Niwa (1992); Watanabe et al. (1991); Xu & Pu (2004); Yang et al. (2005).

.

Experimental top

The title compound were prepared according to the procedure of Yang et al.(2005). (R)-1-(2-chlorophenyl)-1-cyclopentylmethanamine (0.9 mmol) and 1-(5-chloro-2-hydroxyphenyl)ethanone (0.9 mmol) were dissolved in methanol (10 ml) and reacted at room temperature for 48 h. After removal of the solvent, NaBH4 (4.5 mmol) was added to the solution in THF/ethanol (1:1 v/v, 20 ml) and stirred at 273 K until the solution became colourless. The solvent was then removed under reduced pressure. Water (10 ml)was added to the residue and 1 N HCl was added dropwise until hydrogen production ceased. The mixture was neutralized with aqueous Na2CO3 , then extracted with CHCl3, and the organic layer was dried over anhydrous sodium sulfate. The solvent was removed under reduced pressure. Further purification was carried out by thin-layer silica-gel chromatography (chloroform) to give a colourless solid (yield 83.5%). Crystals of (I) were grown from a n-hexane.

Refinement top

All H atoms were included in calculated positions and treated as riding on their parent atoms, with N—H = 0.90 Å, O—H = 0.82 Å, aromatic C—H = 0.93 Å, methyl C—H =0.96 Å, methylene C—H =0.97 Å and methine C—H = 0.98 Å, and with Uiso(H) = 1.2Ueq(C,N,O)or 1.5Ueq(methyl C).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular view of (I) with the atom-labeling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are shown as small spheres of arbitrary radii. H bond is shown as dashed line.
4-Chloro-2-((1R)-1-{[(R)-(2- chlorophenyl)(cyclopentyl)methyl]amino}ethyl)phenol top
Crystal data top
C20H23Cl2NOF(000) = 768
Mr = 364.29Dx = 1.261 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 2608 reflections
a = 11.286 (2) Åθ = 2.2–20.5°
b = 11.539 (2) ŵ = 0.34 mm1
c = 14.740 (3) ÅT = 298 K
V = 1919.5 (6) Å3Block, colourless
Z = 40.42 × 0.29 × 0.18 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3573 independent reflections
Radiation source: fine-focus sealed tube2761 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
ϕ and ω scansθmax = 25.5°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
h = 1313
Tmin = 0.869, Tmax = 0.941k = 1311
10145 measured reflectionsl = 1715
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.048H-atom parameters constrained
wR(F2) = 0.113 w = 1/[σ2(Fo2) + (0.0486P)2 + 0.3378P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
3573 reflectionsΔρmax = 0.17 e Å3
219 parametersΔρmin = 0.22 e Å3
0 restraintsAbsolute structure: Flack (1983), 1629 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.03 (8)
Crystal data top
C20H23Cl2NOV = 1919.5 (6) Å3
Mr = 364.29Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 11.286 (2) ŵ = 0.34 mm1
b = 11.539 (2) ÅT = 298 K
c = 14.740 (3) Å0.42 × 0.29 × 0.18 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3573 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
2761 reflections with I > 2σ(I)
Tmin = 0.869, Tmax = 0.941Rint = 0.032
10145 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.048H-atom parameters constrained
wR(F2) = 0.113Δρmax = 0.17 e Å3
S = 1.02Δρmin = 0.22 e Å3
3573 reflectionsAbsolute structure: Flack (1983), 1629 Friedel pairs
219 parametersAbsolute structure parameter: 0.03 (8)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.4448 (2)0.9053 (2)0.71545 (19)0.0527 (7)
C20.5587 (2)0.9243 (2)0.68485 (16)0.0450 (6)
C30.5716 (3)1.0086 (2)0.61779 (19)0.0583 (7)
H30.64681.02420.59520.070*
C40.4774 (3)1.0688 (3)0.5843 (2)0.0662 (9)
H40.48911.12450.53950.079*
C50.3652 (3)1.0476 (3)0.6164 (2)0.0702 (9)
H50.30071.08860.59390.084*
C60.3501 (3)0.9649 (3)0.6822 (2)0.0679 (9)
H60.27460.94940.70430.082*
C70.6676 (2)0.8606 (2)0.71942 (18)0.0494 (7)
H70.64120.80680.76670.059*
C80.7239 (3)0.7890 (3)0.6445 (2)0.0597 (8)
H80.74960.84170.59630.072*
C90.8298 (3)0.7153 (3)0.6731 (3)0.0842 (11)
H9A0.90150.76160.67490.101*
H9B0.81680.68140.73240.101*
C100.8389 (4)0.6226 (4)0.6016 (3)0.1137 (16)
H10A0.89220.64670.55360.136*
H10B0.86870.55120.62780.136*
C110.7165 (4)0.6053 (4)0.5653 (3)0.1091 (15)
H11A0.71710.60910.49950.131*
H11B0.68630.53010.58340.131*
C120.6404 (3)0.6996 (3)0.6033 (2)0.0747 (10)
H12A0.58770.66880.64930.090*
H12B0.59300.73450.55570.090*
C130.7159 (3)1.0138 (3)0.83381 (19)0.0558 (7)
H130.64331.05290.81400.067*
C140.8106 (4)1.1051 (3)0.8523 (2)0.0835 (11)
H14A0.88281.06770.87050.125*
H14B0.78421.15570.89990.125*
H14C0.82451.14940.79830.125*
C150.6889 (3)0.9446 (3)0.91861 (19)0.0537 (7)
C160.6008 (3)0.9804 (3)0.9767 (2)0.0606 (8)
H160.55581.04520.96200.073*
C170.5781 (3)0.9215 (4)1.0566 (2)0.0757 (10)
C180.6416 (5)0.8248 (4)1.0777 (3)0.0969 (15)
H180.62540.78441.13080.116*
C190.7279 (4)0.7875 (3)1.0216 (3)0.0909 (14)
H190.77000.72071.03620.109*
C200.7551 (3)0.8472 (3)0.9425 (2)0.0669 (9)
Cl10.41737 (8)0.79949 (9)0.79694 (7)0.0876 (3)
Cl20.47184 (9)0.97355 (14)1.13076 (7)0.1212 (5)
N10.75723 (19)0.9378 (2)0.76056 (16)0.0590 (6)
O10.8465 (2)0.8094 (2)0.89205 (18)0.0974 (9)
H1A0.84710.84370.84330.146*
H10.78530.97840.71460.117*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0501 (16)0.0547 (17)0.0533 (16)0.0074 (14)0.0004 (14)0.0055 (13)
C20.0518 (15)0.0445 (14)0.0386 (14)0.0076 (13)0.0041 (12)0.0018 (12)
C30.0571 (17)0.0609 (18)0.0567 (17)0.0135 (15)0.0047 (15)0.0086 (15)
C40.088 (2)0.0532 (19)0.0577 (19)0.0095 (18)0.0138 (18)0.0100 (15)
C50.074 (2)0.063 (2)0.074 (2)0.0047 (18)0.0227 (19)0.0004 (19)
C60.0472 (15)0.078 (2)0.079 (2)0.0036 (16)0.0035 (15)0.0018 (19)
C70.0468 (15)0.0528 (16)0.0485 (16)0.0063 (13)0.0026 (13)0.0001 (13)
C80.0586 (17)0.0647 (19)0.0558 (18)0.0008 (15)0.0021 (15)0.0062 (15)
C90.0568 (19)0.093 (3)0.102 (3)0.013 (2)0.0081 (18)0.028 (2)
C100.088 (3)0.124 (3)0.129 (4)0.024 (3)0.010 (3)0.059 (3)
C110.098 (3)0.097 (3)0.132 (4)0.014 (3)0.008 (3)0.052 (3)
C120.068 (2)0.077 (2)0.079 (2)0.0014 (19)0.0103 (18)0.0250 (19)
C130.0533 (16)0.0598 (17)0.0544 (17)0.0024 (15)0.0074 (14)0.0045 (14)
C140.099 (3)0.082 (2)0.069 (2)0.028 (2)0.001 (2)0.0123 (19)
C150.0525 (16)0.0569 (17)0.0516 (16)0.0085 (15)0.0162 (14)0.0034 (14)
C160.0534 (17)0.070 (2)0.0587 (19)0.0094 (16)0.0122 (15)0.0018 (16)
C170.070 (2)0.095 (3)0.062 (2)0.035 (2)0.0145 (18)0.000 (2)
C180.145 (4)0.086 (3)0.060 (2)0.051 (3)0.037 (3)0.013 (2)
C190.143 (4)0.059 (2)0.071 (3)0.007 (2)0.057 (3)0.001 (2)
C200.081 (2)0.059 (2)0.060 (2)0.0069 (18)0.0332 (18)0.0136 (16)
Cl10.0671 (5)0.1041 (7)0.0916 (6)0.0106 (5)0.0140 (5)0.0452 (5)
Cl20.0834 (6)0.2043 (14)0.0759 (6)0.0444 (8)0.0151 (5)0.0046 (8)
N10.0475 (13)0.0749 (17)0.0547 (14)0.0100 (13)0.0024 (11)0.0098 (13)
O10.1023 (19)0.102 (2)0.0875 (18)0.0454 (17)0.0382 (15)0.0257 (16)
Geometric parameters (Å, º) top
C1—C61.363 (4)C11—H11A0.9700
C1—C21.379 (4)C11—H11B0.9700
C1—Cl11.740 (3)C12—H12A0.9700
C2—C31.394 (4)C12—H12B0.9700
C2—C71.520 (4)C13—N11.468 (3)
C3—C41.363 (4)C13—C151.515 (4)
C3—H30.9300C13—C141.525 (4)
C4—C51.373 (5)C13—H130.9800
C4—H40.9300C14—H14A0.9600
C5—C61.371 (5)C14—H14B0.9600
C5—H50.9300C14—H14C0.9600
C6—H60.9300C15—C161.375 (4)
C7—N11.477 (3)C15—C201.394 (4)
C7—C81.518 (4)C16—C171.384 (4)
C7—H70.9800C16—H160.9300
C8—C121.524 (4)C17—C181.363 (6)
C8—C91.526 (4)C17—Cl21.730 (4)
C8—H80.9800C18—C191.348 (6)
C9—C101.504 (5)C18—H180.9300
C9—H9A0.9700C19—C201.389 (5)
C9—H9B0.9700C19—H190.9300
C10—C111.495 (6)C20—O11.344 (4)
C10—H10A0.9700N1—H10.8826
C10—H10B0.9700O1—H1A0.8200
C11—C121.495 (5)
C6—C1—C2122.2 (3)C10—C11—H11A110.2
C6—C1—Cl1117.6 (2)C12—C11—H11B110.2
C2—C1—Cl1120.2 (2)C10—C11—H11B110.2
C1—C2—C3116.1 (3)H11A—C11—H11B108.5
C1—C2—C7124.5 (2)C11—C12—C8106.7 (3)
C3—C2—C7119.4 (2)C11—C12—H12A110.4
C4—C3—C2122.1 (3)C8—C12—H12A110.4
C4—C3—H3118.9C11—C12—H12B110.4
C2—C3—H3118.9C8—C12—H12B110.4
C3—C4—C5120.2 (3)H12A—C12—H12B108.6
C3—C4—H4119.9N1—C13—C15110.8 (2)
C5—C4—H4119.9N1—C13—C14108.8 (2)
C6—C5—C4118.9 (3)C15—C13—C14110.9 (2)
C6—C5—H5120.6N1—C13—H13108.7
C4—C5—H5120.6C15—C13—H13108.7
C1—C6—C5120.5 (3)C14—C13—H13108.7
C1—C6—H6119.7C13—C14—H14A109.5
C5—C6—H6119.7C13—C14—H14B109.5
N1—C7—C8109.9 (2)H14A—C14—H14B109.5
N1—C7—C2113.6 (2)C13—C14—H14C109.5
C8—C7—C2111.0 (2)H14A—C14—H14C109.5
N1—C7—H7107.4H14B—C14—H14C109.5
C8—C7—H7107.4C16—C15—C20118.2 (3)
C2—C7—H7107.4C16—C15—C13120.0 (3)
C7—C8—C12113.6 (2)C20—C15—C13121.7 (3)
C7—C8—C9115.5 (3)C15—C16—C17121.1 (3)
C12—C8—C9102.5 (3)C15—C16—H16119.4
C7—C8—H8108.3C17—C16—H16119.4
C12—C8—H8108.3C18—C17—C16119.9 (4)
C9—C8—H8108.3C18—C17—Cl2120.3 (3)
C10—C9—C8104.9 (3)C16—C17—Cl2119.8 (3)
C10—C9—H9A110.8C19—C18—C17120.2 (4)
C8—C9—H9A110.8C19—C18—H18119.9
C10—C9—H9B110.8C17—C18—H18119.9
C8—C9—H9B110.8C18—C19—C20121.1 (4)
H9A—C9—H9B108.8C18—C19—H19119.5
C11—C10—C9106.4 (3)C20—C19—H19119.5
C11—C10—H10A110.4O1—C20—C19118.2 (3)
C9—C10—H10A110.4O1—C20—C15122.2 (3)
C11—C10—H10B110.4C19—C20—C15119.5 (4)
C9—C10—H10B110.4C13—N1—C7116.4 (2)
H10A—C10—H10B108.6C13—N1—H1111.2
C12—C11—C10107.4 (3)C7—N1—H1104.5
C12—C11—H11A110.2C20—O1—H1A109.5
C6—C1—C2—C30.2 (4)C7—C8—C12—C11154.8 (3)
Cl1—C1—C2—C3178.3 (2)C9—C8—C12—C1129.4 (4)
C6—C1—C2—C7179.9 (3)N1—C13—C15—C16148.4 (2)
Cl1—C1—C2—C71.9 (4)C14—C13—C15—C1690.6 (3)
C1—C2—C3—C40.0 (4)N1—C13—C15—C2034.8 (4)
C7—C2—C3—C4179.8 (3)C14—C13—C15—C2086.2 (3)
C2—C3—C4—C50.0 (5)C20—C15—C16—C170.1 (4)
C3—C4—C5—C60.2 (5)C13—C15—C16—C17177.1 (3)
C2—C1—C6—C50.3 (5)C15—C16—C17—C181.6 (5)
Cl1—C1—C6—C5178.5 (2)C15—C16—C17—Cl2176.6 (2)
C4—C5—C6—C10.3 (5)C16—C17—C18—C191.2 (5)
C1—C2—C7—N1119.6 (3)Cl2—C17—C18—C19177.0 (3)
C3—C2—C7—N160.2 (3)C17—C18—C19—C201.0 (6)
C1—C2—C7—C8116.1 (3)C18—C19—C20—O1176.3 (3)
C3—C2—C7—C864.2 (3)C18—C19—C20—C152.7 (5)
N1—C7—C8—C12175.2 (3)C16—C15—C20—O1176.8 (3)
C2—C7—C8—C1258.3 (3)C13—C15—C20—O10.1 (4)
N1—C7—C8—C957.2 (3)C16—C15—C20—C192.2 (4)
C2—C7—C8—C9176.4 (3)C13—C15—C20—C19179.1 (3)
C7—C8—C9—C10158.9 (3)C15—C13—N1—C770.8 (3)
C12—C8—C9—C1034.8 (4)C14—C13—N1—C7166.9 (3)
C8—C9—C10—C1127.7 (5)C8—C7—N1—C13179.4 (2)
C9—C10—C11—C129.1 (5)C2—C7—N1—C1354.4 (3)
C10—C11—C12—C813.0 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···N10.821.922.639 (3)146
C3—H3···Cg1i0.932.763.661 (3)164
Symmetry code: (i) x+3/2, y+2, z1/2.

Experimental details

Crystal data
Chemical formulaC20H23Cl2NO
Mr364.29
Crystal system, space groupOrthorhombic, P212121
Temperature (K)298
a, b, c (Å)11.286 (2), 11.539 (2), 14.740 (3)
V3)1919.5 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.34
Crystal size (mm)0.42 × 0.29 × 0.18
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1997)
Tmin, Tmax0.869, 0.941
No. of measured, independent and
observed [I > 2σ(I)] reflections
10145, 3573, 2761
Rint0.032
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.113, 1.02
No. of reflections3573
No. of parameters219
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.22
Absolute structureFlack (1983), 1629 Friedel pairs
Absolute structure parameter0.03 (8)

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···N10.821.922.639 (3)145.5
C3—H3···Cg1i0.932.763.661 (3)164.0
Symmetry code: (i) x+3/2, y+2, z1/2.
 

Acknowledgements

The authors are grateful to the Natural Science Foundation of Shandong Province China (grant No. G0231) and the Foundation of the Education Ministry of China for Returned Students (grant No. G0220) for financial support. The X-ray data were collected at Shandong Normal University, China.

References

First citationAger, D. J., Prakash, I. & Schaad, D. R. (1996). Chem. Rev. 96, 835–875.  CrossRef PubMed CAS Web of Science Google Scholar
First citationBerrisford, D. J., Bolm, C. & Sharpless, K. B. (1995). Angew. Chem. Int. Ed. Engl. 34, 1059–1070.  CrossRef CAS Web of Science Google Scholar
First citationBruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationCimarelli, C., Mazzanti, A., Palmieri, G. & Volpini, E. (2001). J. Org. Chem. 66, 4759–4765.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationCimarelli, C. & Palmieri, G. (1998). Tetrahedron, 54, 15711–15720.  Web of Science CrossRef CAS Google Scholar
First citationCimarelli, C., Palmieri, G. & Volpini, E. (2002). Tetrahedron Asymmetry, 13, 2011–2018.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHayase, T., Sugiyama, T., Suzuki, M., Shibata, T. & Soai, K. (1997). J. Fluorine Chem. 84, 1–5.  CrossRef CAS Web of Science Google Scholar
First citationNakano, H., Kumagai, N., Matsuzaki, H., Kabuto, C. & Hongo, V. (1997). Tetrahedron Asymmetry, 8, 1391–1401.  CSD CrossRef CAS Web of Science Google Scholar
First citationPalmieri, G. (1999). Eur. J. Org. Chem. pp. 805–811.  CrossRef Google Scholar
First citationPalmieri, G. (2000). Tetrahedron Asymmetry, 11, 3361–3373.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSoai, K. & Niwa, S. (1992). Chem. Rev. 92, 833–856.  CrossRef CAS Web of Science Google Scholar
First citationWatanabe, V., Araki, V. & Butsugan, V. (1991). J. Org. Chem. 56, 2218–2224.  CrossRef CAS Web of Science Google Scholar
First citationXu, M. H. & Pu, L. (2004). Org. Lett. 4, 4555-4557.  Web of Science CrossRef Google Scholar
First citationYang, X.-F., Zhang, G.-Y., Zhang, Y., Zhao, J.-Y. & Wang, X.-B. (2005). Acta Cryst. C61, o262–o264.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 11| November 2008| Pages o2211-o2212
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds