organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Bromo-4-chloro-6-[(1-phenyl­ethyl)­imino­meth­yl]phenol

aDepartment of Chemistry, Baoji University of Arts and Science, Baoji, Shaanxi 721007, People's Republic of China
*Correspondence e-mail: zhangxinli6008@163.com

(Received 30 July 2008; accepted 28 September 2008; online 9 October 2008)

The title compound, C15H13BrClNO, is a Schiff base derived from the condensation of equimolar quanti­ties of 3-bromo-5-chloro­salicylaldehyde and 1-phenyl­ethanamine. The structure displays a trans configuration with respect to the imine C=N double bond. The N atom is also involved in an intra­molecular O—H—N hydrogen bond, which stabilizes the configuration of the compound.

Related literature

Schiff base ligands have demonstrated significant biological activities and new examples are being tested for their antimicrobial activity (Ali et al., 2002[Ali, M. A., Mirza, A. H., Butcher, R. J., Tarafder, M. T. H. & Keat, T. B. (2002). J. Inorg. Biochem. 92, 141-148.]; Cukurovali et al., 2002[Cukurovali, A., Yilmaz, I., Ozmen, H. & Ahmedzade, M. (2002). Transition Met. Chem. 27, 171-176.]) and antiviral activity (Tarafder et al., 2002[Tarafder, M. T. H., Jin, K. T., Crouse, K. A., Ali, A. M., Yamin, B. M. & Fun, H.-K. (2002). Polyhedron, 21, 2547-2554.]).

[Scheme 1]

Experimental

Crystal data
  • C15H13BrClNO

  • Mr = 338.62

  • Monoclinic, C 2/c

  • a = 21.764 (2) Å

  • b = 9.5088 (13) Å

  • c = 15.3591 (16) Å

  • β = 113.426 (2)°

  • V = 2916.6 (6) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 2.99 mm−1

  • T = 298 (2) K

  • 0.36 × 0.22 × 0.19 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.412, Tmax = 0.600 (expected range = 0.389–0.566)

  • 7192 measured reflections

  • 2574 independent reflections

  • 1377 reflections with I > 2σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.108

  • S = 1.00

  • 2574 reflections

  • 172 parameters

  • H-atom parameters constrained

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.37 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.82 1.87 2.591 (4) 147

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In recent years, the role of Schiff base and its derivatives in biological processes have become a topic of study. Schiff base ligands have demonstrated significant biological activities and new examples are being tested for their antitumor, antimicrobial and antiviral activities (Tarafder et al., 2002; Cukurovali et al., 2002; Ali et al., 2002). These properties stimulated our interest in this field. Crystals of the title compound, (I), were obtained as a new Schiff base compound. The title compound (I) is an 3-bromine-5-chloro-salicylaldehyde derivative. All bond lengths and bond angles are in the normal ranges and comparable to those observed in a similar salicylaldehyde Schiff base. its molecular Structure and a Crystal packing are illusrated in Figs. 1 and 2, respectively. The C1N1 bond length of 1.257 (5) Å conforms to the value for a double bond. The torsional angles of C8—N1–2 and N1—C1—C2—C7 are 176.5 (4)° and -175.6 (4)°, respectively. Atom O1 deviates from the benzene mean plane by 0.026 (3)°, whereas atoms Br and Cl by 0.072 (4)° and 0.047 (4)°, respectively. The molecular structure adopts a trans configuration about the C1N1 bond. In the molecule, there exists a intramolecular O—H—N hydrogen bond involving hydroxy atom O1 and imine atom N1 (Table 1). Furthermore, a more interesting phenomenon observed is shown in Fig. 2. Pairs of phen ligands from neighbouring complexes are interleaved to form a pi–pi stacking along the c axis. The distance between two phen ring Centroids are 3.744 (3) Å indicating significant pi–pi stacking packing interactions. The structure of (I) is thus stabilized by the hydrogen-bond system and aromatic-ring stacking interactions.

Related literature top

For related literature, see: Ali et al. (2002); Cukurovali et al. (2002); Tarafder et al. (2002). From the Section Editors: It would be much more useful to readers if the "Related literature" section had some kind of simple sub-division, so that, instead of just "For related literature, see···" it said, for example, "For general background, see···. For related structures, see···." etc. Please revise this section as indicated.

Experimental top

3-bromine-5-Chlorosalicylaldehyde (0.1 mmol, 23.55 mg) and 1-phenylethanamine (0.1 mmol, 12.1 mg) were dissolved in methanol (10 ml). The mixture was stirred for 30 min at room temperature to give a clear brown solution. After allowing the resulting solution to stand in air for 7 d, yellow block-shaped crystals of (I) were formed on slow evaporation of the solvent. The crystals were collected, washed with methanol and dried in a vacuum desiccator using anhydrous CaCl2 (yield 54%). Analysis found: C 46.32%, H 3.35%, calculated for C15H13BrClNO: C 46.33%, H 3.35%.

Refinement top

All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with C—H distances in the range 0.93–0.97 Å and Uiso(H) = 1.2Ueq or 1.5Ueq(C/O)

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound in 30% probability ellipsoids. H atoms are shown as spheres of arbitrary radii. The dotted line represent a hydrogen bond.
[Figure 2] Fig. 2. The molecular packing of (I) viewed along the b axis.
2-Bromo-4-chloro-6-[(1-phenylethyl)iminomethyl]phenol top
Crystal data top
C15H13BrClNOF(000) = 1360
Mr = 338.62Dx = 1.542 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 21.764 (2) ÅCell parameters from 1447 reflections
b = 9.5088 (13) Åθ = 2.4–21.8°
c = 15.3591 (16) ŵ = 2.99 mm1
β = 113.426 (2)°T = 298 K
V = 2916.6 (6) Å3Block, yellow
Z = 80.36 × 0.22 × 0.19 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
2574 independent reflections
Radiation source: fine-focus sealed tube1377 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
ϕ and ω scansθmax = 25.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2525
Tmin = 0.412, Tmax = 0.600k = 911
7192 measured reflectionsl = 1718
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.108H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0381P)2 + 4.3819P]
where P = (Fo2 + 2Fc2)/3
2574 reflections(Δ/σ)max = 0.002
172 parametersΔρmax = 0.41 e Å3
0 restraintsΔρmin = 0.37 e Å3
Crystal data top
C15H13BrClNOV = 2916.6 (6) Å3
Mr = 338.62Z = 8
Monoclinic, C2/cMo Kα radiation
a = 21.764 (2) ŵ = 2.99 mm1
b = 9.5088 (13) ÅT = 298 K
c = 15.3591 (16) Å0.36 × 0.22 × 0.19 mm
β = 113.426 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2574 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1377 reflections with I > 2σ(I)
Tmin = 0.412, Tmax = 0.600Rint = 0.038
7192 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.108H-atom parameters constrained
S = 1.00Δρmax = 0.41 e Å3
2574 reflectionsΔρmin = 0.37 e Å3
172 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br11.16005 (2)0.40337 (6)0.56363 (4)0.0873 (3)
Cl11.03028 (8)0.89286 (15)0.39942 (12)0.1095 (6)
N10.91088 (17)0.2822 (5)0.2946 (2)0.0644 (11)
O11.03226 (14)0.2790 (3)0.4226 (2)0.0702 (9)
H10.99710.24610.38420.105*
C10.9157 (2)0.4134 (6)0.2895 (3)0.0638 (13)
H1A0.87990.46290.24570.077*
C20.9755 (2)0.4910 (5)0.3496 (3)0.0554 (12)
C31.0310 (2)0.4192 (5)0.4141 (3)0.0526 (11)
C41.08586 (19)0.4972 (5)0.4726 (3)0.0545 (11)
C51.0864 (2)0.6413 (5)0.4677 (3)0.0583 (12)
H51.12360.69190.50710.070*
C61.0313 (2)0.7100 (5)0.4038 (3)0.0646 (13)
C70.9767 (2)0.6361 (5)0.3458 (3)0.0662 (13)
H70.93970.68400.30310.079*
C80.8465 (2)0.2157 (5)0.2340 (3)0.0716 (15)
H80.81790.28670.19030.086*
C90.8613 (3)0.1015 (6)0.1769 (4)0.101 (2)
H9A0.87950.14290.13520.151*
H9B0.82080.05220.14010.151*
H9C0.89320.03690.21910.151*
C100.8132 (2)0.1667 (5)0.2970 (3)0.0535 (12)
C110.7589 (3)0.2392 (6)0.2985 (3)0.0720 (14)
H110.74220.31590.25850.086*
C120.7289 (3)0.1996 (8)0.3585 (5)0.0954 (19)
H120.69260.25050.35920.114*
C130.7519 (4)0.0872 (8)0.4165 (4)0.096 (2)
H130.73110.06030.45620.115*
C140.8051 (4)0.0142 (6)0.4165 (4)0.0885 (18)
H140.82130.06240.45690.106*
C150.8358 (3)0.0533 (6)0.3563 (4)0.0729 (14)
H150.87210.00190.35620.088*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0491 (3)0.0926 (4)0.1028 (5)0.0052 (3)0.0120 (3)0.0109 (3)
Cl10.0987 (11)0.0682 (9)0.1278 (14)0.0118 (8)0.0094 (9)0.0236 (9)
N10.060 (2)0.077 (3)0.054 (2)0.018 (2)0.0212 (19)0.011 (2)
O10.0555 (19)0.068 (2)0.084 (2)0.0020 (16)0.0243 (17)0.0038 (18)
C10.054 (3)0.087 (4)0.047 (3)0.008 (3)0.016 (2)0.003 (3)
C20.048 (3)0.080 (4)0.040 (3)0.007 (2)0.020 (2)0.000 (2)
C30.056 (3)0.060 (3)0.056 (3)0.005 (3)0.037 (2)0.004 (2)
C40.042 (2)0.070 (3)0.055 (3)0.001 (2)0.023 (2)0.001 (2)
C50.052 (3)0.073 (3)0.052 (3)0.016 (2)0.023 (2)0.003 (2)
C60.063 (3)0.069 (3)0.059 (3)0.014 (3)0.020 (3)0.006 (3)
C70.061 (3)0.077 (4)0.056 (3)0.002 (3)0.018 (2)0.015 (3)
C80.062 (3)0.092 (4)0.052 (3)0.021 (3)0.012 (3)0.005 (3)
C90.096 (4)0.142 (5)0.079 (4)0.043 (4)0.050 (3)0.052 (4)
C100.051 (3)0.064 (3)0.038 (2)0.012 (2)0.010 (2)0.006 (2)
C110.064 (3)0.077 (4)0.061 (3)0.006 (3)0.010 (3)0.004 (3)
C120.067 (4)0.120 (6)0.100 (5)0.015 (4)0.035 (4)0.037 (4)
C130.108 (5)0.113 (6)0.076 (4)0.046 (5)0.047 (4)0.023 (4)
C140.126 (5)0.066 (4)0.060 (4)0.021 (4)0.023 (4)0.003 (3)
C150.078 (3)0.078 (4)0.060 (3)0.002 (3)0.024 (3)0.009 (3)
Geometric parameters (Å, º) top
Br1—C41.888 (4)C8—C91.510 (7)
Cl1—C61.740 (5)C8—H80.9800
N1—C11.257 (5)C9—H9A0.9600
N1—C81.481 (5)C9—H9B0.9600
O1—C31.339 (5)C9—H9C0.9600
O1—H10.8200C10—C151.371 (6)
C1—C21.462 (6)C10—C111.377 (6)
C1—H1A0.9300C11—C121.375 (7)
C2—C71.382 (6)C11—H110.9300
C2—C31.398 (6)C12—C131.354 (8)
C3—C41.389 (5)C12—H120.9300
C4—C51.372 (6)C13—C141.350 (8)
C5—C61.376 (6)C13—H130.9300
C5—H50.9300C14—C151.390 (8)
C6—C71.363 (6)C14—H140.9300
C7—H70.9300C15—H150.9300
C8—C101.494 (6)
C1—N1—C8117.8 (4)C10—C8—H8108.7
C3—O1—H1109.5C9—C8—H8108.7
N1—C1—C2122.5 (4)C8—C9—H9A109.5
N1—C1—H1A118.7C8—C9—H9B109.5
C2—C1—H1A118.7H9A—C9—H9B109.5
C7—C2—C3119.5 (4)C8—C9—H9C109.5
C7—C2—C1120.3 (4)H9A—C9—H9C109.5
C3—C2—C1120.2 (4)H9B—C9—H9C109.5
O1—C3—C4119.3 (4)C15—C10—C11117.8 (5)
O1—C3—C2122.3 (4)C15—C10—C8122.5 (5)
C4—C3—C2118.4 (4)C11—C10—C8119.7 (5)
C5—C4—C3121.4 (4)C12—C11—C10120.9 (5)
C5—C4—Br1119.3 (3)C12—C11—H11119.5
C3—C4—Br1119.3 (4)C10—C11—H11119.5
C4—C5—C6119.3 (4)C13—C12—C11120.4 (6)
C4—C5—H5120.4C13—C12—H12119.8
C6—C5—H5120.4C11—C12—H12119.8
C7—C6—C5120.5 (4)C14—C13—C12119.9 (6)
C7—C6—Cl1119.7 (4)C14—C13—H13120.0
C5—C6—Cl1119.7 (4)C12—C13—H13120.0
C6—C7—C2120.9 (4)C13—C14—C15120.1 (6)
C6—C7—H7119.6C13—C14—H14120.0
C2—C7—H7119.6C15—C14—H14120.0
N1—C8—C10107.9 (3)C10—C15—C14120.8 (5)
N1—C8—C9107.7 (4)C10—C15—H15119.6
C10—C8—C9115.0 (4)C14—C15—H15119.6
N1—C8—H8108.7
C8—N1—C1—C2176.5 (4)C3—C2—C7—C60.3 (7)
N1—C1—C2—C7175.6 (4)C1—C2—C7—C6177.8 (4)
N1—C1—C2—C31.9 (7)C1—N1—C8—C10109.5 (5)
C7—C2—C3—O1178.5 (4)C1—N1—C8—C9125.8 (5)
C1—C2—C3—O11.0 (6)N1—C8—C10—C1572.1 (6)
C7—C2—C3—C40.0 (6)C9—C8—C10—C1548.1 (6)
C1—C2—C3—C4177.6 (4)N1—C8—C10—C11106.0 (5)
O1—C3—C4—C5178.8 (4)C9—C8—C10—C11133.8 (5)
C2—C3—C4—C50.3 (6)C15—C10—C11—C120.7 (7)
O1—C3—C4—Br11.0 (5)C8—C10—C11—C12177.5 (4)
C2—C3—C4—Br1177.6 (3)C10—C11—C12—C130.8 (8)
C3—C4—C5—C60.3 (7)C11—C12—C13—C140.8 (8)
Br1—C4—C5—C6177.5 (3)C12—C13—C14—C150.8 (8)
C4—C5—C6—C70.1 (7)C11—C10—C15—C140.7 (7)
C4—C5—C6—Cl1178.0 (3)C8—C10—C15—C14177.5 (4)
C5—C6—C7—C20.2 (7)C13—C14—C15—C100.7 (8)
Cl1—C6—C7—C2178.3 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.872.591 (4)147

Experimental details

Crystal data
Chemical formulaC15H13BrClNO
Mr338.62
Crystal system, space groupMonoclinic, C2/c
Temperature (K)298
a, b, c (Å)21.764 (2), 9.5088 (13), 15.3591 (16)
β (°) 113.426 (2)
V3)2916.6 (6)
Z8
Radiation typeMo Kα
µ (mm1)2.99
Crystal size (mm)0.36 × 0.22 × 0.19
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.412, 0.600
No. of measured, independent and
observed [I > 2σ(I)] reflections
7192, 2574, 1377
Rint0.038
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.108, 1.00
No. of reflections2574
No. of parameters172
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.41, 0.37

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.872.591 (4)146.9
 

Acknowledgements

The author is grateful for a research grant (No. 08JZ09) supported by the Phytochemistry Key Laboratory of Shaanxi province.

References

First citationAli, M. A., Mirza, A. H., Butcher, R. J., Tarafder, M. T. H. & Keat, T. B. (2002). J. Inorg. Biochem. 92, 141–148.  CSD CrossRef PubMed Google Scholar
First citationBruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCukurovali, A., Yilmaz, I., Ozmen, H. & Ahmedzade, M. (2002). Transition Met. Chem. 27, 171–176.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTarafder, M. T. H., Jin, K. T., Crouse, K. A., Ali, A. M., Yamin, B. M. & Fun, H.-K. (2002). Polyhedron, 21, 2547–2554.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds