metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 11| November 2008| Pages m1379-m1380

Bis[tris­­(1,10-phenanthroline)nickel(II)] tris­­[dicyanidoargentate(I)] nitrate 4.2-hydrate

aDepartment of Chemistry, University of Engineering and Technology, Lahore 54890, Pakistan, and bInstitute of Physics, University of Neuchâtel, rue Emile-Argand 11, CH-2009 Neuchâtel, Switzerland
*Correspondence e-mail: saeed_a786@hotmail.com

(Received 22 August 2008; accepted 29 September 2008; online 9 October 2008)

The title compound, [Ni(C12H8N2)3]2[Ag(CN)2]3(NO3)·4.2H2O, crystallizes with two independent [Ni(phen)3]2+ cations (phen is 1,10-phenanthroline; both Ni atoms have threefold symmetry and N6 donor sets), three near-linear [Ag(CN)2] anions, one nitrate anion (N site symmetry 3) and 4.2 water mol­ecules of crystallization, some of which are disordered. The [Ag(CN)2] anions are situated within cavities created by the phenanthroline ligands of adjacent [Ni(phen)3]2+ cations. Some short C—H⋯O and C—H⋯N inter­actions may help to establish the packing.

Related literature

For a closely related structure containing 2,2′-bipyridine, see: Černák et al. (1994[Černák, J., Kaňuchová, M., Chomič, J., Potočňák, I., Kameníček, J. & Žák, Z. (1994). Acta Cryst. C50, 1563-1566.]). For related literature, see: Ahmad et al. (2007[Ahmad, S., Mehboob, M. M., Altaf, M., Stoeckli-Evans, H. & Mehmood, R. (2007). J. Chem. Crystallogr. 37, 685-689.]); Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]); Ren et al. (2005[Ren, Y.-P., Long, L.-S., Huang, R.-B. & Zheng, L.-S. (2005). Appl. Organomet. Chem. 19, 1070-1071.]); Sastri et al. (2003[Sastri, C. V., Eswaramoorthy, D., Giribabu, L. & Maiya, B. G. (2003). J. Inorg. Biochem. 94, 138-145.]); Shorrock et al. (2002[Shorrock, C. J., Xue, B. Y., Kim, P. B., Batchelor, R. J., Patrick, B. O. & Leznoff, D. B. (2002). Inorg. Chem. 41, 6743-6753.]); Zhang et al. (2006[Zhang, H., Zhang, Y., Wang, C., Cai, L., Xie, Y. & Xue, G. (2006). Inorg. Chem. Commun. 9, 555-558.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C12H8N2)3]2[Ag(CN)2]3(NO3)·4.2H2O

  • Mr = 1816.05

  • Trigonal, [R \overline 3]

  • a = 16.2738 (7) Å

  • c = 46.398 (2) Å

  • V = 10641.6 (8) Å3

  • Z = 6

  • Mo Kα radiation

  • μ = 1.41 mm−1

  • T = 173 (2) K

  • 0.50 × 0.40 × 0.30 mm

Data collection
  • Stoe IPDSII diffractometer

  • Absorption correction: multi-scan (MULscanABS in PLATON; Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]) Tmin = 0.454, Tmax = 0.651

  • 28787 measured reflections

  • 6400 independent reflections

  • 5514 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.086

  • S = 1.03

  • 6400 reflections

  • 353 parameters

  • H-atom parameters constrained

  • Δρmax = 0.89 e Å−3

  • Δρmin = −0.80 e Å−3

Table 1
Selected bond lengths (Å)

Ag1—C25 2.043 (3)
Ag1—C26 2.055 (3)
Ni1—N1 2.0903 (17)
Ni1—N2 2.1014 (18)
Ni2—N4 2.0898 (16)
Ni2—N3 2.0925 (15)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯N5i 0.95 2.45 3.284 (4) 147
C5—H5⋯O1ii 0.95 2.36 3.176 (5) 144
C8—H8⋯O1WAiii 0.95 2.54 3.465 (4) 166
C17—H17⋯O1 0.95 2.47 3.423 (4) 177
C20—H20⋯N6iii 0.95 2.60 3.312 (3) 132
Symmetry codes: (i) [y-{\script{1\over 3}}, -x+y-{\script{2\over 3}}, -z+{\script{1\over 3}}]; (ii) -x+y, -x, z; (iii) y, -x+y, -z.

Data collection: X-AREA (Stoe & Cie, 2006[Stoe & Cie (2006). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2006[Stoe & Cie (2006). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Supramolecular structures based on [Ag(CN)2]- anions are of significant interest because of their potential for structural, magnetic and catalytic applications, as witnessed by some recent work in this area (Ahmad et al., 2007; Ren et al., 2005; Shorrock et al., 2002; Zhang et al., 2006). We have begun investigations of the structural and chemical properties of metal(II)—Ag(I) coordination polymers that contain the [Ag(CN)2]- anion as a bridging unit (Ahmad et al., 2007). Mixed-ligand metal complexes of 1,10-phenanthroline (phen), and its substituted derivatives, are also interesting because they play an important role in biological systems, such as binding small molecules to DNA (Sastri et al., 2003). A search of the Cambridge Structural Database (CSD V5.29, last update Jan 2008; Allen, 2002) revealed the presence of more than 50 complexes involving the [Ni(phen)3]2+ cation. In the present study we attempted to prepare a coordination polymer consisting of [Ni(phen)2]2+ cations and [Ag(CN)2]-, but instead, the title compound, (I), was isolated.

The molecular structure of (I) is shown in Fig. 1. The two independent [Ni(phen)3]2+ cations have 3-fold symmetry and both Ni atoms have octahedral environments formed by six nitrogen atoms from three 1,10-phenanthroline ligands (Table 1) with normal bond distances and angles. The coordination environment of metal in the [Ag(CN)2]- anion is close to linear [C—Ag—C = 176.78 (13)°].

In the crystal structure of (I), the [Ag(CN)2]- anions are situated within cavities created by the phenanthroline ligands of two [Ni(phen)3]2+ cations (see Fig. 2), hence the silver atoms are isolated from one another. The cationic and anionic units are associated with each other through C—H···O and C—H···N weak interactions (Table 2). The disordered water molecules of crystallization in (I) occupy regions in the vicinity of the 3 symmetry positions (Fig. 3).

The crystal structure of (I) is very similar to that of bis[tris(bipyridine)nickel(II)] tris[dicyanoargentate(I)] chloride nonahydrate, (II), (Černák et al., 1994). Both crystallize in the trigonal space group R3, with a similar disposition in the crystal of the [Ni(phen)3]2+ and [Ag(CN)2]- ionic moeties. In (II), however, the secondary anion, Cl-, is partially distributed over the positions of the water molecules of crystallization (Fig. 4).

Related literature top

For a closely related structure containing 2,2'-bipyridine, see: Černák et al. (1994).

For related literature, see: Ahmad et al. (2007); Allen (2002); Ren et al. (2005); Sastri et al. (2003); Shorrock et al. (2002); Zhang et al. (2006).

Experimental top

An aqueous mixture of Ni(NO3)2.6H2O, 1,10-phenanthroline (phen) and K[Ag(CN)2], was made up in a molar ratio of 1:1:2. After stirring the mixture for 25–30 min, a pink precipitate appeared. This was filtered off and the colourless filtrate left to evaporate slowly at room temperature. After a few days pink blocks of (I) were obtained, which were washed with methanol.

Refinement top

The aromatic H-atoms were included in calculated positions and treated as riding atoms: C—H = 0.95 Å with Uiso(H) = 1.2Ueq(C). The H atoms of the water molecules could not be located.

Computing details top

Data collection: X-AREA (Stoe & Cie, 2006); cell refinement: X-AREA (Stoe & Cie, 2006); data reduction: X-RED32 (Stoe & Cie, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing displacement ellipsoids drawn at the 50% probability level [H atoms and water molecules of crystallization have been omitted for clarity; Symmetry codes: (i) -y + 1, x-y, z; (ii) -x + y+1,-x + 1, z; (iv) -y + 1, x-y + 1, z; (iii) -x + y, -x + 1, z;(v) -y, x-y, z; (vi) -x + y, -x, z]
[Figure 2] Fig. 2. Two views of the [Ag(CN)2]- anion situated within a cavity created by the phenanthroline ligands of two [Ni(phen)3]2+ cations.
[Figure 3] Fig. 3. A view along the c axis of the crystal packing of (I) showing the formation of the hexagonally shaped water clusters [The H-atoms have been omitted for clarity; the O···O contacts are shown as blue dotted lines].
[Figure 4] Fig. 4. A view along the c axis of the crystal packing of (II) [The published coordinates have been transformed from rhombohedral to hexagonal axes; the H-atoms have been removed for clarity, and the O···O contacts are shown as blue dotted lines].
Bis[tris(1,10-phenanthroline)nickel(II)] tris[dicyanidoargentate(I)] nitrate 4.2-hydrate top
Crystal data top
[Ni(C12H8N2)3]2[Ag(CN)2]3(NO3)·4.2H2ODx = 1.700 Mg m3
Mr = 1816.05Mo Kα radiation, λ = 0.71073 Å
Trigonal, R3Cell parameters from 29311 reflections
Hall symbol: -R 3θ = 1.7–29.6°
a = 16.2738 (7) ŵ = 1.41 mm1
c = 46.398 (2) ÅT = 173 K
V = 10641.6 (8) Å3Block, pink
Z = 60.50 × 0.40 × 0.30 mm
F(000) = 5472
Data collection top
Stoe IPDSII
diffractometer
6400 independent reflections
Radiation source: fine-focus sealed tube5514 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
ϕ and ω scansθmax = 29.2°, θmin = 1.7°
Absorption correction: multi-scan
(MULscanABS in PLATON; Spek, 2003)
h = 2120
Tmin = 0.454, Tmax = 0.651k = 1922
28787 measured reflectionsl = 6363
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.031H-atom parameters constrained
wR(F2) = 0.086 w = 1/[σ2(Fo2) + (0.0528P)2 + 11.6906P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
6400 reflectionsΔρmax = 0.89 e Å3
353 parametersΔρmin = 0.80 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00026 (3)
Crystal data top
[Ni(C12H8N2)3]2[Ag(CN)2]3(NO3)·4.2H2OZ = 6
Mr = 1816.05Mo Kα radiation
Trigonal, R3µ = 1.41 mm1
a = 16.2738 (7) ÅT = 173 K
c = 46.398 (2) Å0.50 × 0.40 × 0.30 mm
V = 10641.6 (8) Å3
Data collection top
Stoe IPDSII
diffractometer
6400 independent reflections
Absorption correction: multi-scan
(MULscanABS in PLATON; Spek, 2003)
5514 reflections with I > 2σ(I)
Tmin = 0.454, Tmax = 0.651Rint = 0.031
28787 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.086H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0528P)2 + 11.6906P]
where P = (Fo2 + 2Fc2)/3
6400 reflectionsΔρmax = 0.89 e Å3
353 parametersΔρmin = 0.80 e Å3
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ni10.666670.333330.09760 (1)0.0219 (1)
N10.55774 (12)0.22921 (12)0.12273 (3)0.0263 (4)
N20.54772 (11)0.30552 (11)0.07265 (3)0.0236 (4)
C10.56354 (16)0.19654 (16)0.14863 (4)0.0331 (6)
C20.48349 (18)0.13805 (16)0.16522 (5)0.0366 (6)
C30.39524 (17)0.10971 (15)0.15449 (5)0.0343 (6)
C40.38610 (15)0.13989 (14)0.12682 (4)0.0293 (5)
C50.29696 (16)0.11155 (16)0.11340 (5)0.0359 (6)
C60.29168 (15)0.14076 (16)0.08686 (5)0.0358 (6)
C70.37639 (14)0.20643 (14)0.07144 (4)0.0284 (5)
C80.37537 (15)0.24171 (16)0.04399 (5)0.0338 (6)
C90.45898 (16)0.30945 (17)0.03200 (4)0.0339 (6)
C100.54358 (15)0.34083 (15)0.04711 (4)0.0290 (5)
C110.46468 (13)0.23886 (13)0.08459 (4)0.0235 (5)
C120.47022 (14)0.20149 (13)0.11212 (4)0.0242 (5)
Ni20.333330.666670.08188 (1)0.0186 (1)
N30.23944 (10)0.54770 (11)0.10601 (3)0.0211 (4)
N40.33131 (11)0.55851 (11)0.05706 (3)0.0211 (4)
C130.19556 (13)0.54382 (14)0.13060 (4)0.0254 (5)
C140.13796 (14)0.45900 (15)0.14521 (4)0.0294 (5)
C150.12376 (14)0.37531 (14)0.13348 (4)0.0285 (5)
C160.16541 (13)0.37618 (14)0.10678 (4)0.0253 (5)
C170.14959 (15)0.29206 (14)0.09207 (4)0.0302 (6)
C180.18904 (15)0.29717 (14)0.06616 (4)0.0298 (5)
C190.25180 (14)0.38706 (13)0.05303 (4)0.0253 (5)
C200.29664 (16)0.39689 (15)0.02637 (4)0.0297 (6)
C210.35881 (16)0.48563 (15)0.01624 (4)0.0307 (6)
C220.37553 (14)0.56505 (14)0.03227 (4)0.0269 (5)
C230.27092 (12)0.47077 (12)0.06744 (4)0.0205 (4)
C240.22410 (12)0.46493 (12)0.09427 (4)0.0207 (4)
O2W0.043 (2)0.0466 (16)0.0515 (3)0.128 (12)0.200
O3W0.1111 (11)0.0799 (8)0.0346 (3)0.080 (5)0.200
Ag10.00155 (1)0.47423 (1)0.08079 (1)0.0352 (1)
N50.0135 (2)0.6044 (2)0.12942 (5)0.0638 (10)
N60.02865 (18)0.34982 (19)0.03319 (4)0.0486 (7)
C250.01043 (19)0.5588 (2)0.11172 (5)0.0432 (8)
C260.01549 (17)0.39317 (18)0.05002 (5)0.0370 (7)
O10.0012 (2)0.07445 (19)0.12175 (8)0.0961 (13)
N70.000000.000000.12009 (8)0.0415 (8)
O1WA0.0227 (2)0.1884 (2)0.00412 (7)0.0713 (11)0.850
O1WB0.0212 (12)0.1577 (12)0.0217 (4)0.067 (6)0.150
H10.624400.213700.156100.0400*
H20.490500.118200.183900.0440*
H30.340400.070000.165600.0410*
H50.240100.071000.123500.0430*
H60.231400.118000.078100.0430*
H80.317300.218900.033800.0410*
H90.459300.334900.013500.0410*
H100.600700.389500.038800.0350*
H130.203800.601200.138600.0300*
H140.109000.459100.163000.0350*
H150.086000.317100.143300.0340*
H170.110700.231800.100700.0360*
H180.175100.240300.056400.0360*
H200.283900.342300.015500.0360*
H210.390400.493200.001600.0370*
H220.420200.626200.025200.0320*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0225 (1)0.0225 (1)0.0209 (2)0.0112 (1)0.00000.0000
N10.0292 (8)0.0251 (8)0.0245 (7)0.0136 (7)0.0020 (6)0.0044 (6)
N20.0236 (7)0.0254 (8)0.0236 (7)0.0137 (6)0.0016 (5)0.0029 (6)
C10.0390 (11)0.0333 (10)0.0280 (9)0.0189 (9)0.0005 (8)0.0072 (8)
C20.0499 (13)0.0318 (11)0.0277 (9)0.0201 (10)0.0074 (9)0.0085 (8)
C30.0430 (12)0.0235 (9)0.0329 (9)0.0139 (9)0.0131 (8)0.0057 (7)
C40.0311 (10)0.0218 (9)0.0335 (9)0.0120 (8)0.0091 (7)0.0034 (7)
C50.0267 (10)0.0268 (10)0.0492 (12)0.0096 (8)0.0100 (9)0.0042 (9)
C60.0234 (9)0.0317 (11)0.0500 (12)0.0120 (9)0.0012 (8)0.0028 (9)
C70.0254 (9)0.0265 (9)0.0345 (9)0.0139 (8)0.0007 (7)0.0012 (7)
C80.0294 (10)0.0387 (11)0.0374 (10)0.0201 (9)0.0070 (8)0.0022 (8)
C90.0357 (11)0.0455 (12)0.0287 (9)0.0265 (10)0.0011 (8)0.0059 (8)
C100.0298 (10)0.0331 (10)0.0271 (8)0.0180 (8)0.0034 (7)0.0072 (7)
C110.0242 (8)0.0217 (8)0.0260 (8)0.0126 (7)0.0019 (6)0.0002 (6)
C120.0263 (9)0.0196 (8)0.0265 (8)0.0113 (7)0.0043 (7)0.0018 (6)
Ni20.0182 (1)0.0182 (1)0.0196 (2)0.0091 (1)0.00000.0000
N30.0191 (7)0.0209 (7)0.0215 (6)0.0087 (6)0.0010 (5)0.0000 (5)
N40.0224 (7)0.0215 (7)0.0212 (6)0.0124 (6)0.0011 (5)0.0001 (5)
C130.0230 (8)0.0282 (9)0.0238 (8)0.0120 (7)0.0024 (6)0.0005 (7)
C140.0242 (9)0.0344 (10)0.0256 (8)0.0116 (8)0.0046 (7)0.0041 (7)
C150.0230 (9)0.0284 (9)0.0291 (9)0.0091 (7)0.0033 (7)0.0081 (7)
C160.0207 (8)0.0235 (9)0.0294 (8)0.0094 (7)0.0012 (7)0.0027 (7)
C170.0297 (10)0.0208 (9)0.0359 (10)0.0095 (8)0.0002 (8)0.0037 (7)
C180.0335 (10)0.0189 (8)0.0370 (10)0.0131 (8)0.0022 (8)0.0029 (7)
C190.0280 (9)0.0227 (8)0.0283 (8)0.0151 (7)0.0022 (7)0.0018 (7)
C200.0387 (11)0.0288 (9)0.0280 (9)0.0217 (9)0.0017 (8)0.0046 (7)
C210.0397 (11)0.0328 (10)0.0258 (8)0.0228 (9)0.0059 (8)0.0004 (7)
C220.0302 (9)0.0268 (9)0.0265 (8)0.0164 (8)0.0067 (7)0.0036 (7)
C230.0204 (8)0.0205 (8)0.0226 (7)0.0117 (7)0.0004 (6)0.0007 (6)
C240.0182 (7)0.0218 (8)0.0217 (7)0.0096 (7)0.0012 (6)0.0011 (6)
O2W0.17 (3)0.13 (2)0.070 (8)0.064 (14)0.029 (11)0.057 (10)
O3W0.103 (10)0.047 (6)0.096 (9)0.042 (7)0.066 (8)0.042 (6)
Ag10.0301 (1)0.0415 (1)0.0319 (1)0.0163 (1)0.0012 (1)0.0025 (1)
N50.084 (2)0.088 (2)0.0441 (12)0.0616 (18)0.0165 (12)0.0209 (13)
N60.0533 (13)0.0660 (15)0.0356 (10)0.0366 (12)0.0068 (9)0.0062 (10)
C250.0431 (13)0.0557 (15)0.0367 (11)0.0292 (12)0.0066 (9)0.0044 (10)
C260.0337 (11)0.0452 (13)0.0316 (10)0.0194 (10)0.0034 (8)0.0003 (9)
O10.095 (2)0.0522 (14)0.154 (3)0.0465 (15)0.0142 (19)0.0261 (16)
N70.0363 (11)0.0363 (11)0.052 (2)0.0182 (5)0.00000.0000
O1WA0.077 (2)0.0626 (17)0.0815 (19)0.0403 (16)0.0047 (17)0.0071 (15)
O1WB0.060 (9)0.066 (10)0.070 (10)0.027 (8)0.005 (8)0.023 (8)
Geometric parameters (Å, º) top
Ag1—C252.043 (3)C6—C71.443 (3)
Ag1—C262.055 (3)C7—C81.401 (3)
Ni1—N1i2.090 (2)C7—C111.399 (3)
Ni1—N2i2.101 (2)C8—C91.370 (4)
Ni1—N1ii2.0903 (19)C9—C101.395 (4)
Ni1—N2ii2.1014 (16)C11—C121.437 (3)
Ni1—N12.0903 (17)C1—H10.9500
Ni1—N22.1014 (18)C2—H20.9500
Ni2—N4iii2.090 (2)C3—H30.9500
Ni2—N42.0898 (16)C5—H50.9500
Ni2—N4iv2.090 (2)C6—H60.9500
Ni2—N32.0925 (15)C8—H80.9500
Ni2—N3iii2.0925 (19)C9—H90.9500
Ni2—N3iv2.092 (2)C10—H100.9500
O2W—O2Wv1.27 (5)C13—C141.396 (3)
O2W—O2Wvi1.27 (4)C14—C151.375 (3)
O2W—O3W1.24 (3)C15—C161.409 (3)
O1—N71.204 (3)C16—C171.433 (3)
N1—C11.336 (3)C16—C241.399 (3)
N1—C121.354 (3)C17—C181.346 (3)
N2—C111.358 (3)C18—C191.435 (3)
N2—C101.333 (2)C19—C201.404 (3)
N3—C241.355 (2)C19—C231.406 (3)
N3—C131.331 (3)C20—C211.367 (3)
N4—C231.354 (2)C21—C221.395 (3)
N4—C221.333 (3)C23—C241.438 (3)
N5—C251.125 (4)C13—H130.9500
N6—C261.142 (4)C14—H140.9500
C1—C21.398 (4)C15—H150.9500
C2—C31.364 (4)C17—H170.9500
C3—C41.409 (3)C18—H180.9500
C4—C51.427 (4)C20—H200.9500
C4—C121.404 (3)C21—H210.9500
C5—C61.338 (3)C22—H220.9500
Ag1···Ni24.7375 (3)O1WA···N62.911 (4)
Ag1···Ni1v4.7580 (3)O1WA···O1WAviii2.924 (5)
Ag1···Ni24.7375 (3)O1WB···N62.860 (18)
Ag1···Ni24.7375 (3)O2W···N73.265 (15)
Ni1···Ag1vii4.7580 (3)O2W···N73.265 (15)
Ni1···Ag1iv4.7580 (3)O2W···N73.265 (15)
Ni1···Ag1vi4.7580 (3)O2W···O3Wvi2.36 (3)
Ni2···Ag1iii4.7375 (2)O3W···O3Wv2.80 (3)
Ni2···Ag1iv4.7375 (3)O3W···O3Wvi2.80 (2)
Ni2···Ag14.7375 (3)
C25—Ag1—C26176.78 (13)N2—C10—C9122.9 (2)
N1—Ni1—N279.41 (7)N2—C11—C12116.93 (19)
N1—Ni1—N2i97.46 (7)N2—C11—C7123.20 (17)
N1—Ni1—N1ii91.91 (7)C7—C11—C12119.87 (19)
N1—Ni1—N2ii167.39 (9)C4—C12—C11119.3 (2)
N1i—Ni1—N2167.39 (8)N1—C12—C11117.42 (18)
N2—Ni1—N2i92.56 (7)N1—C12—C4123.30 (18)
N1ii—Ni1—N297.46 (9)C2—C1—H1119.00
N1—Ni1—N1i91.91 (8)N1—C1—H1119.00
N1i—Ni1—N2i79.41 (8)C3—C2—H2120.00
N1i—Ni1—N1ii91.91 (9)C1—C2—H2120.00
N1i—Ni1—N2ii97.46 (9)C2—C3—H3120.00
N1ii—Ni1—N2i167.39 (10)C4—C3—H3120.00
N2i—Ni1—N2ii92.56 (8)C6—C5—H5119.00
N1ii—Ni1—N2ii79.41 (7)C4—C5—H5119.00
N2—Ni1—N2ii92.56 (8)C7—C6—H6120.00
N3—Ni2—N4iii94.73 (7)C5—C6—H6120.00
N4—Ni2—N4iv92.55 (7)C9—C8—H8120.00
N3iii—Ni2—N4169.48 (8)C7—C8—H8120.00
N4—Ni2—N4iii92.55 (7)C8—C9—H9120.00
N3iv—Ni2—N4iv79.56 (7)C10—C9—H9120.00
N3iv—Ni2—N3iii94.05 (8)C9—C10—H10118.00
N3iv—Ni2—N4iii169.48 (7)N2—C10—H10119.00
N3iv—Ni2—N494.73 (7)N3—C13—C14122.84 (18)
N4iv—Ni2—N4iii92.55 (7)C13—C14—C15118.97 (19)
N3iii—Ni2—N4iii79.56 (8)C14—C15—C16119.77 (18)
N3—Ni2—N479.56 (6)C15—C16—C17123.61 (18)
N3—Ni2—N3iv94.05 (7)C15—C16—C24116.88 (18)
N3—Ni2—N4iv169.48 (8)C17—C16—C24119.51 (18)
N3—Ni2—N3iii94.05 (6)C16—C17—C18120.94 (18)
N3iii—Ni2—N4iv94.73 (7)C17—C18—C19121.10 (18)
O2Wv—O2W—O2Wvi60 (3)C20—C19—C23117.26 (17)
O2Wv—O2W—O3W140.5 (17)C18—C19—C23119.06 (18)
O2Wvi—O2W—O3W109 (3)C18—C19—C20123.68 (18)
Ni1—N1—C1128.62 (17)C19—C20—C21119.42 (19)
C1—N1—C12117.80 (19)C20—C21—C22119.6 (2)
Ni1—N1—C12113.07 (12)N4—C22—C21122.61 (18)
Ni1—N2—C10129.53 (16)N4—C23—C24117.32 (16)
Ni1—N2—C11112.89 (12)C19—C23—C24119.65 (16)
C10—N2—C11117.54 (19)N4—C23—C19123.03 (18)
Ni2—N3—C24113.01 (12)N3—C24—C23117.01 (15)
C13—N3—C24118.01 (16)N3—C24—C16123.43 (18)
Ni2—N3—C13128.98 (13)C16—C24—C23119.56 (16)
C22—N4—C23118.00 (16)N3—C13—H13119.00
Ni2—N4—C23112.93 (12)C14—C13—H13118.00
Ni2—N4—C22128.90 (13)C15—C14—H14120.00
O1v—N7—O1vi119.6 (2)C13—C14—H14121.00
O1—N7—O1vi119.6 (2)C14—C15—H15120.00
O1—N7—O1v119.6 (3)C16—C15—H15120.00
N1—C1—C2122.6 (2)C16—C17—H17120.00
C1—C2—C3119.6 (2)C18—C17—H17119.00
C2—C3—C4119.4 (2)C19—C18—H18119.00
C3—C4—C12117.2 (2)C17—C18—H18119.00
C3—C4—C5123.5 (2)C21—C20—H20120.00
C5—C4—C12119.31 (19)C19—C20—H20120.00
C4—C5—C6121.5 (2)C22—C21—H21120.00
C5—C6—C7120.8 (2)C20—C21—H21120.00
C6—C7—C8123.5 (2)N4—C22—H22119.00
C8—C7—C11117.5 (2)C21—C22—H22119.00
C6—C7—C11118.95 (18)Ag1—C25—N5177.4 (3)
C7—C8—C9119.3 (2)Ag1—C26—N6177.3 (3)
C8—C9—C10119.5 (2)
N2—Ni1—N1—C1175.0 (2)Ni2—N4—C23—C19174.54 (17)
N2—Ni1—N1—C123.53 (14)Ni2—N4—C23—C244.6 (2)
N1i—Ni1—N1—C114.2 (2)C22—N4—C23—C24179.7 (2)
N1i—Ni1—N1—C12174.32 (15)N1—C1—C2—C32.4 (4)
N2i—Ni1—N1—C193.8 (2)C1—C2—C3—C40.0 (4)
N2i—Ni1—N1—C1294.76 (15)C2—C3—C4—C5177.9 (2)
N1ii—Ni1—N1—C177.8 (2)C2—C3—C4—C122.4 (3)
N1ii—Ni1—N1—C1293.70 (15)C3—C4—C12—N12.8 (3)
N1—Ni1—N2—C10176.73 (19)C3—C4—C12—C11176.24 (19)
N1—Ni1—N2—C110.57 (13)C5—C4—C12—N1177.5 (2)
N2i—Ni1—N2—C1079.62 (19)C3—C4—C5—C6178.9 (2)
N2i—Ni1—N2—C1197.68 (14)C12—C4—C5—C61.4 (3)
N1ii—Ni1—N2—C1092.71 (18)C5—C4—C12—C113.5 (3)
N1ii—Ni1—N2—C1189.99 (14)C4—C5—C6—C73.4 (4)
N2ii—Ni1—N2—C1013.06 (19)C5—C6—C7—C8178.1 (2)
N2ii—Ni1—N2—C11169.63 (14)C5—C6—C7—C110.4 (3)
N3—Ni2—N4—C232.76 (14)C11—C7—C8—C93.6 (3)
N3iv—Ni2—N4—C2288.9 (2)C6—C7—C11—N2175.3 (2)
N3iv—Ni2—N4—C2396.01 (15)C6—C7—C8—C9174.9 (2)
N4iv—Ni2—N4—C229.1 (2)C6—C7—C11—C124.5 (3)
N4iv—Ni2—N4—C23175.74 (15)C8—C7—C11—N23.3 (3)
N4iii—Ni2—N4—C2283.6 (2)C8—C7—C11—C12176.9 (2)
N4—Ni2—N3—C13178.8 (2)C7—C8—C9—C101.1 (4)
N4—Ni2—N3—C240.55 (14)C8—C9—C10—N22.3 (4)
N3iv—Ni2—N3—C1384.70 (19)C7—C11—C12—N1174.50 (19)
N3iv—Ni2—N3—C2494.62 (15)C7—C11—C12—C46.4 (3)
N3iii—Ni2—N3—C139.7 (2)N2—C11—C12—C4173.41 (18)
N3iii—Ni2—N3—C24171.03 (15)N2—C11—C12—N15.7 (3)
N4iii—Ni2—N3—C1389.50 (19)N3—C13—C14—C151.6 (4)
N4iii—Ni2—N3—C2491.19 (15)C13—C14—C15—C161.5 (4)
N3—Ni2—N4—C22177.9 (2)C14—C15—C16—C17175.9 (2)
N4iii—Ni2—N4—C2391.59 (15)C14—C15—C16—C243.3 (3)
C12—N1—C1—C22.1 (3)C15—C16—C17—C18177.9 (2)
Ni1—N1—C12—C4173.11 (16)C24—C16—C17—C181.2 (4)
Ni1—N1—C1—C2169.10 (17)C15—C16—C24—N32.3 (3)
C1—N1—C12—C40.6 (3)C15—C16—C24—C23178.2 (2)
C1—N1—C12—C11178.46 (19)C17—C16—C24—N3176.9 (2)
Ni1—N1—C12—C116.0 (2)C17—C16—C24—C232.6 (3)
Ni1—N2—C10—C9174.54 (17)C16—C17—C18—C193.0 (4)
C11—N2—C10—C92.7 (3)C17—C18—C19—C20178.6 (3)
Ni1—N2—C11—C7177.83 (16)C17—C18—C19—C230.9 (4)
Ni1—N2—C11—C122.4 (2)C18—C19—C20—C21176.9 (2)
C10—N2—C11—C70.2 (3)C23—C19—C20—C212.6 (4)
C10—N2—C11—C12179.97 (18)C18—C19—C23—N4178.0 (2)
C13—N3—C24—C23178.91 (19)C18—C19—C23—C242.9 (3)
Ni2—N3—C24—C16178.82 (17)C20—C19—C23—N41.5 (3)
Ni2—N3—C13—C14176.67 (17)C20—C19—C23—C24177.6 (2)
C24—N3—C13—C142.6 (3)C19—C20—C21—C221.1 (4)
Ni2—N3—C24—C231.7 (2)C20—C21—C22—N41.7 (4)
C13—N3—C24—C160.6 (3)N4—C23—C24—N34.3 (3)
C23—N4—C22—C212.8 (3)N4—C23—C24—C16176.2 (2)
Ni2—N4—C22—C21172.11 (18)C19—C23—C24—N3174.9 (2)
C22—N4—C23—C191.2 (3)C19—C23—C24—C164.7 (3)
Symmetry codes: (i) y+1, xy, z; (ii) x+y+1, x+1, z; (iii) x+y, x+1, z; (iv) y+1, xy+1, z; (v) y, xy, z; (vi) x+y, x, z; (vii) x+1, y, z; (viii) y, x+y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···N5ix0.952.453.284 (4)147
C5—H5···O1vi0.952.363.176 (5)144
C8—H8···O1WAviii0.952.543.465 (4)166
C17—H17···O10.952.473.423 (4)177
C20—H20···N6viii0.952.603.312 (3)132
Symmetry codes: (vi) x+y, x, z; (viii) y, x+y, z; (ix) y1/3, x+y2/3, z+1/3.

Experimental details

Crystal data
Chemical formula[Ni(C12H8N2)3]2[Ag(CN)2]3(NO3)·4.2H2O
Mr1816.05
Crystal system, space groupTrigonal, R3
Temperature (K)173
a, c (Å)16.2738 (7), 46.398 (2)
V3)10641.6 (8)
Z6
Radiation typeMo Kα
µ (mm1)1.41
Crystal size (mm)0.50 × 0.40 × 0.30
Data collection
DiffractometerStoe IPDSII
diffractometer
Absorption correctionMulti-scan
(MULscanABS in PLATON; Spek, 2003)
Tmin, Tmax0.454, 0.651
No. of measured, independent and
observed [I > 2σ(I)] reflections
28787, 6400, 5514
Rint0.031
(sin θ/λ)max1)0.687
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.086, 1.03
No. of reflections6400
No. of parameters353
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.0528P)2 + 11.6906P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)0.89, 0.80

Computer programs: X-AREA (Stoe & Cie, 2006), X-RED32 (Stoe & Cie, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2003) and Mercury (Macrae et al., 2006).

Selected bond lengths (Å) top
Ag1—C252.043 (3)Ni1—N22.1014 (18)
Ag1—C262.055 (3)Ni2—N42.0898 (16)
Ni1—N12.0903 (17)Ni2—N32.0925 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···N5i0.952.453.284 (4)147
C5—H5···O1ii0.952.363.176 (5)144
C8—H8···O1WAiii0.952.543.465 (4)166
C17—H17···O10.952.473.423 (4)177
C20—H20···N6iii0.952.603.312 (3)132
Symmetry codes: (i) y1/3, x+y2/3, z+1/3; (ii) x+y, x, z; (iii) y, x+y, z.
 

Acknowledgements

Financial support from the Council for Science and Technology, Islamabad, Pakistan, is gratefully acknowledged.

References

First citationAhmad, S., Mehboob, M. M., Altaf, M., Stoeckli-Evans, H. & Mehmood, R. (2007). J. Chem. Crystallogr. 37, 685–689.  Web of Science CSD CrossRef CAS Google Scholar
First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationČernák, J., Kaňuchová, M., Chomič, J., Potočňák, I., Kameníček, J. & Žák, Z. (1994). Acta Cryst. C50, 1563–1566.  CSD CrossRef Web of Science IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRen, Y.-P., Long, L.-S., Huang, R.-B. & Zheng, L.-S. (2005). Appl. Organomet. Chem. 19, 1070–1071.  Web of Science CSD CrossRef CAS Google Scholar
First citationSastri, C. V., Eswaramoorthy, D., Giribabu, L. & Maiya, B. G. (2003). J. Inorg. Biochem. 94, 138–145.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShorrock, C. J., Xue, B. Y., Kim, P. B., Batchelor, R. J., Patrick, B. O. & Leznoff, D. B. (2002). Inorg. Chem. 41, 6743–6753.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2006). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar
First citationZhang, H., Zhang, Y., Wang, C., Cai, L., Xie, Y. & Xue, G. (2006). Inorg. Chem. Commun. 9, 555–558.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 11| November 2008| Pages m1379-m1380
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds