organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(4-Chloro-2-nitro­phen­yl)-N-(methyl­sulfon­yl)acetamide

aApplied Chemistry Research Centre, PCSIR Laboratories Complex, Lahore 54600, Pakistan, bCentre for High Energy Physics, University of the Punjab, Lahore 54590, Pakistan, and cDepartment of Chemistry, Government College University, Lahore 54000, Pakistan
*Correspondence e-mail: noshinakbar@yahoo.com

(Received 10 September 2008; accepted 6 October 2008; online 11 October 2008)

The title compound, C9H9ClN2O5S, is of inter­est as a precursor to biologically active substituted quinolines and related compounds. The structure displays inter­molecular C—H⋯O inter­actions. Each mol­ecule is linked to two adjacent neighbours via weak centrosymmetric dimer-forming inter­actions, forming chains in the [101] direction.

Related literature

For synthesis and biological evaluation of sulfur-containing heterocyclic compounds, see: Zia-ur-Rehman et al. (2005[Zia-ur-Rehman, M., Choudary, J. A. & Ahmad, S. (2005). Bull. Korean Chem. Soc. 26, 1771-1175.], 2006[Zia-ur-Rehman, M., Choudary, J. A., Ahmad, S. & Siddiqui, H. L. (2006). Chem. Pharm. Bull. 54, 1175-1178.], 2007[Zia-ur-Rehman, M., Choudary, J. A., Elsegood, M. R. J., Siddiqui, H. L. & Weaver, G. W. (2007). Acta Cryst. E63, o4215-o4216.], 2008[Zia-ur-Rehman, M., Choudary, J. A., Elsegood, M. R. J., Siddiqui, H. L. & Khan, K. M. (2008). Eur. J. Med. Chem. doi:10.1016/j.ejmech.2008.08.002.]); Wen et al. (2005[Wen, Y.-H., Zhang, S.-S., Yu, B.-H., Li, X.-M. & Liu, Q. (2005). Acta Cryst. E61, o347-o348.]); Zhang, Xu, Wen et al. (2006[Zhang, S.-S., Xu, L.-L., Wen, H.-L., Li, X.-M. & Wen, Y.-H. (2006). Acta Cryst. E62, o3071-o3072.]). For related mol­ecules, see: (Wen et al., 2006[Wen, Y.-H., Li, X.-M., Xu, L.-L., Tang, X.-F. & Zhang, S.-S. (2006). Acta Cryst. E62, o4427-o4428.]; Zhang, Xu, Zou et al. (2006[Zhang, S.-S., Xu, L.-L., Zou, J., Bi, S. & Wen, Y.-H. (2006). Acta Cryst. E62, o4478-o4479.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C9H9ClN2O5S

  • Mr = 292.70

  • Monoclinic, P 21 /c

  • a = 9.8071 (4) Å

  • b = 9.4310 (4) Å

  • c = 13.5679 (7) Å

  • β = 105.883 (2)°

  • V = 1207.00 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.50 mm−1

  • T = 296 (2) K

  • 0.25 × 0.15 × 0.09 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.913, Tmax = 0.956

  • 13383 measured reflections

  • 2988 independent reflections

  • 2077 reflections with I > 2σ(I)

  • Rint = 0.043

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.104

  • S = 1.02

  • 2981 reflections

  • 163 parameters

  • H-atom parameters constrained

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O5i 0.93 2.55 3.404 (3) 153
C9—H9B⋯O3ii 0.96 2.58 3.521 (3) 169
Symmetry codes: (i) -x, -y+2, -z; (ii) -x+1, -y+2, -z+1.

Data collection: SMART (Bruker, 2007[Bruker (2007). APEX2, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

N-(Substituted phenyl)acetamides are well known for their importance as intermediates in organic synthesis. They are used as precursors for the synthesis of many heterocyclic compounds, e.g. 2,5-piperazinedione (Wen et al., 2006), (quinolin-8-yloxy)acetamide (Zhang, Xu, Wen et al., 2006) and 2,2-(1,3,4-thiadiazolyl-2,5-dithio)diacetamide (Wen et al., 2005). In the present paper, the structure of N-(4-chloro-2-nitrophenyl)-N-(methylsulfonyl)acetamide (I) has been determined as part of a research program involving the synthesis and biological evaluation of sulfur containing heterocyclic compounds (Zia-ur-Rehman et al., 2005, 2006, 2007, 2008).

In the molecule of I (Fig. 1), the bond lengths and bond angles are similar to those in related molecules (Wen et al., 2006; Zhang, Xu, Zou et al., 2006) and are within normal ranges (Allen et al., 1987). The nitro group is slightly twisted out of the plane of the benzene ring, as indicated by O1—N1—C3—C2 and O2—N1—C3—C2 torsion angles of -16.7 (3) and 160.9 (2)°, respectively. Each molecule is linked to its neighbour via a centrosymmetric head-to-tail interaction between the methyl hydrogen H9B and the carbonyl oxygen [C9—H9B···O3]. Adjacent pairs of these molecules are then linked into chains via intermolecular [C2—H5···O5] interactions along the [101] direction (Table 1 and Fig. 2).

Related literature top

For synthesis and biological evaluation of sulfur-containing heterocyclic compounds, see: Zia-ur-Rehman et al. (2005, 2006, 2007, 2008); Wen et al. (2005); Zhang, Xu, Wen et al. (2006). For related molecules, see: (Wen et al., 2006; Zhang, Xu, Zou et al. (2006). For bond-length data, see: Allen et al. (1987).

Experimental top

A mixture of N-(4-chloro-2-nitrophenyl)methane sulfonamide (2.507 g; 10.0 mmoles) and acetic anhydride (10.0 ml) was heated to reflux for half an hour and then poured over crushed ice. Resultant solids were then washed with cold water and dried under reduced pressure. Yellow crystals were obtained by slow evaporation of an ethanolic solution over a period of two days.

Refinement top

H atoms bound to C were placed in geometric positions (C—H distance = 0.95 Å) using a riding model with Uiso(H) = 1.2 Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound showing the atom labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Perspective view of a portion of the crystal packing, viewed approximately down the b-axis, showing hydrogen bond interactions (dashed lines) along the [101] direction. H atoms not involved in hydrogen bonding have been omitted for clarity.
N-(4-Chloro-2-nitrophenyl)-N-(methylsulfonyl)acetamide top
Crystal data top
C9H9ClN2O5SF(000) = 600
Mr = 292.70Dx = 1.611 Mg m3
Monoclinic, P21/cMelting point: 401 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 9.8071 (4) ÅCell parameters from 3121 reflections
b = 9.4310 (4) Åθ = 2.7–27.2°
c = 13.5679 (7) ŵ = 0.50 mm1
β = 105.883 (2)°T = 296 K
V = 1207.00 (9) Å3Needle, light yellow
Z = 40.25 × 0.15 × 0.09 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2988 independent reflections
Radiation source: fine-focus sealed tube2077 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.043
Detector resolution: 7.5 pixels mm-1θmax = 28.3°, θmin = 2.7°
ϕ and ω scansh = 1213
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 1212
Tmin = 0.913, Tmax = 0.956l = 1817
13383 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.104H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0426P)2 + 0.5587P]
where P = (Fo2 + 2Fc2)/3
2981 reflections(Δ/σ)max < 0.001
163 parametersΔρmax = 0.43 e Å3
0 restraintsΔρmin = 0.31 e Å3
Crystal data top
C9H9ClN2O5SV = 1207.00 (9) Å3
Mr = 292.70Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.8071 (4) ŵ = 0.50 mm1
b = 9.4310 (4) ÅT = 296 K
c = 13.5679 (7) Å0.25 × 0.15 × 0.09 mm
β = 105.883 (2)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2988 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2077 reflections with I > 2σ(I)
Tmin = 0.913, Tmax = 0.956Rint = 0.043
13383 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.104H-atom parameters constrained
S = 1.02Δρmax = 0.43 e Å3
2981 reflectionsΔρmin = 0.31 e Å3
163 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.43935 (5)0.98058 (6)0.14520 (4)0.03097 (15)
Cl10.20712 (6)0.67766 (7)0.00125 (6)0.0511 (2)
N20.34896 (17)0.91810 (19)0.22582 (14)0.0276 (4)
O50.34507 (18)0.96150 (18)0.04574 (13)0.0439 (4)
C40.2107 (2)0.8605 (2)0.17969 (16)0.0269 (5)
O30.52800 (17)0.97095 (19)0.36537 (13)0.0454 (4)
N10.0872 (2)1.0934 (2)0.18329 (16)0.0361 (5)
C30.0874 (2)0.9425 (2)0.15362 (17)0.0283 (5)
O10.0130 (2)1.1651 (2)0.13957 (18)0.0695 (7)
C10.0476 (2)0.7464 (3)0.07164 (19)0.0365 (5)
O40.49004 (18)1.11878 (17)0.17659 (15)0.0477 (5)
O20.1842 (2)1.1381 (2)0.25205 (18)0.0651 (6)
C50.1996 (2)0.7188 (2)0.15196 (19)0.0359 (5)
H50.28000.66180.16890.043*
C60.0708 (2)0.6607 (3)0.09955 (19)0.0401 (6)
H60.06390.56470.08330.048*
C70.4104 (2)0.9221 (2)0.33238 (17)0.0315 (5)
C20.0409 (2)0.8874 (2)0.09933 (18)0.0327 (5)
H20.12150.94410.08160.039*
C80.5815 (3)0.8637 (3)0.1615 (2)0.0501 (7)
H8A0.54630.76900.14600.075*
H8B0.63900.86790.23120.075*
H8C0.63740.88990.11630.075*
C90.3259 (3)0.8606 (3)0.39765 (19)0.0415 (6)
H9A0.22850.88870.37160.062*
H9B0.36210.89440.46660.062*
H9C0.33230.75910.39690.062*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0248 (3)0.0320 (3)0.0347 (3)0.0000 (2)0.0057 (2)0.0040 (2)
Cl10.0311 (3)0.0557 (4)0.0567 (4)0.0129 (3)0.0043 (3)0.0082 (3)
N20.0209 (8)0.0327 (9)0.0269 (10)0.0027 (7)0.0024 (7)0.0027 (8)
O50.0386 (9)0.0575 (11)0.0322 (10)0.0048 (8)0.0039 (8)0.0063 (8)
C40.0208 (9)0.0328 (11)0.0253 (11)0.0021 (8)0.0032 (8)0.0017 (9)
O30.0317 (9)0.0564 (11)0.0388 (10)0.0073 (8)0.0064 (8)0.0053 (8)
N10.0334 (10)0.0337 (10)0.0424 (12)0.0039 (8)0.0123 (9)0.0019 (9)
C30.0268 (10)0.0283 (11)0.0292 (12)0.0009 (8)0.0066 (9)0.0012 (9)
O10.0571 (13)0.0447 (11)0.0897 (17)0.0213 (10)0.0088 (12)0.0094 (11)
C10.0256 (11)0.0426 (13)0.0364 (14)0.0069 (10)0.0002 (10)0.0021 (10)
O40.0457 (10)0.0354 (9)0.0607 (13)0.0111 (8)0.0124 (9)0.0025 (8)
O20.0447 (11)0.0471 (11)0.0889 (17)0.0022 (9)0.0063 (11)0.0287 (11)
C50.0277 (11)0.0326 (11)0.0422 (15)0.0037 (9)0.0010 (10)0.0035 (10)
C60.0368 (13)0.0329 (12)0.0447 (15)0.0034 (10)0.0012 (11)0.0067 (11)
C70.0308 (11)0.0307 (11)0.0291 (13)0.0039 (9)0.0016 (10)0.0025 (9)
C20.0202 (10)0.0403 (12)0.0356 (13)0.0008 (9)0.0043 (9)0.0024 (10)
C80.0370 (14)0.0579 (17)0.0606 (19)0.0155 (12)0.0219 (13)0.0118 (14)
C90.0489 (14)0.0445 (14)0.0309 (14)0.0029 (11)0.0104 (12)0.0004 (11)
Geometric parameters (Å, º) top
S1—O41.4182 (17)C1—C21.379 (3)
S1—O51.4232 (18)C1—C61.380 (3)
S1—N21.6913 (19)C5—C61.382 (3)
S1—C81.743 (2)C5—H50.9300
Cl1—C11.732 (2)C6—H60.9300
N2—C71.406 (3)C7—C91.487 (3)
N2—C41.435 (2)C2—H20.9300
C4—C51.384 (3)C8—H8A0.9600
C4—C31.397 (3)C8—H8B0.9600
O3—C71.208 (3)C8—H8C0.9600
N1—O11.207 (2)C9—H9A0.9600
N1—O21.212 (3)C9—H9B0.9600
N1—C31.479 (3)C9—H9C0.9600
C3—C21.374 (3)
O4—S1—O5118.97 (11)C4—C5—H5119.5
O4—S1—N2109.18 (10)C1—C6—C5119.4 (2)
O5—S1—N2104.46 (9)C1—C6—H6120.3
O4—S1—C8109.91 (13)C5—C6—H6120.3
O5—S1—C8109.27 (13)O3—C7—N2119.2 (2)
N2—S1—C8103.88 (11)O3—C7—C9124.0 (2)
C7—N2—C4123.11 (18)N2—C7—C9116.74 (19)
C7—N2—S1120.17 (14)C3—C2—C1118.6 (2)
C4—N2—S1116.71 (14)C3—C2—H2120.7
C5—C4—C3117.84 (19)C1—C2—H2120.7
C5—C4—N2118.61 (18)S1—C8—H8A109.5
C3—C4—N2123.35 (18)S1—C8—H8B109.5
O1—N1—O2123.1 (2)H8A—C8—H8B109.5
O1—N1—C3117.83 (19)S1—C8—H8C109.5
O2—N1—C3119.05 (19)H8A—C8—H8C109.5
C2—C3—C4121.92 (19)H8B—C8—H8C109.5
C2—C3—N1116.14 (18)C7—C9—H9A109.5
C4—C3—N1121.95 (18)C7—C9—H9B109.5
C2—C1—C6121.1 (2)H9A—C9—H9B109.5
C2—C1—Cl1119.02 (18)C7—C9—H9C109.5
C6—C1—Cl1119.86 (18)H9A—C9—H9C109.5
C6—C5—C4121.1 (2)H9B—C9—H9C109.5
C6—C5—H5119.5
O4—S1—N2—C750.92 (18)O1—N1—C3—C4163.6 (2)
O5—S1—N2—C7179.19 (16)O2—N1—C3—C418.8 (3)
C8—S1—N2—C766.30 (19)C3—C4—C5—C60.5 (4)
O4—S1—N2—C4130.04 (16)N2—C4—C5—C6174.5 (2)
O5—S1—N2—C41.77 (17)C2—C1—C6—C53.1 (4)
C8—S1—N2—C4112.74 (18)Cl1—C1—C6—C5175.8 (2)
C7—N2—C4—C591.8 (3)C4—C5—C6—C12.1 (4)
S1—N2—C4—C587.2 (2)C4—N2—C7—O3179.2 (2)
C7—N2—C4—C393.5 (3)S1—N2—C7—O30.2 (3)
S1—N2—C4—C387.5 (2)C4—N2—C7—C91.0 (3)
C5—C4—C3—C22.1 (3)S1—N2—C7—C9178.00 (16)
N2—C4—C3—C2172.6 (2)C4—C3—C2—C11.2 (4)
C5—C4—C3—N1177.6 (2)N1—C3—C2—C1178.6 (2)
N2—C4—C3—N17.7 (3)C6—C1—C2—C31.5 (4)
O1—N1—C3—C216.7 (3)Cl1—C1—C2—C3177.41 (18)
O2—N1—C3—C2160.9 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O5i0.932.553.404 (3)153
C9—H9B···O3ii0.962.583.521 (3)169
Symmetry codes: (i) x, y+2, z; (ii) x+1, y+2, z+1.

Experimental details

Crystal data
Chemical formulaC9H9ClN2O5S
Mr292.70
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)9.8071 (4), 9.4310 (4), 13.5679 (7)
β (°) 105.883 (2)
V3)1207.00 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.50
Crystal size (mm)0.25 × 0.15 × 0.09
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.913, 0.956
No. of measured, independent and
observed [I > 2σ(I)] reflections
13383, 2988, 2077
Rint0.043
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.104, 1.02
No. of reflections2981
No. of parameters163
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.43, 0.31

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), WinGX (Farrugia, 1999) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O5i0.932.553.404 (3)153
C9—H9B···O3ii0.962.583.521 (3)169
Symmetry codes: (i) x, y+2, z; (ii) x+1, y+2, z+1.
 

Acknowledgements

The authors are grateful to the PCSIR Laboratories Complex, Lahore, Pakistan, for provision of the necessary chemicals, and the Higher Education Commission of Pakistan for the purchase of the diffractometer.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2007). APEX2, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWen, Y.-H., Li, X.-M., Xu, L.-L., Tang, X.-F. & Zhang, S.-S. (2006). Acta Cryst. E62, o4427–o4428.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWen, Y.-H., Zhang, S.-S., Yu, B.-H., Li, X.-M. & Liu, Q. (2005). Acta Cryst. E61, o347–o348.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhang, S.-S., Xu, L.-L., Wen, H.-L., Li, X.-M. & Wen, Y.-H. (2006). Acta Cryst. E62, o3071–o3072.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhang, S.-S., Xu, L.-L., Zou, J., Bi, S. & Wen, Y.-H. (2006). Acta Cryst. E62, o4478–o4479.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZia-ur-Rehman, M., Choudary, J. A. & Ahmad, S. (2005). Bull. Korean Chem. Soc. 26, 1771–1175.  CAS Google Scholar
First citationZia-ur-Rehman, M., Choudary, J. A., Ahmad, S. & Siddiqui, H. L. (2006). Chem. Pharm. Bull. 54, 1175–1178.  Web of Science CrossRef PubMed CAS Google Scholar
First citationZia-ur-Rehman, M., Choudary, J. A., Elsegood, M. R. J., Siddiqui, H. L. & Khan, K. M. (2008). Eur. J. Med. Chem. doi:10.1016/j.ejmech.2008.08.002.  Google Scholar
First citationZia-ur-Rehman, M., Choudary, J. A., Elsegood, M. R. J., Siddiqui, H. L. & Weaver, G. W. (2007). Acta Cryst. E63, o4215–o4216.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds