organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(2-Chloro­benzyl­­idene)-2-(2,4-di­nitro­phen­yl)hydrazine

aDepartment of Materials Science and Chemical Engineering, Taishan University, 271021 Taian, Shandong, People's Republic of China, bDepartment of Chemistry, Taishan University, 271021 Taian, Shandong, People's Republic of China, and cNo. 1 Middle School of Lanshan, 276808 Rizhao, Shandong, People's Republic of China
*Correspondence e-mail: kobeecho@163.com

(Received 12 September 2008; accepted 14 October 2008; online 18 October 2008)

In the title compound, C13H9ClN4O4, there are two crystallographically independent mol­ecules in the asymmetric unit, which have very similar conformations. The C=N—N angles in each independent mol­ecule are 115.0 (2) and 116.6 (2)°, which are significantly smaller than the ideal value of 120° expected for sp2-hybridized N atoms. This is probably a consequence of repulsion between the nitro­gen lone pairs and the adjacent N—N bonds. Two bifurcated intra­molecular N—H⋯O hydrogen bonds help to establish the mol­ecular conformation and consolidate the crystal packing.

Related literature

For general background, see: Garnovskii et al. (1993[Garnovskii, A. D., Nivorozhkin, A. L. & Minki, V. I. (1993). Coord. Chem. Rev. 126, 1-69.]); Anderson et al. (1997[Anderson, O. P., Cour, A. L., Findeisen, M., Hennig, L., Simonsen, O., Taylor, L. & Toflund, H. (1997). J. Chem. Soc. Dalton Trans. pp. 111-120.]); Musie et al. (2001[Musie, G. T., Wei, M., Subramaniam, B. & Busch, D. H. (2001). Inorg. Chem. 40, 3336-3341.]); Paul et al. (2002[Paul, S., Barik, A. K., Peng, S. M. & Kar, S. K. (2002). Inorg. Chem. 41, 5803-5809.]); Shi et al. (2007[Shi, Z.-Q., Ji, N.-N., Zheng, Z.-B. & Li, J.-K. (2007). Acta Cryst. E63, o4561.]); For related structures, see: Baughman et al. (2004[Baughman, R. G., Martin, K. L., Singh, R. K. & Stoffer, J. O. (2004). Acta Cryst. C60, o103-o106.]); Zare et al. (2005[Zare, H. R., Ardakani, M. M., Nasirizadah, N. & &Safari, J. (2005). Bull. Korean Chem. Soc. 26, 51-56.]); El-Seify & El-Dossoki (2006[El-Seify, F. A. & El-Dossoki, F. I. (2006). J. Korean Chem. Soc. 50, 99-106.]); Kim & Yoon (1998[Kim, S. Y. & Yoon, N. M. (1998). Bull. Korean Chem. Soc. 19, 891-893.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C13H9ClN4O4

  • Mr = 320.69

  • Triclinic, [P \overline 1]

  • a = 7.2286 (7) Å

  • b = 7.6596 (8) Å

  • c = 25.145 (2) Å

  • α = 95.691 (2)°

  • β = 93.030 (2)°

  • γ = 99.728 (3)°

  • V = 1362.0 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.31 mm−1

  • T = 295 (2) K

  • 0.15 × 0.12 × 0.08 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.956, Tmax = 0.976

  • 7216 measured reflections

  • 4776 independent reflections

  • 3273 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.125

  • S = 1.07

  • 4776 reflections

  • 397 parameters

  • H-atom parameters constrained

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.36 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N6—H6⋯O6 0.86 2.02 2.631 (3) 127
N2—H2⋯O1 0.86 2.00 2.622 (3) 129

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In recent years, a number of Schiff-bases have been investigated in terms of their coordination chemistry (Garnovskii et al., 1993; Musie et al., 2001; Paul et al., 2002; Shi et al., 2007;) and biological systems (Anderson et al., 1997). Especial the 2,4-dinitrophenylhydrazones exhibit good nonlinear optical (NLO) and crystalline properties (Baughman et al., 2004). As a result of their significant molecular nonlinearities and remarkable ability to crystallize in non-centrosymmetric crystal systems (Zare et al., 2005; El-Seify & El-Dossoki, 2006; Kim & Yoon, 1998), many X-ray structural studies of 2,4-dinitrophenylhydrazone have been reported. In order to search for new 2,4-dinitrophenylhydrazones, the title compound, (I), was synthesized and its crystal structure determined. In (I) (Fig. 1), the bond lengths and angles are in good agreement with the expected values (Allen et al., 1987). In the crystal structure (Fig. 2), the molecules are stabilized by intramolecular N—H···O hydrogen bonds.

Related literature top

For general background, see: Garnovskii et al. (1993); Anderson et al. (1997); Musie et al. (2001); Paul et al. (2002); Shi et al. (2007); For related structures, see: Baughman et al. (2004); Zare et al. (2005); El-Seify & El-Dossoki (2006); Kim & Yoon (1998). For bond-length data, see: Allen et al. (1987).

Experimental top

The title compound was synthesized by the reaction of (2,4-dinitro-phenyl)-hydrazine(1 mmol, 198.1 mg) with 2-Chloro-benzaldehyde (1 mmol, 140.6 mg) in ethanol (20 ml) under reflux conditions (343 K) for 3 h. The solvent was removed and the solid product recrystallized from tetrahydrofuran, and then dried in vacuo to give pure title compound in 89% yield. After five days yellow crystals suitable for X-ray diffraction study were obtained.

Refinement top

All H atoms were placed in idealized positions (C—H = 0.93–0.97 Å, N—H = 0.86 Å) and refined as riding atoms. For those bound to C, Uiso(H) = 1.2 or 1.5Ueq(C). while for those bound to N, Uiso(H) = 1.2 Ueq(N).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2 (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. The molecules are stabilized by intramolecular N—H···O hydrogen bonds. The dashed lines indicate hydrogen bonds.
1-(2-Chlorobenzylidene)-2-(2,4-dinitrophenyl)hydrazine top
Crystal data top
C13H9ClN4O4Z = 4
Mr = 320.69F(000) = 656
Triclinic, P1Dx = 1.564 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.2286 (7) ÅCell parameters from 1793 reflections
b = 7.6596 (8) Åθ = 2.7–24.9°
c = 25.145 (2) ŵ = 0.31 mm1
α = 95.691 (2)°T = 295 K
β = 93.030 (2)°Block, yellow
γ = 99.728 (3)°0.15 × 0.12 × 0.08 mm
V = 1362.0 (2) Å3
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4776 independent reflections
Radiation source: fine-focus sealed tube3273 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
ϕ and ω scansθmax = 25.0°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 88
Tmin = 0.956, Tmax = 0.976k = 95
7216 measured reflectionsl = 2829
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.125H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0511P)2 + 0.2987P]
where P = (Fo2 + 2Fc2)/3
4776 reflections(Δ/σ)max = 0.001
397 parametersΔρmax = 0.42 e Å3
0 restraintsΔρmin = 0.36 e Å3
Crystal data top
C13H9ClN4O4γ = 99.728 (3)°
Mr = 320.69V = 1362.0 (2) Å3
Triclinic, P1Z = 4
a = 7.2286 (7) ÅMo Kα radiation
b = 7.6596 (8) ŵ = 0.31 mm1
c = 25.145 (2) ÅT = 295 K
α = 95.691 (2)°0.15 × 0.12 × 0.08 mm
β = 93.030 (2)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4776 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
3273 reflections with I > 2σ(I)
Tmin = 0.956, Tmax = 0.976Rint = 0.021
7216 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.125H-atom parameters constrained
S = 1.07Δρmax = 0.42 e Å3
4776 reflectionsΔρmin = 0.36 e Å3
397 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.32732 (10)0.39535 (11)0.21587 (3)0.0647 (2)
Cl20.43812 (11)0.46461 (12)0.65151 (3)0.0739 (3)
O11.1413 (3)0.8066 (3)0.24502 (8)0.0769 (6)
O21.4364 (3)0.8957 (4)0.23973 (8)0.0901 (8)
O31.6810 (3)1.1413 (4)0.08840 (11)0.1047 (9)
O41.4958 (3)1.1774 (3)0.02231 (9)0.0754 (6)
O50.0518 (4)0.1695 (3)0.37193 (10)0.0957 (8)
O60.0550 (3)0.0357 (3)0.44708 (4)0.0817 (7)
O70.1612 (4)0.1254 (4)0.22106 (9)0.0899 (8)
O80.1463 (3)0.4102 (3)0.23032 (8)0.0804 (7)
N10.7500 (3)0.6855 (3)0.12714 (8)0.0490 (5)
N20.9138 (3)0.7485 (3)0.15793 (8)0.0506 (6)
H20.92180.73090.19120.061*
N31.2749 (4)0.8647 (3)0.21971 (9)0.0586 (6)
N41.5265 (4)1.1204 (3)0.06490 (11)0.0626 (7)
N50.2250 (3)0.4769 (3)0.48803 (9)0.0544 (6)
N60.1464 (3)0.3138 (3)0.46212 (8)0.0555 (6)
H60.13590.22060.47900.067*
N70.0038 (3)0.0334 (3)0.40054 (10)0.0584 (6)
N80.1249 (3)0.2712 (4)0.24773 (9)0.0613 (6)
C10.2909 (3)0.4329 (3)0.14910 (10)0.0440 (6)
C20.4356 (3)0.5294 (3)0.12368 (10)0.0428 (6)
C30.3991 (4)0.5523 (4)0.07027 (10)0.0508 (7)
H30.49280.61540.05220.061*
C40.2273 (4)0.4835 (4)0.04363 (11)0.0565 (7)
H40.20580.50010.00780.068*
C50.0867 (4)0.3899 (4)0.06992 (11)0.0558 (7)
H50.02950.34380.05180.067*
C60.1179 (4)0.3646 (3)0.12285 (11)0.0506 (7)
H6A0.02320.30200.14070.061*
C70.6178 (3)0.6038 (3)0.15160 (10)0.0470 (6)
H70.63780.59150.18780.056*
C81.0634 (3)0.8386 (3)0.13611 (10)0.0436 (6)
C91.2406 (3)0.8962 (3)0.16462 (10)0.0450 (6)
C101.3931 (3)0.9855 (3)0.14090 (10)0.0466 (6)
H101.50961.02040.15990.056*
C111.3680 (4)1.0207 (3)0.08927 (10)0.0479 (6)
C121.1976 (4)0.9667 (4)0.05948 (11)0.0522 (7)
H121.18490.99130.02410.063*
C131.0483 (4)0.8770 (3)0.08255 (10)0.0501 (7)
H130.93410.84040.06250.060*
C140.4405 (4)0.6574 (4)0.62064 (11)0.0555 (7)
C150.3642 (4)0.6497 (4)0.56796 (10)0.0517 (7)
C160.3711 (4)0.8103 (4)0.54624 (12)0.0626 (8)
H160.32140.80990.51130.075*
C170.4496 (4)0.9698 (5)0.57508 (13)0.0700 (9)
H170.45371.07550.55950.084*
C180.5230 (4)0.9733 (5)0.62741 (13)0.0713 (9)
H180.57531.08130.64710.086*
C190.5181 (4)0.8170 (5)0.65008 (12)0.0664 (8)
H190.56690.81870.68510.080*
C200.2786 (4)0.4815 (4)0.53736 (10)0.0548 (7)
H200.26290.37710.55390.066*
C210.0852 (3)0.2998 (4)0.40979 (10)0.0451 (6)
C220.0134 (3)0.1353 (3)0.37897 (10)0.0461 (6)
C230.0515 (3)0.1268 (4)0.32600 (10)0.0482 (6)
H230.09750.01720.30640.058*
C240.0474 (3)0.2805 (4)0.30277 (9)0.0462 (6)
C250.0247 (4)0.4448 (4)0.33107 (10)0.0512 (7)
H250.02820.54840.31450.061*
C260.0902 (4)0.4542 (4)0.38328 (10)0.0513 (7)
H260.13940.56490.40180.062*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0580 (4)0.0837 (5)0.0489 (4)0.0052 (4)0.0051 (3)0.0196 (4)
Cl20.0731 (5)0.0892 (6)0.0596 (5)0.0129 (4)0.0076 (4)0.0178 (4)
O10.0683 (14)0.1072 (18)0.0515 (12)0.0034 (13)0.0101 (10)0.0190 (12)
O20.0658 (15)0.131 (2)0.0598 (13)0.0178 (14)0.0154 (11)0.0137 (13)
O30.0540 (14)0.142 (2)0.1053 (19)0.0302 (15)0.0087 (14)0.0299 (17)
O40.0938 (17)0.0597 (13)0.0773 (15)0.0076 (12)0.0342 (12)0.0249 (12)
O50.158 (3)0.0482 (13)0.0751 (16)0.0065 (15)0.0070 (15)0.0038 (12)
O60.123 (2)0.0665 (14)0.0573 (13)0.0157 (13)0.0011 (13)0.0240 (11)
O70.110 (2)0.0898 (18)0.0566 (13)0.0106 (15)0.0197 (13)0.0052 (13)
O80.0857 (16)0.1023 (18)0.0622 (13)0.0302 (14)0.0007 (11)0.0327 (13)
N10.0405 (12)0.0503 (13)0.0541 (13)0.0000 (10)0.0056 (10)0.0075 (11)
N20.0407 (12)0.0596 (14)0.0483 (12)0.0026 (11)0.0055 (10)0.0087 (11)
N30.0588 (15)0.0641 (16)0.0468 (13)0.0031 (13)0.0014 (12)0.0015 (11)
N40.0632 (17)0.0517 (15)0.0701 (17)0.0032 (13)0.0235 (14)0.0057 (13)
N50.0539 (14)0.0647 (16)0.0447 (13)0.0106 (12)0.0054 (11)0.0056 (12)
N60.0634 (15)0.0572 (15)0.0458 (13)0.0082 (12)0.0013 (11)0.0114 (11)
N70.0695 (16)0.0589 (16)0.0513 (15)0.0147 (13)0.0099 (12)0.0185 (13)
N80.0507 (14)0.086 (2)0.0468 (14)0.0045 (14)0.0041 (11)0.0180 (15)
C10.0436 (14)0.0430 (14)0.0459 (14)0.0060 (12)0.0066 (11)0.0081 (12)
C20.0395 (14)0.0403 (14)0.0508 (15)0.0089 (11)0.0069 (11)0.0109 (12)
C30.0467 (15)0.0534 (16)0.0559 (16)0.0097 (13)0.0110 (13)0.0187 (13)
C40.0537 (17)0.0669 (19)0.0502 (16)0.0106 (15)0.0001 (13)0.0155 (14)
C50.0441 (15)0.0583 (18)0.0625 (18)0.0037 (13)0.0058 (13)0.0088 (14)
C60.0418 (15)0.0514 (16)0.0577 (17)0.0015 (13)0.0051 (12)0.0120 (13)
C70.0423 (14)0.0480 (16)0.0512 (15)0.0060 (12)0.0058 (12)0.0093 (13)
C80.0425 (14)0.0393 (14)0.0478 (15)0.0030 (12)0.0095 (11)0.0026 (11)
C90.0478 (15)0.0415 (14)0.0425 (14)0.0007 (12)0.0047 (12)0.0006 (11)
C100.0399 (14)0.0411 (15)0.0544 (16)0.0018 (12)0.0038 (12)0.0015 (12)
C110.0480 (16)0.0392 (14)0.0545 (16)0.0011 (12)0.0132 (13)0.0049 (12)
C120.0544 (17)0.0531 (17)0.0491 (15)0.0055 (14)0.0079 (13)0.0095 (13)
C130.0446 (15)0.0510 (16)0.0519 (16)0.0013 (13)0.0005 (12)0.0058 (13)
C140.0407 (15)0.075 (2)0.0496 (16)0.0070 (14)0.0036 (12)0.0078 (15)
C150.0413 (15)0.0687 (19)0.0446 (15)0.0058 (14)0.0084 (12)0.0073 (14)
C160.0589 (18)0.077 (2)0.0512 (17)0.0058 (16)0.0117 (14)0.0091 (16)
C170.067 (2)0.069 (2)0.075 (2)0.0072 (17)0.0198 (17)0.0153 (18)
C180.0606 (19)0.078 (2)0.070 (2)0.0016 (17)0.0130 (16)0.0064 (18)
C190.0544 (18)0.089 (2)0.0519 (17)0.0091 (17)0.0009 (14)0.0013 (18)
C200.0517 (16)0.069 (2)0.0442 (16)0.0088 (15)0.0039 (13)0.0126 (14)
C210.0395 (14)0.0584 (17)0.0399 (14)0.0102 (13)0.0087 (11)0.0115 (13)
C220.0455 (15)0.0498 (16)0.0459 (15)0.0095 (13)0.0096 (12)0.0142 (13)
C230.0443 (15)0.0559 (17)0.0440 (15)0.0046 (13)0.0080 (11)0.0074 (13)
C240.0393 (14)0.0624 (18)0.0375 (14)0.0067 (13)0.0046 (11)0.0108 (13)
C250.0495 (16)0.0574 (18)0.0499 (16)0.0083 (14)0.0100 (12)0.0202 (14)
C260.0513 (16)0.0526 (16)0.0499 (16)0.0066 (13)0.0063 (12)0.0082 (13)
Geometric parameters (Å, º) top
Cl1—C11.745 (2)C5—H50.9300
Cl2—C141.733 (3)C6—H6A0.9300
O1—N31.229 (3)C7—H70.9300
O2—N31.222 (3)C8—C131.409 (3)
O3—N41.214 (3)C8—C91.413 (3)
O4—N41.220 (3)C9—C101.391 (3)
O5—N71.202 (3)C10—C111.361 (3)
O6—N71.211 (3)C10—H100.9300
O7—N81.224 (3)C11—C121.385 (4)
O8—N81.221 (3)C12—C131.367 (3)
N1—C71.272 (3)C12—H120.9300
N1—N21.368 (3)C13—H130.9300
N2—C81.354 (3)C14—C191.379 (4)
N2—H20.8600C14—C151.399 (4)
N3—O11.229 (3)C15—C161.389 (4)
N3—C91.445 (3)C15—C201.456 (4)
N4—C111.464 (3)C16—C171.374 (4)
N5—C201.275 (3)C16—H160.9300
N5—N61.367 (3)C17—C181.389 (4)
N6—C211.354 (3)C17—H170.9300
N6—H60.8600C18—C191.372 (4)
N7—O61.211 (3)C18—H180.9300
N7—C221.443 (3)C19—H190.9300
N8—C241.456 (3)C20—H200.9300
C1—C61.377 (3)C21—C261.410 (4)
C1—C21.396 (3)C21—C221.414 (4)
C2—C31.389 (3)C22—C231.380 (3)
C2—C71.457 (3)C23—C241.362 (4)
C3—C41.375 (4)C23—H230.9300
C3—H30.9300C24—C251.386 (4)
C4—C51.379 (4)C25—C261.363 (4)
C4—H40.9300C25—H250.9300
C5—C61.376 (4)C26—H260.9300
C7—N1—N2115.0 (2)C11—C10—C9118.5 (2)
C8—N2—N1120.0 (2)C11—C10—H10120.7
C8—N2—H2120.0C9—C10—H10120.7
N1—N2—H2120.0C10—C11—C12122.1 (2)
O2—N3—O1121.8 (2)C10—C11—N4118.6 (2)
O2—N3—O1121.8 (2)C12—C11—N4119.3 (2)
O2—N3—C9118.9 (2)C13—C12—C11119.4 (2)
O1—N3—C9119.2 (2)C13—C12—H12120.3
O1—N3—C9119.2 (2)C11—C12—H12120.3
O3—N4—O4123.9 (3)C12—C13—C8121.5 (2)
O3—N4—C11117.9 (3)C12—C13—H13119.3
O4—N4—C11118.2 (3)C8—C13—H13119.3
C20—N5—N6116.6 (2)C19—C14—C15121.8 (3)
C21—N6—N5119.6 (2)C19—C14—Cl2117.5 (2)
C21—N6—H6120.2C15—C14—Cl2120.7 (2)
N5—N6—H6120.2C16—C15—C14117.1 (3)
O5—N7—O6120.9 (2)C16—C15—C20121.2 (3)
O5—N7—O6120.9 (2)C14—C15—C20121.7 (3)
O5—N7—C22119.6 (2)C17—C16—C15121.6 (3)
O6—N7—C22119.4 (3)C17—C16—H16119.2
O6—N7—C22119.4 (3)C15—C16—H16119.2
O8—N8—O7123.5 (3)C16—C17—C18120.0 (3)
O8—N8—C24118.0 (3)C16—C17—H17120.0
O7—N8—C24118.5 (3)C18—C17—H17120.0
C6—C1—C2121.8 (2)C19—C18—C17119.8 (3)
C6—C1—Cl1118.19 (19)C19—C18—H18120.1
C2—C1—Cl1119.98 (19)C17—C18—H18120.1
C3—C2—C1117.3 (2)C18—C19—C14119.7 (3)
C3—C2—C7120.8 (2)C18—C19—H19120.2
C1—C2—C7121.9 (2)C14—C19—H19120.2
C4—C3—C2121.3 (2)N5—C20—C15120.2 (3)
C4—C3—H3119.4N5—C20—H20119.9
C2—C3—H3119.4C15—C20—H20119.9
C3—C4—C5120.1 (3)N6—C21—C26120.1 (3)
C3—C4—H4120.0N6—C21—C22123.4 (2)
C5—C4—H4120.0C26—C21—C22116.5 (2)
C6—C5—C4120.2 (3)C23—C22—C21121.7 (2)
C6—C5—H5119.9C23—C22—N7115.8 (2)
C4—C5—H5119.9C21—C22—N7122.5 (2)
C1—C6—C5119.3 (2)C24—C23—C22119.3 (3)
C1—C6—H6A120.3C24—C23—H23120.4
C5—C6—H6A120.3C22—C23—H23120.4
N1—C7—C2120.9 (2)C23—C24—C25121.1 (2)
N1—C7—H7119.6C23—C24—N8119.0 (3)
C2—C7—H7119.6C25—C24—N8119.8 (2)
N2—C8—C13120.4 (2)C26—C25—C24119.9 (2)
N2—C8—C9122.8 (2)C26—C25—H25120.0
C13—C8—C9116.8 (2)C24—C25—H25120.0
C10—C9—C8121.7 (2)C25—C26—C21121.4 (3)
C10—C9—N3116.1 (2)C25—C26—H26119.3
C8—C9—N3122.3 (2)C21—C26—H26119.3
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N6—H6···O60.862.022.631 (3)127
N2—H2···O10.862.002.622 (3)129

Experimental details

Crystal data
Chemical formulaC13H9ClN4O4
Mr320.69
Crystal system, space groupTriclinic, P1
Temperature (K)295
a, b, c (Å)7.2286 (7), 7.6596 (8), 25.145 (2)
α, β, γ (°)95.691 (2), 93.030 (2), 99.728 (3)
V3)1362.0 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.31
Crystal size (mm)0.15 × 0.12 × 0.08
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.956, 0.976
No. of measured, independent and
observed [I > 2σ(I)] reflections
7216, 4776, 3273
Rint0.021
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.125, 1.07
No. of reflections4776
No. of parameters397
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.42, 0.36

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N6—H6···O60.862.022.631 (3)127
N2—H2···O10.862.002.622 (3)129
 

Acknowledgements

This project was supported by the Postgraduate Foundation of Taishan University (grant No. Y04-2-08).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationAnderson, O. P., Cour, A. L., Findeisen, M., Hennig, L., Simonsen, O., Taylor, L. & Toflund, H. (1997). J. Chem. Soc. Dalton Trans. pp. 111–120.  CSD CrossRef Web of Science Google Scholar
First citationBaughman, R. G., Martin, K. L., Singh, R. K. & Stoffer, J. O. (2004). Acta Cryst. C60, o103–o106.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEl-Seify, F. A. & El-Dossoki, F. I. (2006). J. Korean Chem. Soc. 50, 99–106.  CAS Google Scholar
First citationGarnovskii, A. D., Nivorozhkin, A. L. & Minki, V. I. (1993). Coord. Chem. Rev. 126, 1–69.  CrossRef CAS Web of Science Google Scholar
First citationKim, S. Y. & Yoon, N. M. (1998). Bull. Korean Chem. Soc. 19, 891–893.  CAS Google Scholar
First citationMusie, G. T., Wei, M., Subramaniam, B. & Busch, D. H. (2001). Inorg. Chem. 40, 3336–3341.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPaul, S., Barik, A. K., Peng, S. M. & Kar, S. K. (2002). Inorg. Chem. 41, 5803–5809.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShi, Z.-Q., Ji, N.-N., Zheng, Z.-B. & Li, J.-K. (2007). Acta Cryst. E63, o4561.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZare, H. R., Ardakani, M. M., Nasirizadah, N. & &Safari, J. (2005). Bull. Korean Chem. Soc. 26, 51–56.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds