organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,2-Diazinium hydrogen chloranilate

aDepartment of Chemistry, Faculty of Science, Okayama University, Okayama 700-8530, Japan
*Correspondence e-mail: ishidah@cc.okayama-u.ac.jp

(Received 30 September 2008; accepted 5 October 2008; online 11 October 2008)

In the crystal structure of the title compound, C4H5N2+·C6HCl2O4, there are three crystallographically independent 1,2-diazinium cations and hydrogen chloranilate anions. The anions are held together by pairs of O—H⋯O hydrogen bonds to form two types of dimers, one of which is centrosymmetric. The 1,2-diazinium cations are linked on both sides of each dimer via bifurcated N—H⋯O hydrogen bonds to give two kinds of 2–2 cation–anion associations. The 2–2 associations are linked by inter­molecular C—H⋯O and C—H⋯N hydrogen bonds, forming a mol­ecular tape along the [230] direction. The tapes are further connected by C—H⋯O hydrogen bonds, forming a three-dimensional network.

Related literature

For general background, see: Gotoh et al. (2007[Gotoh, K., Asaji, T. & Ishida, H. (2007). Acta Cryst. C63, o17-o20.]). For related compounds, see: Gotoh et al. (2008[Gotoh, K., Asaji, T. & Ishida, H. (2008). Acta Cryst. C64, o550-o553.]); Ishida & Kashino (1999[Ishida, H. & Kashino, S. (1999). Acta Cryst. C55, 1149-1152.]).

[Scheme 1]

Experimental

Crystal data
  • C4H5N2+·C6HCl2O4

  • Mr = 289.07

  • Monoclinic, P 21 /c

  • a = 25.6849 (10) Å

  • b = 7.0516 (2) Å

  • c = 18.1388 (6) Å

  • β = 97.5822 (13)°

  • V = 3256.56 (18) Å3

  • Z = 12

  • Mo Kα radiation

  • μ = 0.61 mm−1

  • T = 173 (1) K

  • 0.40 × 0.22 × 0.12 mm

Data collection
  • Rigaku R-AXIS RAPIDII diffractometer

  • Absorption correction: numerical (ABSCOR; Higashi, 1999[Higashi, T. (1999). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.855, Tmax = 0.930

  • 42942 measured reflections

  • 9398 independent reflections

  • 7981 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.082

  • S = 1.04

  • 9398 reflections

  • 511 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2 0.889 (17) 1.753 (17) 2.6138 (13) 162.2 (17)
N1—H1⋯O3 0.889 (17) 2.578 (18) 3.1583 (14) 123.7 (14)
N3—H3⋯O6 0.886 (18) 1.811 (17) 2.6621 (13) 160.4 (17)
N3—H3⋯O7 0.886 (18) 2.431 (18) 3.0066 (14) 123.0 (14)
O4—H4⋯O1 0.79 (2) 2.26 (2) 2.6619 (13) 113 (2)
O4—H4⋯O5 0.79 (2) 1.94 (2) 2.6723 (12) 155 (2)
N5—H5⋯O10 0.890 (18) 1.881 (18) 2.7450 (14) 163.2 (16)
N5—H5⋯O11 0.890 (18) 2.410 (17) 2.9659 (13) 120.7 (14)
O8—H8⋯O1 0.80 (2) 1.86 (2) 2.5930 (12) 152 (2)
O8—H8⋯O5 0.80 (2) 2.25 (2) 2.6582 (13) 112.7 (18)
O12—H12⋯O9 0.79 (2) 2.23 (2) 2.6595 (13) 115.1 (18)
O12—H12⋯O9i 0.79 (2) 2.02 (2) 2.6801 (12) 142 (2)
C20—H20⋯O2ii 0.95 2.57 3.1097 (15) 116
C21—H21⋯O3iii 0.95 2.36 3.2754 (15) 162
C22—H22⋯O3 0.95 2.60 3.1913 (15) 121
C25—H25⋯O10 0.95 2.47 3.4056 (15) 169
C26—H26⋯O7 0.95 2.44 3.0363 (15) 121
C26—H26⋯N6 0.95 2.51 3.2665 (17) 137
C27—H27⋯O7 0.95 2.37 3.2765 (15) 159
C28—H28⋯O6iv 0.95 2.47 3.1091 (15) 124
C30—H30⋯O11 0.95 2.34 2.9551 (15) 122
Symmetry codes: (i) -x, -y, -z+1; (ii) [-x+2, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) -x+2, -y+3, -z+1; (iv) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: PROCESS-AUTO (Rigaku/MSC, 2004[Rigaku/MSC (2004). PROCESS-AUTO and CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004[Rigaku/MSC (2004). PROCESS-AUTO and CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: CrystalStructure and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

The title compound, (I), was prepared in order to extend our study on D—H···A hydrogen bonding (D = N, O, or C; A = N, O or Cl) in amine–chloranilic acid (systematic name: 2,5-dichloro-3,6-dihydroxy-1,4-benzoquinone) systems (Gotoh et al., 2007). The crystal structure of 1,2-diazine (pyridazine)–chloranilic acid (2/1) was already reported (Ishida & Kashino, 1999; Gotoh et al., 2008).

The asymmetric unit in (I) contains three 1,2-diazinium cations and three hydrogen chloranilate anions. Hydrogen chloranilate anions are held together by O—H···O hydrogen bonds (Table 1) to form two crystallographically independent dimers. The 1,2-diazinium cations are linked on both sides of each dimer via bifurcated N—H···O hydrogen bonds to give centro- and acentrosymmetric 2:2 salts of 1,2-diazine and chloranilic acid (Fig. 1). The N···O distances [2.6138 (13)–3.1583 (14) Å] in the hydrogen bonds are longer than those [2.582 (3) Å at 299 K (Ishida & Kashino, 1999) and 2.5549 (12) Å at 110 K (Gotoh et al., 2008)] in 1,2-diazine–chloranilic acid (2/1) and the H atoms are located at the N atom sites. The dihedral angles between C1–C6 and C7–C12 rings, C1–C6 and N1/N2/C19–C22 rings, C7–C12 and N3/N4/C23–C26 rings, and C13–C18 and N5/N6/C27–C30 rings are 3.40 (5), 11.83 (5), 4.88 (6) and 11.41 (5)°, respectively. The 2:2 units are linked by intermolecular C—H···O and C—H···N hydrogen bonds, forming a molecular tape along the [230] direction. The tapes are further connected by C—H···O hydrogen bonds, forming a three-dimensional network (Table 1 and Fig. 2).

Related literature top

For general background, see: Gotoh et al. (2007). For related compounds, see: Gotoh et al. (2008); Ishida & Kashino (1999).

Experimental top

Single crystals were obtained by slow evaporation from a methanol solution (30 ml) of chloranilic acid (400 mg) and 1,2-diazine (155 mg).

Refinement top

C-bound H atoms were positioned geometrically (C—H = 0.95 Å) and refined as riding, with Uiso(H) = 1.2Ueq(C). H atoms in the O—H···O and N—H···O hydrogen bonds were located in a difference Fourier map and refined isotropically (refined distances given in Table 1).

Computing details top

Data collection: PROCESS-AUTO (Rigaku/MSC, 2004); cell refinement: PROCESS-AUTO (Rigaku/MSC, 2004); data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: CrystalStructure (Rigaku/MSC, 2004) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The structure of the 2:2 units of (I). The dashed lines indicate O—H···O, C—H···O and C—H···N hydrogen bonds (symmetry code as Table 1). Displacement ellipsoids of non-H atoms are drawn at the 50% probability level.
[Figure 2] Fig. 2. A partial packing diagram of (I), viewed down the b axis. The dashed lines indicate O—H···O, C—H···O and C—H···N hydrogen bonds.
1,2-Diazinium hydrogen chloranilate top
Crystal data top
C4H5N2+·C6HCl2O4F(000) = 1752.00
Mr = 289.07Dx = 1.769 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71075 Å
Hall symbol: -P 2ybcCell parameters from 36292 reflections
a = 25.6849 (10) Åθ = 3.0–30.0°
b = 7.0516 (2) ŵ = 0.61 mm1
c = 18.1388 (6) ÅT = 173 K
β = 97.5822 (13)°Prism, brown
V = 3256.56 (18) Å30.40 × 0.22 × 0.12 mm
Z = 12
Data collection top
Rigaku R-AXIS RAPIDII
diffractometer
7981 reflections with I > 2σ(I)
Detector resolution: 10.00 pixels mm-1Rint = 0.025
ω scansθmax = 30.0°
Absorption correction: numerical
(ABSCOR; Higashi, 1999)
h = 3636
Tmin = 0.855, Tmax = 0.930k = 98
42942 measured reflectionsl = 2425
9398 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.082H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0465P)2 + 0.8542P]
where P = (Fo2 + 2Fc2)/3
9398 reflections(Δ/σ)max = 0.002
511 parametersΔρmax = 0.47 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C4H5N2+·C6HCl2O4V = 3256.56 (18) Å3
Mr = 289.07Z = 12
Monoclinic, P21/cMo Kα radiation
a = 25.6849 (10) ŵ = 0.61 mm1
b = 7.0516 (2) ÅT = 173 K
c = 18.1388 (6) Å0.40 × 0.22 × 0.12 mm
β = 97.5822 (13)°
Data collection top
Rigaku R-AXIS RAPIDII
diffractometer
9398 independent reflections
Absorption correction: numerical
(ABSCOR; Higashi, 1999)
7981 reflections with I > 2σ(I)
Tmin = 0.855, Tmax = 0.930Rint = 0.025
42942 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0300 restraints
wR(F2) = 0.082H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.47 e Å3
9398 reflectionsΔρmin = 0.26 e Å3
511 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.788813 (11)1.00777 (4)0.695195 (15)0.02287 (7)
Cl20.813873 (11)1.33053 (4)0.375637 (15)0.01939 (6)
Cl30.546309 (11)0.98926 (4)0.291828 (15)0.02164 (7)
Cl40.529070 (10)0.68298 (4)0.616552 (15)0.01938 (6)
Cl50.134170 (11)0.31600 (4)0.406398 (15)0.02014 (6)
Cl60.126530 (11)0.00278 (4)0.732528 (15)0.02182 (7)
O10.70886 (3)1.03911 (14)0.56092 (5)0.02672 (19)
O20.88525 (3)1.17619 (12)0.64597 (5)0.02155 (17)
O30.89647 (3)1.29114 (12)0.50763 (5)0.02036 (16)
O40.71996 (3)1.15850 (13)0.42465 (5)0.02316 (18)
O50.62655 (3)0.99280 (14)0.42628 (5)0.0258 (2)
O60.45198 (3)0.80783 (12)0.34672 (5)0.02140 (17)
O70.44599 (3)0.69004 (12)0.48544 (5)0.02138 (17)
O80.61970 (3)0.86803 (14)0.56295 (5)0.02294 (18)
O90.04325 (3)0.14786 (13)0.47288 (5)0.02485 (19)
O100.22343 (3)0.29297 (12)0.53149 (5)0.02021 (17)
O110.21688 (3)0.17839 (12)0.67058 (5)0.02290 (18)
O120.04124 (3)0.00464 (13)0.60811 (5)0.02206 (18)
N10.97488 (4)1.35579 (15)0.65484 (6)0.0219 (2)
N20.99547 (4)1.31774 (15)0.72462 (6)0.0247 (2)
N30.36001 (4)0.64298 (15)0.35724 (6)0.0212 (2)
N40.33565 (4)0.66986 (16)0.28834 (6)0.0265 (2)
N50.31069 (4)0.37842 (15)0.63023 (6)0.02006 (19)
N60.34283 (4)0.45730 (16)0.58711 (6)0.0239 (2)
C10.75362 (4)1.09400 (16)0.55266 (6)0.0170 (2)
C20.79706 (4)1.09715 (16)0.60871 (6)0.01556 (19)
C30.84590 (4)1.16825 (15)0.59736 (6)0.0152 (2)
C40.85282 (4)1.24116 (15)0.51915 (6)0.01446 (19)
C50.80717 (4)1.24251 (15)0.46242 (6)0.01550 (19)
C60.76101 (4)1.16835 (15)0.47678 (6)0.0164 (2)
C70.58355 (4)0.92184 (16)0.43505 (6)0.0165 (2)
C80.54005 (4)0.90299 (16)0.37928 (6)0.0157 (2)
C90.49245 (4)0.82418 (15)0.39314 (6)0.0155 (2)
C100.48814 (4)0.75267 (15)0.47232 (6)0.01508 (19)
C110.53375 (4)0.76601 (15)0.52856 (6)0.01517 (19)
C120.57836 (4)0.84830 (16)0.51193 (6)0.0162 (2)
C130.08582 (4)0.15642 (15)0.51475 (6)0.0164 (2)
C140.13318 (4)0.23100 (15)0.49570 (6)0.01558 (19)
C150.17974 (4)0.23689 (15)0.54582 (6)0.01537 (19)
C160.17708 (4)0.16726 (15)0.62576 (6)0.0154 (2)
C170.12835 (4)0.08899 (16)0.64439 (6)0.0159 (2)
C180.08570 (4)0.07922 (15)0.59219 (6)0.0156 (2)
C191.04186 (5)1.39362 (18)0.74659 (7)0.0234 (2)
H191.05761.37100.79620.028*
C201.06920 (5)1.50533 (17)0.70098 (7)0.0232 (2)
H201.10271.55640.71900.028*
C211.04646 (5)1.53937 (18)0.62952 (7)0.0231 (2)
H211.06371.61330.59620.028*
C220.99713 (5)1.46098 (17)0.60787 (7)0.0228 (2)
H220.97951.48340.55920.027*
C230.28768 (5)0.59892 (19)0.27484 (7)0.0279 (3)
H230.26880.61650.22660.034*
C240.26300 (5)0.49954 (18)0.32732 (8)0.0250 (3)
H240.22860.44970.31480.030*
C250.28964 (5)0.47601 (18)0.39706 (7)0.0252 (2)
H250.27460.41010.43470.030*
C260.33997 (5)0.55323 (18)0.41044 (7)0.0247 (2)
H260.35990.54090.45820.030*
C270.38814 (5)0.51986 (19)0.62180 (7)0.0252 (3)
H270.41180.57870.59280.030*
C280.40324 (5)0.50458 (18)0.69840 (7)0.0242 (2)
H280.43630.55080.72090.029*
C290.36891 (5)0.42094 (18)0.74013 (7)0.0242 (2)
H290.37740.40590.79240.029*
C300.32121 (5)0.35891 (18)0.70316 (7)0.0238 (2)
H300.29610.30230.73030.029*
H10.9443 (7)1.298 (2)0.6418 (10)0.040 (5)*
H40.6953 (9)1.112 (3)0.4388 (13)0.070 (7)*
H80.6436 (8)0.921 (3)0.5477 (12)0.064 (7)*
H30.3919 (7)0.693 (2)0.3649 (10)0.037 (5)*
H50.2801 (7)0.340 (2)0.6060 (10)0.040 (5)*
H120.0205 (8)0.001 (3)0.5722 (11)0.052 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.02091 (13)0.03338 (16)0.01460 (12)0.00592 (10)0.00337 (9)0.00278 (11)
Cl20.02201 (13)0.02140 (13)0.01473 (12)0.00058 (9)0.00235 (9)0.00273 (10)
Cl30.02047 (13)0.03130 (15)0.01329 (12)0.00316 (10)0.00276 (9)0.00268 (10)
Cl40.02048 (13)0.02307 (13)0.01446 (12)0.00125 (9)0.00187 (9)0.00367 (10)
Cl50.02339 (13)0.02148 (13)0.01490 (12)0.00022 (10)0.00008 (9)0.00332 (10)
Cl60.01993 (13)0.03180 (15)0.01370 (12)0.00260 (10)0.00209 (9)0.00197 (10)
O10.0137 (4)0.0443 (5)0.0221 (4)0.0085 (3)0.0020 (3)0.0002 (4)
O20.0153 (4)0.0311 (4)0.0170 (4)0.0058 (3)0.0026 (3)0.0029 (3)
O30.0155 (4)0.0264 (4)0.0195 (4)0.0057 (3)0.0034 (3)0.0006 (3)
O40.0137 (4)0.0360 (5)0.0185 (4)0.0030 (3)0.0026 (3)0.0037 (4)
O50.0148 (4)0.0416 (5)0.0206 (4)0.0087 (3)0.0009 (3)0.0036 (4)
O60.0156 (4)0.0296 (4)0.0177 (4)0.0056 (3)0.0028 (3)0.0023 (3)
O70.0163 (4)0.0282 (4)0.0195 (4)0.0075 (3)0.0020 (3)0.0000 (3)
O80.0135 (4)0.0372 (5)0.0169 (4)0.0064 (3)0.0024 (3)0.0047 (4)
O90.0161 (4)0.0313 (5)0.0248 (4)0.0035 (3)0.0062 (3)0.0067 (4)
O100.0159 (4)0.0265 (4)0.0179 (4)0.0047 (3)0.0014 (3)0.0001 (3)
O110.0167 (4)0.0305 (4)0.0198 (4)0.0041 (3)0.0036 (3)0.0035 (3)
O120.0138 (4)0.0323 (5)0.0196 (4)0.0045 (3)0.0003 (3)0.0014 (3)
N10.0144 (4)0.0246 (5)0.0262 (5)0.0023 (4)0.0010 (4)0.0009 (4)
N20.0249 (5)0.0260 (5)0.0233 (5)0.0044 (4)0.0041 (4)0.0014 (4)
N30.0153 (4)0.0247 (5)0.0225 (5)0.0032 (4)0.0015 (4)0.0013 (4)
N40.0262 (5)0.0306 (6)0.0216 (5)0.0059 (4)0.0017 (4)0.0021 (4)
N50.0151 (4)0.0238 (5)0.0207 (5)0.0023 (4)0.0001 (3)0.0016 (4)
N60.0214 (5)0.0310 (5)0.0189 (5)0.0043 (4)0.0017 (4)0.0003 (4)
C10.0141 (5)0.0205 (5)0.0164 (5)0.0015 (4)0.0018 (4)0.0019 (4)
C20.0143 (5)0.0204 (5)0.0120 (4)0.0022 (4)0.0019 (3)0.0002 (4)
C30.0134 (4)0.0169 (5)0.0152 (5)0.0013 (4)0.0012 (4)0.0013 (4)
C40.0145 (4)0.0143 (5)0.0144 (5)0.0014 (4)0.0016 (4)0.0022 (4)
C50.0159 (5)0.0170 (5)0.0133 (4)0.0005 (4)0.0009 (4)0.0004 (4)
C60.0142 (5)0.0188 (5)0.0155 (5)0.0014 (4)0.0004 (4)0.0012 (4)
C70.0138 (5)0.0206 (5)0.0152 (5)0.0011 (4)0.0014 (4)0.0002 (4)
C80.0152 (5)0.0195 (5)0.0123 (4)0.0006 (4)0.0012 (4)0.0002 (4)
C90.0146 (5)0.0170 (5)0.0145 (5)0.0009 (4)0.0008 (4)0.0000 (4)
C100.0144 (4)0.0154 (5)0.0153 (5)0.0014 (4)0.0013 (4)0.0013 (4)
C110.0157 (5)0.0170 (5)0.0127 (4)0.0005 (4)0.0013 (4)0.0014 (4)
C120.0134 (5)0.0193 (5)0.0153 (5)0.0004 (4)0.0006 (4)0.0002 (4)
C130.0157 (5)0.0155 (5)0.0172 (5)0.0015 (4)0.0007 (4)0.0010 (4)
C140.0162 (5)0.0167 (5)0.0133 (4)0.0001 (4)0.0001 (4)0.0014 (4)
C150.0156 (5)0.0143 (5)0.0158 (5)0.0006 (4)0.0005 (4)0.0017 (4)
C160.0142 (5)0.0158 (5)0.0156 (5)0.0001 (4)0.0001 (4)0.0010 (4)
C170.0151 (5)0.0186 (5)0.0140 (5)0.0001 (4)0.0016 (4)0.0004 (4)
C180.0130 (4)0.0170 (5)0.0169 (5)0.0006 (4)0.0022 (4)0.0014 (4)
C190.0229 (6)0.0258 (6)0.0204 (5)0.0011 (4)0.0012 (4)0.0004 (5)
C200.0164 (5)0.0262 (6)0.0265 (6)0.0046 (4)0.0017 (4)0.0065 (5)
C210.0228 (6)0.0233 (6)0.0241 (6)0.0060 (4)0.0065 (4)0.0004 (5)
C220.0205 (5)0.0246 (6)0.0224 (6)0.0013 (4)0.0006 (4)0.0009 (5)
C230.0265 (6)0.0303 (6)0.0241 (6)0.0045 (5)0.0075 (5)0.0015 (5)
C240.0164 (5)0.0265 (6)0.0309 (6)0.0037 (4)0.0019 (4)0.0038 (5)
C250.0213 (6)0.0293 (6)0.0252 (6)0.0060 (5)0.0034 (4)0.0002 (5)
C260.0209 (6)0.0312 (6)0.0205 (5)0.0034 (5)0.0034 (4)0.0011 (5)
C270.0204 (6)0.0325 (6)0.0231 (6)0.0072 (5)0.0038 (4)0.0011 (5)
C280.0176 (5)0.0300 (6)0.0238 (6)0.0038 (4)0.0016 (4)0.0052 (5)
C290.0240 (6)0.0303 (6)0.0172 (5)0.0025 (5)0.0015 (4)0.0008 (5)
C300.0212 (5)0.0284 (6)0.0217 (6)0.0041 (4)0.0030 (4)0.0003 (5)
Geometric parameters (Å, º) top
Cl1—C21.7293 (11)C3—C41.5412 (15)
Cl2—C51.7218 (11)C4—C51.4545 (14)
Cl3—C81.7262 (11)C5—C61.3522 (15)
Cl4—C111.7192 (11)C7—C81.4110 (14)
Cl5—C141.7305 (11)C7—C121.5102 (15)
Cl6—C171.7168 (11)C8—C91.3958 (15)
O1—C11.2408 (13)C9—C101.5398 (15)
O2—C31.2517 (13)C10—C111.4515 (14)
O3—C41.2193 (13)C11—C121.3533 (15)
O4—C61.3218 (13)C13—C141.4096 (15)
O4—H40.78 (2)C13—C181.5069 (15)
O5—C71.2417 (13)C14—C151.4040 (14)
O6—C91.2536 (13)C15—C161.5408 (15)
O7—C101.2213 (13)C16—C171.4481 (15)
O8—C121.3207 (12)C17—C181.3520 (14)
O8—H80.80 (2)C19—C201.3969 (17)
O9—C131.2476 (13)C19—H190.9500
O10—C151.2491 (13)C20—C211.3708 (17)
O11—C161.2218 (13)C20—H200.9500
O12—C181.3232 (13)C21—C221.3906 (16)
O12—H120.79 (2)C21—H210.9500
N1—C221.3158 (16)C22—H220.9500
N1—N21.3331 (15)C23—C241.3994 (19)
N1—H10.888 (18)C23—H230.9500
N2—C191.3189 (15)C24—C251.3666 (18)
N3—C261.3144 (16)C24—H240.9500
N3—N41.3355 (14)C25—C261.3942 (16)
N3—H30.886 (17)C25—H250.9500
N4—C231.3223 (16)C26—H260.9500
N5—C301.3221 (16)C27—C281.3966 (18)
N5—N61.3314 (14)C27—H270.9500
N5—H50.891 (18)C28—C291.3690 (17)
N6—C271.3236 (15)C28—H280.9500
C1—C21.4069 (14)C29—C301.3875 (16)
C1—C61.5079 (15)C29—H290.9500
C2—C31.3913 (14)C30—H300.9500
C6—O4—H4113.0 (17)C14—C13—C18118.12 (9)
C12—O8—H8112.9 (16)C15—C14—C13122.76 (10)
C18—O12—H12110.5 (15)C15—C14—Cl5118.65 (8)
C22—N1—N2125.20 (10)C13—C14—Cl5118.58 (8)
C22—N1—H1122.0 (12)O10—C15—C14125.90 (10)
N2—N1—H1112.8 (12)O10—C15—C16116.70 (9)
C19—N2—N1115.76 (10)C14—C15—C16117.40 (9)
C26—N3—N4125.10 (10)O11—C16—C17122.83 (10)
C26—N3—H3121.5 (11)O11—C16—C15117.95 (10)
N4—N3—H3113.4 (11)C17—C16—C15119.21 (9)
C23—N4—N3115.44 (11)C18—C17—C16120.10 (10)
C30—N5—N6124.80 (10)C18—C17—Cl6120.99 (8)
C30—N5—H5120.8 (12)C16—C17—Cl6118.88 (8)
N6—N5—H5114.4 (12)O12—C18—C17120.69 (10)
C27—N6—N5115.74 (10)O12—C18—C13117.06 (9)
O1—C1—C2125.21 (10)C17—C18—C13122.23 (10)
O1—C1—C6116.67 (10)N2—C19—C20123.68 (11)
C2—C1—C6118.09 (9)N2—C19—H19118.2
C3—C2—C1122.90 (10)C20—C19—H19118.2
C3—C2—Cl1119.09 (8)C21—C20—C19118.28 (11)
C1—C2—Cl1118.00 (8)C21—C20—H20120.9
O2—C3—C2124.89 (10)C19—C20—H20120.9
O2—C3—C4116.93 (9)C20—C21—C22117.14 (11)
C2—C3—C4118.17 (9)C20—C21—H21121.4
O3—C4—C5123.41 (10)C22—C21—H21121.4
O3—C4—C3118.33 (9)N1—C22—C21119.91 (11)
C5—C4—C3118.24 (9)N1—C22—H22120.0
C6—C5—C4120.45 (10)C21—C22—H22120.0
C6—C5—Cl2120.77 (8)N4—C23—C24123.93 (12)
C4—C5—Cl2118.72 (8)N4—C23—H23118.0
O4—C6—C5121.29 (10)C24—C23—H23118.0
O4—C6—C1116.75 (10)C25—C24—C23118.30 (11)
C5—C6—C1121.96 (10)C25—C24—H24120.8
O5—C7—C8125.43 (10)C23—C24—H24120.8
O5—C7—C12116.43 (9)C24—C25—C26116.95 (12)
C8—C7—C12118.14 (9)C24—C25—H25121.5
C9—C8—C7122.55 (10)C26—C25—H25121.5
C9—C8—Cl3119.72 (8)N3—C26—C25120.28 (11)
C7—C8—Cl3117.69 (8)N3—C26—H26119.9
O6—C9—C8125.73 (10)C25—C26—H26119.9
O6—C9—C10116.17 (9)N6—C27—C28123.96 (12)
C8—C9—C10118.09 (9)N6—C27—H27118.0
O7—C10—C11122.72 (10)C28—C27—H27118.0
O7—C10—C9118.35 (9)C29—C28—C27117.95 (11)
C11—C10—C9118.92 (9)C29—C28—H28121.0
C12—C11—C10119.98 (10)C27—C28—H28121.0
C12—C11—Cl4121.19 (8)C28—C29—C30117.43 (11)
C10—C11—Cl4118.79 (8)C28—C29—H29121.3
O8—C12—C11121.01 (10)C30—C29—H29121.3
O8—C12—C7116.74 (9)N5—C30—C29120.10 (11)
C11—C12—C7122.25 (9)N5—C30—H30119.9
O9—C13—C14125.75 (10)C29—C30—H30119.9
O9—C13—C18116.14 (10)
C22—N1—N2—C190.02 (18)C10—C11—C12—C72.38 (17)
C26—N3—N4—C230.15 (19)Cl4—C11—C12—C7179.80 (8)
C30—N5—N6—C270.32 (18)O5—C7—C12—O80.75 (15)
O1—C1—C2—C3176.99 (12)C8—C7—C12—O8179.96 (10)
C6—C1—C2—C31.03 (16)O5—C7—C12—C11179.30 (11)
O1—C1—C2—Cl13.15 (17)C8—C7—C12—C110.01 (16)
C6—C1—C2—Cl1178.82 (8)O9—C13—C14—C15179.75 (11)
C1—C2—C3—O2178.89 (11)C18—C13—C14—C150.34 (16)
Cl1—C2—C3—O21.25 (16)O9—C13—C14—Cl51.12 (16)
C1—C2—C3—C41.82 (16)C18—C13—C14—Cl5178.79 (8)
Cl1—C2—C3—C4178.04 (8)C13—C14—C15—O10176.55 (11)
O2—C3—C4—O34.40 (15)Cl5—C14—C15—O102.58 (16)
C2—C3—C4—O3174.94 (10)C13—C14—C15—C163.15 (16)
O2—C3—C4—C5177.03 (10)Cl5—C14—C15—C16177.72 (7)
C2—C3—C4—C53.63 (14)O10—C15—C16—O112.96 (15)
O3—C4—C5—C6173.62 (11)C14—C15—C16—O11177.31 (10)
C3—C4—C5—C64.87 (15)O10—C15—C16—C17175.99 (10)
O3—C4—C5—Cl23.52 (15)C14—C15—C16—C173.74 (15)
C3—C4—C5—Cl2177.99 (8)O11—C16—C17—C18179.53 (11)
C4—C5—C6—O4176.09 (10)C15—C16—C17—C180.63 (15)
Cl2—C5—C6—O41.00 (15)O11—C16—C17—Cl61.56 (15)
C4—C5—C6—C14.23 (16)C15—C16—C17—Cl6177.34 (8)
Cl2—C5—C6—C1178.68 (8)C16—C17—C18—O12178.68 (10)
O1—C1—C6—O43.73 (15)Cl6—C17—C18—O120.75 (15)
C2—C1—C6—O4178.08 (10)C16—C17—C18—C133.07 (16)
O1—C1—C6—C5175.96 (11)Cl6—C17—C18—C13179.00 (8)
C2—C1—C6—C52.23 (16)O9—C13—C18—O121.95 (15)
O5—C7—C8—C9179.02 (11)C14—C13—C18—O12177.98 (10)
C12—C7—C8—C91.75 (16)O9—C13—C18—C17176.36 (11)
O5—C7—C8—Cl31.27 (16)C14—C13—C18—C173.71 (16)
C12—C7—C8—Cl3179.50 (8)N1—N2—C19—C200.85 (18)
C7—C8—C9—O6178.05 (11)N2—C19—C20—C210.50 (19)
Cl3—C8—C9—O60.34 (16)C19—C20—C21—C220.68 (18)
C7—C8—C9—C101.04 (16)N2—N1—C22—C211.20 (19)
Cl3—C8—C9—C10178.74 (8)C20—C21—C22—N11.48 (18)
O6—C9—C10—O71.84 (15)N3—N4—C23—C240.8 (2)
C8—C9—C10—O7177.33 (10)N4—C23—C24—C250.9 (2)
O6—C9—C10—C11179.47 (10)C23—C24—C25—C260.24 (19)
C8—C9—C10—C111.36 (15)N4—N3—C26—C250.4 (2)
O7—C10—C11—C12175.60 (11)C24—C25—C26—N30.35 (19)
C9—C10—C11—C123.03 (15)N5—N6—C27—C280.92 (19)
O7—C10—C11—Cl42.27 (15)N6—C27—C28—C290.4 (2)
C9—C10—C11—Cl4179.10 (8)C27—C28—C29—C300.63 (19)
C10—C11—C12—O8177.57 (10)N6—N5—C30—C290.7 (2)
Cl4—C11—C12—O80.24 (16)C28—C29—C30—N51.20 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O20.889 (17)1.753 (17)2.6138 (13)162.2 (17)
N1—H1···O30.889 (17)2.578 (18)3.1583 (14)123.7 (14)
N3—H3···O60.886 (18)1.811 (17)2.6621 (13)160.4 (17)
N3—H3···O70.886 (18)2.431 (18)3.0066 (14)123.0 (14)
O4—H4···O10.79 (2)2.26 (2)2.6619 (13)113 (2)
O4—H4···O50.79 (2)1.94 (2)2.6723 (12)155 (2)
N5—H5···O100.890 (18)1.881 (18)2.7450 (14)163.2 (16)
N5—H5···O110.890 (18)2.410 (17)2.9659 (13)120.7 (14)
O8—H8···O10.80 (2)1.86 (2)2.5930 (12)152 (2)
O8—H8···O50.80 (2)2.25 (2)2.6582 (13)112.7 (18)
O12—H12···O90.79 (2)2.23 (2)2.6595 (13)115.1 (18)
O12—H12···O9i0.79 (2)2.02 (2)2.6801 (12)142 (2)
C20—H20···O2ii0.952.573.1097 (15)116
C21—H21···O3iii0.952.363.2754 (15)162
C22—H22···O30.952.603.1913 (15)121
C25—H25···O100.952.473.4056 (15)169
C26—H26···O70.952.443.0363 (15)121
C26—H26···N60.952.513.2665 (17)137
C27—H27···O70.952.373.2765 (15)159
C28—H28···O6iv0.952.473.1091 (15)124
C30—H30···O110.952.342.9551 (15)122
Symmetry codes: (i) x, y, z+1; (ii) x+2, y+1/2, z+3/2; (iii) x+2, y+3, z+1; (iv) x, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC4H5N2+·C6HCl2O4
Mr289.07
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)25.6849 (10), 7.0516 (2), 18.1388 (6)
β (°) 97.5822 (13)
V3)3256.56 (18)
Z12
Radiation typeMo Kα
µ (mm1)0.61
Crystal size (mm)0.40 × 0.22 × 0.12
Data collection
DiffractometerRigaku R-AXIS RAPIDII
diffractometer
Absorption correctionNumerical
(ABSCOR; Higashi, 1999)
Tmin, Tmax0.855, 0.930
No. of measured, independent and
observed [I > 2σ(I)] reflections
42942, 9398, 7981
Rint0.025
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.082, 1.04
No. of reflections9398
No. of parameters511
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.47, 0.26

Computer programs: PROCESS-AUTO (Rigaku/MSC, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), CrystalStructure (Rigaku/MSC, 2004) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O20.889 (17)1.753 (17)2.6138 (13)162.2 (17)
N1—H1···O30.889 (17)2.578 (18)3.1583 (14)123.7 (14)
N3—H3···O60.886 (18)1.811 (17)2.6621 (13)160.4 (17)
N3—H3···O70.886 (18)2.431 (18)3.0066 (14)123.0 (14)
O4—H4···O10.79 (2)2.26 (2)2.6619 (13)113 (2)
O4—H4···O50.79 (2)1.94 (2)2.6723 (12)155 (2)
N5—H5···O100.890 (18)1.881 (18)2.7450 (14)163.2 (16)
N5—H5···O110.890 (18)2.410 (17)2.9659 (13)120.7 (14)
O8—H8···O10.80 (2)1.86 (2)2.5930 (12)152 (2)
O8—H8···O50.80 (2)2.25 (2)2.6582 (13)112.7 (18)
O12—H12···O90.79 (2)2.23 (2)2.6595 (13)115.1 (18)
O12—H12···O9i0.79 (2)2.02 (2)2.6801 (12)142 (2)
C20—H20···O2ii0.952.573.1097 (15)116
C21—H21···O3iii0.952.363.2754 (15)162
C22—H22···O30.952.603.1913 (15)121
C25—H25···O100.952.473.4056 (15)169
C26—H26···O70.952.443.0363 (15)121
C26—H26···N60.952.513.2665 (17)137
C27—H27···O70.952.373.2765 (15)159
C28—H28···O6iv0.952.473.1091 (15)124
C30—H30···O110.952.342.9551 (15)122
Symmetry codes: (i) x, y, z+1; (ii) x+2, y+1/2, z+3/2; (iii) x+2, y+3, z+1; (iv) x, y+3/2, z+1/2.
 

Acknowledgements

This work was supported by a Grant-in-Aid for Scientific Research (C) (No. 19550018) from the Japan Society for the Promotion of Science.

References

First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGotoh, K., Asaji, T. & Ishida, H. (2007). Acta Cryst. C63, o17–o20.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGotoh, K., Asaji, T. & Ishida, H. (2008). Acta Cryst. C64, o550–o553.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHigashi, T. (1999). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationIshida, H. & Kashino, S. (1999). Acta Cryst. C55, 1149–1152.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRigaku/MSC (2004). PROCESS-AUTO and CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds