organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Benzyl­­idene-6-meth­oxy­chroman-4-one

aDepartment of Chemistry, Presidency College, Chennai, Tamil Nadu, India, bDepartment of Chemistry, Auxilium College, Vellore, Tamil Nadu, India, cDepartment of Chemistry, Indian Institute of Technology Madras, Chennai 36, Tamil Nadu, India, and dDepartment of Chemistry, Valliammai Engineering College, SRM Nagar, Chennai, Tamil Nadu, India
*Correspondence e-mail: augustineap@gmail.com

(Received 13 September 2008; accepted 30 September 2008; online 9 October 2008)

In the title compound, C17H14O3, the dihedral angle between the phenyl ring and the benzene ring of the chromanone moiety is 67.78 (3)°. The six-membered heterocyclic ring of the chromanone moiety adopts a half-chair conformation. The structure is stabilized by weak inter­molecular C—H⋯O inter­actions that link the mol­ecules into inversion dimers.

Related literature

For background literature, see: Finch & Tamm (1970[Finch, R. E. & Tamm, C. (1970). Experientia, 26, 472-477.]); Geen et al.(1996[Geen, G., Evans, J. M. & Vong, A. K. (1996). Comprehensive Heterocyclic Chemistry II, edited by A. Mckillop, Vol. 5, pp. 469-472. Oxford: Pergamon.]); Tietze & Gerlitzer (1997[Tietze, L. F. & Gerlitzer, J. (1997). Synthesis, pp.877-883.]); Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For a related structure, see: Suresh et al. (2007[Suresh, R., Kanagam, C. C., Umarani, P. R., Manivannan, V. & Büyükgüngör, O. (2007). Acta Cryst. E63, o4387.]).

[Scheme 1]

Experimental

Crystal data
  • C17H14O3

  • Mr = 266.28

  • Triclinic, [P \overline 1]

  • a = 7.2678 (2) Å

  • b = 8.3151 (2) Å

  • c = 11.7999 (4) Å

  • α = 95.964 (1)°

  • β = 103.828 (1)°

  • γ = 104.042 (1)°

  • V = 661.74 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 298 (2) K

  • 0.45 × 0.42 × 0.38 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1999[Bruker (1999). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.960, Tmax = 0.966

  • 8868 measured reflections

  • 3041 independent reflections

  • 2404 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.116

  • S = 1.04

  • 3041 reflections

  • 186 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯O1i 0.93 2.53 3.4293 (18) 163
Symmetry code: (i) -x, -y+1, -z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus (Bruker, 2004[Bruker (2004). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

The chroman-4-one (2,3-dihydro-4-oxo-4H-1-benzopyran) ring system occupies an important position among oxygen heterocyclics and features in a wide variety of compounds of biological and medicinal interest (Finch & Tamm, 1970). Many biologically active natural products containing a chroman ring system have been synthesized via 2-substituted chroman-4-one intermediates including alpha-tocopherol (vitamin E) (Geen et al., 1996). 3-arylidene-4-chromanones have also been isolated as natural products belonging to the class of compounds called homoisoflavonoids(Tietze & Gerlitzer, 1997).

The geometric parameters in the title compound agree with values reported for a similar structure (Suresh et al., 2007). The dihedral angle between the benzene ring of the chromanone moiety and the phenyl ring is 67.78 (3)°. The Chromanone moiety is fused with a six membered heterocyclic ring and the study of torsion angles, asymmetry parameters and least-square plane calculations shows that the chromanone adopts a half chair conformation with a deviation of C14 from the C8/C9/C15/C16/O2 plane by 0.616 (4) Å, Q2= 0.4053 (14) Å, Q3= -0.2052 (13)Å, and QT=0.4543 (14)Å (Cremer &Pople, (1975). The structure is stabilized by weak intermolecular C—H···O interaction that link the molecules into pairs around a center (Table 1). No other short intermolecular interactions were found.

Related literature top

For background literature, see: Finch & Tamm (1970); Geen et al.(1996); Tietze & Gerlitzer (1997); Cremer & Pople (1975). For a similiar structure, see: Suresh et al. (2007).

Experimental top

Methyl-(2Z)-2-bromo methyl-3-aryl prop-2-enoate (0.006 mole, 1.53 g) was treated with 4-methoxy phenol (0.006 mole, 0.9 ml) in the presence of potassium carbonate in acetone at reflux temperature for 3 hrs. The pure ester, 3-aryl-2-(4-methoxy)-phenoxymethylprop-2-enoate was obtained after purifying it using silica gel and column chromatography (3% ethyl acetate - hexane). Hydrolysis of this ester was carried out with KOH in aqueous 1,4–dioxane at room temperature. The reaction mixture was acidified and the precipitated acid was purified by recrystalization. Finally the acid was treated with triflouroacetic anhydride and the reaction mixture was refluxed in dichloro- methane for 1 hr. It was further purified by column chromatography (silica gel-3% ethyl acetate - hexane) and the crystals used for data collection were obtained by slow evaporation from methanol.

Refinement top

H atoms were positioned geometrically and refined using riding model,with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C) for aromatic C—H, C—H = 0.97 Å and Uiso(H) = 1.2Ueq(C) for CH2, C—H = 0.96 Å and Uiso(H) = 1.5Uiso(C) for CH3.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. ORTEP of the molecule with atoms represented as 30% probability ellipsoids.
3-Benzylidene-6-methoxychroman-4-one top
Crystal data top
C17H14O3Z = 2
Mr = 266.28F(000) = 280
Triclinic, P1Dx = 1.336 Mg m3
Hall symbol: -p 1Mo Kα radiation, λ = 0.71073 Å
a = 7.2678 (2) ÅCell parameters from 4851 reflections
b = 8.3151 (2) Åθ = 2.6–28.3°
c = 11.7999 (4) ŵ = 0.09 mm1
α = 95.964 (1)°T = 298 K
β = 103.828 (1)°Block, colourless
γ = 104.042 (1)°0.45 × 0.42 × 0.38 mm
V = 661.74 (3) Å3
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3041 independent reflections
Radiation source: fine-focus sealed tube2404 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
ϕ and ω scansθmax = 28.3°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
h = 89
Tmin = 0.960, Tmax = 0.966k = 1011
8868 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.116H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0554P)2 + 0.1403P]
where P = (Fo2 + 2Fc2)/3
3041 reflections(Δ/σ)max < 0.001
186 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C17H14O3γ = 104.042 (1)°
Mr = 266.28V = 661.74 (3) Å3
Triclinic, P1Z = 2
a = 7.2678 (2) ÅMo Kα radiation
b = 8.3151 (2) ŵ = 0.09 mm1
c = 11.7999 (4) ÅT = 298 K
α = 95.964 (1)°0.45 × 0.42 × 0.38 mm
β = 103.828 (1)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3041 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
2404 reflections with I > 2σ(I)
Tmin = 0.960, Tmax = 0.966Rint = 0.018
8868 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.116H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.25 e Å3
3041 reflectionsΔρmin = 0.23 e Å3
186 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)

are estimated using the full covariance matrix. The cell e.s.d.'s are taken

into account individually in the estimation of e.s.d.'s in distances, angles

and torsion angles; correlations between e.s.d.'s in cell parameters are only

used when they are defined by crystal symmetry. An approximate (isotropic)

treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and

goodness of fit S are based on F2, conventional R-factors R are based

on F, with F set to zero for negative F2. The threshold expression of

F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is

not relevant to the choice of reflections for refinement. R-factors based

on F2 are statistically about twice as large as those based on F, and R-

factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.38800 (18)0.42099 (15)0.12980 (11)0.0357 (3)
C20.49675 (19)0.45875 (16)0.20631 (12)0.0413 (3)
H20.44800.55840.26100.050*
C30.6764 (2)0.34969 (18)0.20189 (13)0.0469 (3)
H30.74840.37710.25270.056*
C40.7491 (2)0.20056 (18)0.12250 (14)0.0499 (3)
H40.86890.12650.12050.060*
C50.6433 (2)0.16181 (18)0.04615 (13)0.0526 (4)
H50.69160.06060.00690.063*
C60.4668 (2)0.27146 (17)0.04756 (12)0.0448 (3)
H60.39950.24580.00660.054*
C70.19833 (18)0.53387 (16)0.12988 (12)0.0384 (3)
C80.04981 (18)0.62292 (15)0.22311 (11)0.0366 (3)
C90.12813 (18)0.73207 (16)0.20106 (11)0.0375 (3)
C100.47891 (18)0.89529 (15)0.29540 (11)0.0370 (3)
H100.47810.94760.22940.044*
C110.64996 (18)0.92856 (15)0.38626 (11)0.0390 (3)
C120.65136 (19)0.84577 (17)0.48305 (12)0.0439 (3)
H120.76790.86590.54290.053*
C130.4833 (2)0.73495 (18)0.49135 (12)0.0439 (3)
H130.48620.68000.55620.053*
C140.03927 (19)0.62083 (18)0.35174 (11)0.0427 (3)
H14A0.05090.72710.38740.051*
H14B0.14860.53190.35840.051*
C150.30664 (17)0.78222 (14)0.30322 (10)0.0336 (3)
C160.30814 (18)0.70497 (15)0.40210 (11)0.0362 (3)
C170.8268 (3)1.1358 (3)0.29888 (18)0.0764 (6)
H17A0.81241.06440.22610.115*
H17B0.94931.22250.31860.115*
H17C0.71951.18610.28960.115*
O10.13097 (14)0.77364 (14)0.10531 (9)0.0566 (3)
O20.14409 (13)0.59397 (12)0.41471 (8)0.0454 (2)
O30.82540 (14)1.03993 (13)0.38987 (9)0.0540 (3)
H70.175 (2)0.5435 (19)0.0546 (15)0.051 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0311 (6)0.0373 (6)0.0357 (6)0.0073 (5)0.0046 (5)0.0092 (5)
C20.0344 (6)0.0382 (6)0.0475 (7)0.0079 (5)0.0088 (5)0.0016 (5)
C30.0365 (7)0.0516 (8)0.0538 (8)0.0108 (6)0.0158 (6)0.0100 (6)
C40.0349 (7)0.0470 (7)0.0587 (9)0.0018 (6)0.0082 (6)0.0122 (6)
C50.0497 (8)0.0431 (7)0.0504 (8)0.0009 (6)0.0048 (6)0.0030 (6)
C60.0426 (7)0.0480 (7)0.0384 (7)0.0072 (6)0.0091 (5)0.0016 (5)
C70.0339 (6)0.0423 (6)0.0378 (6)0.0081 (5)0.0092 (5)0.0087 (5)
C80.0310 (6)0.0403 (6)0.0380 (6)0.0084 (5)0.0097 (5)0.0074 (5)
C90.0321 (6)0.0423 (6)0.0353 (6)0.0069 (5)0.0071 (5)0.0079 (5)
C100.0331 (6)0.0381 (6)0.0375 (6)0.0086 (5)0.0064 (5)0.0066 (5)
C110.0297 (6)0.0386 (6)0.0444 (7)0.0081 (5)0.0059 (5)0.0025 (5)
C120.0347 (7)0.0539 (8)0.0385 (7)0.0150 (6)0.0006 (5)0.0039 (6)
C130.0413 (7)0.0551 (8)0.0352 (6)0.0154 (6)0.0067 (5)0.0111 (5)
C140.0321 (6)0.0548 (8)0.0392 (7)0.0076 (6)0.0114 (5)0.0059 (6)
C150.0298 (6)0.0357 (6)0.0334 (6)0.0087 (5)0.0067 (5)0.0032 (4)
C160.0334 (6)0.0401 (6)0.0349 (6)0.0101 (5)0.0100 (5)0.0047 (5)
C170.0437 (9)0.0871 (13)0.0821 (13)0.0091 (9)0.0049 (8)0.0372 (10)
O10.0392 (5)0.0764 (7)0.0416 (5)0.0049 (5)0.0035 (4)0.0223 (5)
O20.0369 (5)0.0580 (6)0.0403 (5)0.0077 (4)0.0104 (4)0.0173 (4)
O30.0305 (5)0.0574 (6)0.0614 (6)0.0006 (4)0.0003 (4)0.0152 (5)
Geometric parameters (Å, º) top
C1—C21.3932 (18)C10—C111.3805 (17)
C1—C61.3978 (17)C10—C151.4007 (17)
C1—C71.4671 (17)C10—H100.9300
C2—C31.3830 (19)C11—O31.3704 (15)
C2—H20.9300C11—C121.3927 (19)
C3—C41.378 (2)C12—C131.371 (2)
C3—H30.9300C12—H120.9300
C4—C51.377 (2)C13—C161.3938 (17)
C4—H40.9300C13—H130.9300
C5—C61.377 (2)C14—O21.4434 (16)
C5—H50.9300C14—H14A0.9700
C6—H60.9300C14—H14B0.9700
C7—C81.3412 (17)C15—C161.3883 (17)
C7—H70.950 (16)C16—O21.3693 (15)
C8—C91.4846 (18)C17—O31.403 (2)
C8—C141.5036 (18)C17—H17A0.9600
C9—O11.2187 (15)C17—H17B0.9600
C9—C151.4818 (16)C17—H17C0.9600
C2—C1—C6118.20 (12)O3—C11—C10124.75 (12)
C2—C1—C7122.70 (11)O3—C11—C12115.45 (11)
C6—C1—C7119.07 (12)C10—C11—C12119.80 (12)
C3—C2—C1120.72 (12)C13—C12—C11120.93 (12)
C3—C2—H2119.6C13—C12—H12119.5
C1—C2—H2119.6C11—C12—H12119.5
C4—C3—C2120.26 (13)C12—C13—C16119.70 (12)
C4—C3—H3119.9C12—C13—H13120.1
C2—C3—H3119.9C16—C13—H13120.1
C5—C4—C3119.63 (13)O2—C14—C8111.15 (10)
C5—C4—H4120.2O2—C14—H14A109.4
C3—C4—H4120.2C8—C14—H14A109.4
C6—C5—C4120.64 (13)O2—C14—H14B109.4
C6—C5—H5119.7C8—C14—H14B109.4
C4—C5—H5119.7H14A—C14—H14B108.0
C5—C6—C1120.49 (13)C16—C15—C10120.07 (11)
C5—C6—H6119.8C16—C15—C9119.69 (11)
C1—C6—H6119.8C10—C15—C9119.96 (11)
C8—C7—C1128.33 (12)O2—C16—C15122.60 (11)
C8—C7—H7115.3 (9)O2—C16—C13117.53 (11)
C1—C7—H7116.4 (9)C15—C16—C13119.83 (12)
C7—C8—C9118.66 (11)O3—C17—H17A109.5
C7—C8—C14126.65 (12)O3—C17—H17B109.5
C9—C8—C14114.65 (10)H17A—C17—H17B109.5
O1—C9—C15121.81 (11)O3—C17—H17C109.5
O1—C9—C8123.09 (11)H17A—C17—H17C109.5
C15—C9—C8115.06 (11)H17B—C17—H17C109.5
C11—C10—C15119.58 (12)C16—O2—C14113.85 (10)
C11—C10—H10120.2C11—O3—C17117.35 (11)
C15—C10—H10120.2
C6—C1—C2—C30.93 (19)C11—C12—C13—C160.3 (2)
C7—C1—C2—C3179.01 (12)C7—C8—C14—O2129.37 (13)
C1—C2—C3—C40.9 (2)C9—C8—C14—O248.50 (15)
C2—C3—C4—C51.0 (2)C11—C10—C15—C160.33 (18)
C3—C4—C5—C60.7 (2)C11—C10—C15—C9173.63 (11)
C4—C5—C6—C12.6 (2)O1—C9—C15—C16166.84 (12)
C2—C1—C6—C52.7 (2)C8—C9—C15—C1610.83 (17)
C7—C1—C6—C5179.18 (12)O1—C9—C15—C107.14 (19)
C2—C1—C7—C841.2 (2)C8—C9—C15—C10175.19 (10)
C6—C1—C7—C8140.74 (14)C10—C15—C16—O2179.75 (11)
C1—C7—C8—C9178.86 (12)C9—C15—C16—O26.28 (18)
C1—C7—C8—C143.3 (2)C10—C15—C16—C132.59 (18)
C7—C8—C9—O116.3 (2)C9—C15—C16—C13171.39 (11)
C14—C8—C9—O1165.66 (13)C12—C13—C16—O2179.65 (11)
C7—C8—C9—C15161.35 (11)C12—C13—C16—C152.57 (19)
C14—C8—C9—C1516.71 (16)C15—C16—O2—C1427.22 (16)
C15—C10—C11—O3178.13 (11)C13—C16—O2—C14155.06 (11)
C15—C10—C11—C121.94 (18)C8—C14—O2—C1653.73 (14)
O3—C11—C12—C13178.09 (12)C10—C11—O3—C175.0 (2)
C10—C11—C12—C132.0 (2)C12—C11—O3—C17175.11 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O1i0.932.533.4293 (18)163
Symmetry code: (i) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC17H14O3
Mr266.28
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)7.2678 (2), 8.3151 (2), 11.7999 (4)
α, β, γ (°)95.964 (1), 103.828 (1), 104.042 (1)
V3)661.74 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.45 × 0.42 × 0.38
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1999)
Tmin, Tmax0.960, 0.966
No. of measured, independent and
observed [I > 2σ(I)] reflections
8868, 3041, 2404
Rint0.018
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.116, 1.04
No. of reflections3041
No. of parameters186
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.25, 0.23

Computer programs: APEX2 (Bruker, 2004), SAINT-Plus (Bruker, 2004), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O1i0.932.533.4293 (18)163
Symmetry code: (i) x, y+1, z.
 

References

First citationBruker (1999). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFinch, R. E. & Tamm, C. (1970). Experientia, 26, 472–477.  PubMed Web of Science Google Scholar
First citationGeen, G., Evans, J. M. & Vong, A. K. (1996). Comprehensive Heterocyclic Chemistry II, edited by A. Mckillop, Vol. 5, pp. 469–472. Oxford: Pergamon.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSuresh, R., Kanagam, C. C., Umarani, P. R., Manivannan, V. & Büyükgüngör, O. (2007). Acta Cryst. E63, o4387.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTietze, L. F. & Gerlitzer, J. (1997). Synthesis, pp.877–883.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds