metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tri­aqua­(N2,N4-di-2-pyridylpyrimidine-2,4-di­amine)cobalt(II) fumarate

aDepartment of Chemistry, Lishui University, Lishui 323000, People's Republic of China
*Correspondence e-mail: zjlsxyhx@126.com

(Received 18 September 2008; accepted 9 October 2008; online 15 October 2008)

The Co atom in the title compound, [Co(C14H12N6)(H2O)3]C4H2O4, has a mer-CoN3O3 octa­hedral coordination arising from the tridentate N2,N4-di-2-pyridylpyrimidine-2,4-diamine (tpda) ligand and three coordinated water mol­ecules. The asymmetric unit contains two fumarate half-anions, both completed by inversion symmetry. A network of N—H⋯O and O—H⋯O hydrogen bonds leads to a three-dimensional network in the crystal structure.

Related literature

For a related structure, see: Fang et al. (2005[Fang, X.-N., Li, X.-F. & Zeng, X.-R. (2005). Acta Cryst. E61, m1123-m1125.]). For background, see: Sheu et al. (1996[Sheu, J. T., Liu, T. W. & Peng, S. M. (1996). Chem. Commun. pp. 315-316.]); Peng et al. (2000[Peng, S.-M., Wang, C.-C., Jang, Y.-L., Chen, Y.-H., Li, F.-Y., Mou, C.-Y. & Leung, M.-K. (2000). J. Magn. Mater. 209, 80-83.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(C14H12N6)(H2O)3]C4H2O4

  • Mr = 491.33

  • Monoclinic, P 21 /n

  • a = 9.3239 (3) Å

  • b = 17.1115 (6) Å

  • c = 13.1395 (5) Å

  • β = 96.224 (1)°

  • V = 2084.00 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.88 mm−1

  • T = 298 (2) K

  • 0.29 × 0.25 × 0.18 mm

Data collection
  • Bruker APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.785, Tmax = 0.858

  • 10365 measured reflections

  • 3746 independent reflections

  • 3363 reflections with I > 2σ(I)

  • Rint = 0.014

Refinement
  • R[F2 > 2σ(F2)] = 0.026

  • wR(F2) = 0.078

  • S = 0.86

  • 3746 reflections

  • 307 parameters

  • 9 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Selected bond lengths (Å)

Co1—O1 2.0989 (13)
Co1—O2 2.0905 (13)
Co1—O3 2.0396 (13)
Co1—N1 2.0790 (15)
Co1—N3 2.0624 (14)
Co1—N5 2.0803 (16)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2D⋯O4i 0.836 (10) 1.943 (14) 2.7396 (19) 159 (2)
O2—H2C⋯O6ii 0.841 (10) 1.898 (10) 2.7374 (18) 176 (3)
O3—H3C⋯O7ii 0.840 (9) 1.858 (11) 2.6929 (18) 172 (3)
O3—H3D⋯O5iii 0.832 (10) 1.734 (11) 2.559 (2) 171 (2)
O1—H1D⋯O6iv 0.829 (10) 1.930 (13) 2.7374 (19) 165 (3)
O1—H1C⋯O4iii 0.832 (10) 2.001 (13) 2.8143 (19) 166 (2)
N4—H4A⋯O5v 0.86 1.93 2.782 (2) 169
N2—H2⋯O7vi 0.86 2.28 3.002 (2) 141
Symmetry codes: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) -x+1, -y+1, -z; (iv) x, y, z-1; (v) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (vi) x+1, y, z-1.

Data collection: SMART (Bruker, 1999[Bruker (1999). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1999[Bruker (1999). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Transition metal complexes with polypyridylamine ligands, possessing diverse structures and unusual optical and electromagnetic properties (Sheu et al.,1996), have aroused great interest among researchers. The tri-pyridyldiamine ligand can exhibit donor as well as acceptor properties and can act as a chelating ligand (Peng et al., 2000). In this paper, we report the synthesis and crystal structure of the title compound, (I), (Fig. 1).

The Co atom in (I) has an octahedral coordination formed by the N,N,N-tridentate tpda ligand and three coordinated water molecules. The tpda ligand is tri-coordinated, with the peripheral N1 and N5 atoms in the axial positions [N1—Co1—N5 = 174.48 (6)°] and the central N3 atom in the equatorial plane of the bipyramid. The remaining two equatorial positions are occupied by water molecules (Table 1). The three pyridine rings of the tpda ligand are not coplanar: the dihedral angles between the planes of the central pyridine ring and two peripheral rings are 18.5 (4) and 26.4 (2)° respectively.

The H atoms of both NH groups of the tpda ligand and coordinated water molecules are involved in hydrogen bonds with O atoms of carboxylate groups of fumarate which link the complex molecules to form an infinite three-dimensional network (Table 2, Fig. 2).

The molcular configuration of (I) is similar to that of [2,6-bis(2-pyridylamino)pyridine]dinitrato cadmium monohydrate (Fang et al., 2005).

Related literature top

For a related structure, see: Fang et al. (2005). For background, see: Sheu et al. (1996); Peng et al. (2000).

Experimental top

Tpda (0.025 g, 0.07 mmol), Co(NO3)2 (0.026 g, 0.1 mmol), fumaric acid (0.023 g, 0.09 mmol) and NaOH (0.041 g, 0.1 mmol) were mixed in acetonitrile, and the mixture was heated for six hours under reflux with stirring. The resultant was then filtered to give a solution which was infiltrated by diethyl ether in a closed vessel, one week later some pink blocks of (I) were obtained.

Refinement top

The water H atoms were located in a difference map and refined with the restraint O—H = 0.85 (1)Å and a fixed Uiso value of 0.08Å2. The other H atoms were positioned geometrically (C—H = 0.93Å, N—H = 0.86Å) and refined as riding with Uiso(H) = 1.2Ueq(carrier).

Computing details top

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 50% probability displacement ellipsoids for the non-hydrogen atoms. Symmetry codes: (i) 1-x, 1-y, -z; (ii) 1-x, -y, 2-z.
[Figure 2] Fig. 2. The packing diagram of (I), viewed along the a axis; hydrogen bonds are shown as dashed lines.
Triaqua(N2,N4-di-2-pyridylpyrimidine-2,4-diamine)cobalt(II) fumarate top
Crystal data top
[Co(C14H12N6)(H2O)3]C4H2O4F(000) = 1012
Mr = 491.33Dx = 1.566 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3746 reflections
a = 9.3239 (3) Åθ = 2.0–25.2°
b = 17.1115 (6) ŵ = 0.88 mm1
c = 13.1395 (5) ÅT = 298 K
β = 96.224 (1)°Block, pink
V = 2084.00 (13) Å30.29 × 0.25 × 0.18 mm
Z = 4
Data collection top
Bruker APEX CCD
diffractometer
3746 independent reflections
Radiation source: fine-focus sealed tube3363 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.014
ω scansθmax = 25.2°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 118
Tmin = 0.785, Tmax = 0.858k = 1820
10365 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.078H atoms treated by a mixture of independent and constrained refinement
S = 0.86 w = 1/[σ2(Fo2) + (0.06P)2 + 0.982P]
where P = (Fo2 + 2Fc2)/3
3746 reflections(Δ/σ)max = 0.001
307 parametersΔρmax = 0.28 e Å3
9 restraintsΔρmin = 0.33 e Å3
Crystal data top
[Co(C14H12N6)(H2O)3]C4H2O4V = 2084.00 (13) Å3
Mr = 491.33Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.3239 (3) ŵ = 0.88 mm1
b = 17.1115 (6) ÅT = 298 K
c = 13.1395 (5) Å0.29 × 0.25 × 0.18 mm
β = 96.224 (1)°
Data collection top
Bruker APEX CCD
diffractometer
3746 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3363 reflections with I > 2σ(I)
Tmin = 0.785, Tmax = 0.858Rint = 0.014
10365 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0269 restraints
wR(F2) = 0.078H atoms treated by a mixture of independent and constrained refinement
S = 0.86Δρmax = 0.28 e Å3
3746 reflectionsΔρmin = 0.33 e Å3
307 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.89198 (2)0.212482 (12)0.174122 (15)0.02637 (9)
N11.07828 (17)0.25958 (9)0.12520 (12)0.0386 (3)
N21.12613 (18)0.14671 (9)0.03083 (12)0.0428 (4)
H21.15130.13180.02720.051*
N30.96644 (15)0.10180 (8)0.14666 (11)0.0311 (3)
N40.81107 (18)0.04503 (9)0.25721 (12)0.0418 (4)
H4A0.81470.01190.30660.050*
N50.69822 (17)0.16405 (10)0.20828 (12)0.0411 (4)
N61.1419 (2)0.01872 (10)0.08085 (15)0.0527 (4)
O10.80120 (15)0.22962 (8)0.02251 (10)0.0413 (3)
O20.98217 (16)0.20786 (7)0.32677 (10)0.0404 (3)
O30.82120 (18)0.31928 (8)0.21618 (11)0.0515 (4)
O40.31016 (15)0.62641 (8)0.05353 (10)0.0449 (3)
O50.2958 (2)0.57346 (11)0.09942 (12)0.0843 (7)
O60.56949 (16)0.15459 (8)0.92018 (12)0.0521 (4)
O70.35145 (14)0.10201 (8)0.89469 (10)0.0432 (3)
C11.1139 (3)0.33447 (13)0.14869 (18)0.0572 (6)
H1A1.07420.35780.20310.069*
C21.2052 (3)0.37778 (15)0.0965 (2)0.0756 (8)
H2A1.22760.42910.11520.091*
C31.2637 (3)0.34310 (15)0.0147 (2)0.0701 (7)
H3A1.32290.37180.02410.084*
C41.2337 (3)0.26690 (14)0.00838 (18)0.0548 (5)
H41.27280.24260.06240.066*
C51.1431 (2)0.22600 (11)0.05069 (14)0.0389 (4)
C61.0754 (2)0.08795 (10)0.08910 (14)0.0356 (4)
C71.0969 (2)0.04032 (12)0.13765 (18)0.0523 (5)
H71.14230.08860.13550.063*
C80.9887 (2)0.03233 (11)0.19754 (15)0.0425 (4)
H80.96000.07370.23650.051*
C90.9231 (2)0.03917 (10)0.19853 (13)0.0348 (4)
C100.6933 (2)0.09433 (12)0.25191 (15)0.0423 (4)
C110.5709 (3)0.06721 (17)0.2948 (2)0.0669 (7)
H110.57090.01860.32630.080*
C120.4505 (3)0.1148 (2)0.2887 (3)0.0845 (9)
H120.36880.09920.31800.101*
C130.4526 (3)0.1857 (2)0.2388 (2)0.0773 (8)
H130.37140.21760.23170.093*
C140.5759 (2)0.20770 (15)0.2004 (2)0.0587 (6)
H140.57660.25550.16670.070*
C150.4580 (2)0.51840 (11)0.02931 (13)0.0376 (4)
H150.46870.50680.09890.045*
C160.3459 (2)0.57780 (10)0.00850 (14)0.0362 (4)
C170.5353 (2)0.03277 (11)0.99689 (14)0.0372 (4)
H170.62540.03711.03440.045*
C180.4805 (2)0.10121 (10)0.93323 (13)0.0353 (4)
H1C0.782 (3)0.2754 (7)0.005 (2)0.080*
H1D0.733 (2)0.2009 (12)0.001 (2)0.080*
H3D0.785 (3)0.3513 (12)0.1732 (13)0.080*
H3C0.827 (3)0.3404 (14)0.2742 (9)0.080*
H2C1.007 (3)0.2514 (8)0.353 (2)0.080*
H2D1.044 (2)0.1753 (10)0.350 (2)0.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.02877 (14)0.02434 (14)0.02585 (14)0.00162 (8)0.00225 (9)0.00098 (8)
N10.0415 (9)0.0367 (8)0.0378 (8)0.0084 (7)0.0053 (7)0.0034 (6)
N20.0500 (10)0.0384 (9)0.0432 (9)0.0037 (7)0.0204 (7)0.0032 (7)
N30.0336 (8)0.0285 (7)0.0315 (7)0.0020 (6)0.0049 (6)0.0015 (6)
N40.0486 (9)0.0378 (8)0.0410 (9)0.0051 (7)0.0139 (7)0.0064 (7)
N50.0344 (8)0.0476 (9)0.0419 (9)0.0019 (7)0.0063 (7)0.0009 (7)
N60.0538 (11)0.0425 (10)0.0641 (11)0.0088 (8)0.0162 (9)0.0029 (8)
O10.0443 (8)0.0391 (7)0.0381 (7)0.0007 (6)0.0059 (6)0.0020 (6)
O20.0501 (8)0.0356 (7)0.0338 (7)0.0059 (6)0.0036 (6)0.0028 (5)
O30.0763 (10)0.0389 (8)0.0367 (7)0.0209 (7)0.0056 (7)0.0068 (6)
O40.0464 (8)0.0398 (7)0.0477 (8)0.0067 (6)0.0009 (6)0.0092 (6)
O50.1314 (17)0.0680 (11)0.0454 (9)0.0625 (12)0.0268 (10)0.0174 (8)
O60.0531 (8)0.0400 (8)0.0595 (9)0.0146 (7)0.0111 (7)0.0168 (6)
O70.0394 (7)0.0431 (7)0.0461 (7)0.0006 (6)0.0008 (6)0.0109 (6)
C10.0691 (15)0.0468 (12)0.0583 (13)0.0196 (11)0.0183 (11)0.0138 (10)
C20.097 (2)0.0503 (14)0.0836 (18)0.0367 (14)0.0304 (16)0.0141 (13)
C30.0840 (18)0.0588 (15)0.0724 (16)0.0314 (14)0.0309 (14)0.0004 (12)
C40.0608 (14)0.0522 (12)0.0550 (13)0.0138 (11)0.0225 (11)0.0006 (10)
C50.0384 (10)0.0400 (10)0.0384 (10)0.0056 (8)0.0051 (8)0.0000 (8)
C60.0361 (9)0.0350 (9)0.0362 (9)0.0015 (7)0.0062 (7)0.0028 (7)
C70.0587 (13)0.0326 (10)0.0659 (14)0.0109 (9)0.0079 (11)0.0020 (9)
C80.0549 (12)0.0283 (9)0.0450 (10)0.0014 (8)0.0083 (9)0.0069 (8)
C90.0400 (9)0.0329 (9)0.0313 (8)0.0043 (7)0.0034 (7)0.0007 (7)
C100.0396 (10)0.0512 (12)0.0371 (10)0.0055 (9)0.0090 (8)0.0025 (8)
C110.0558 (14)0.0774 (17)0.0714 (15)0.0124 (13)0.0249 (12)0.0100 (13)
C120.0458 (14)0.122 (3)0.091 (2)0.0025 (16)0.0318 (14)0.0096 (19)
C130.0408 (13)0.106 (2)0.087 (2)0.0129 (14)0.0168 (13)0.0048 (18)
C140.0410 (12)0.0697 (16)0.0651 (15)0.0102 (10)0.0054 (10)0.0038 (11)
C150.0460 (10)0.0327 (9)0.0335 (9)0.0025 (8)0.0009 (7)0.0030 (7)
C160.0419 (10)0.0295 (9)0.0362 (9)0.0008 (7)0.0006 (8)0.0026 (7)
C170.0382 (10)0.0358 (9)0.0364 (9)0.0010 (7)0.0016 (7)0.0053 (7)
C180.0420 (10)0.0329 (9)0.0308 (8)0.0017 (8)0.0027 (7)0.0020 (7)
Geometric parameters (Å, º) top
Co1—O12.0989 (13)O6—C181.258 (2)
Co1—O22.0905 (13)O7—C181.254 (2)
Co1—O32.0396 (13)C1—C21.369 (3)
Co1—N12.0790 (15)C1—H1A0.9300
Co1—N32.0624 (14)C2—C31.390 (4)
Co1—N52.0803 (16)C2—H2A0.9300
N1—C51.335 (2)C3—C41.361 (3)
N1—C11.351 (3)C3—H3A0.9300
N2—C61.378 (2)C4—C51.396 (3)
N2—C51.387 (2)C4—H40.9300
N2—H20.8600C7—C81.352 (3)
N3—C61.352 (2)C7—H70.9300
N3—C91.355 (2)C8—C91.368 (3)
N4—C91.368 (2)C8—H80.9300
N4—C101.381 (3)C10—C111.405 (3)
N4—H4A0.8600C11—C121.381 (4)
N5—C101.327 (3)C11—H110.9300
N5—C141.358 (3)C12—C131.380 (4)
N6—C61.347 (2)C12—H120.9300
N6—C71.350 (3)C13—C141.358 (4)
O1—H1C0.832 (10)C13—H130.9300
O1—H1D0.829 (10)C14—H140.9300
O2—H2C0.841 (10)C15—C15i1.317 (4)
O2—H2D0.836 (10)C15—C161.503 (3)
O3—H3D0.832 (10)C15—H150.9300
O3—H3C0.840 (9)C17—C17ii1.308 (4)
O4—C161.235 (2)C17—C181.497 (2)
O5—C161.237 (2)C17—H170.9300
O3—Co1—N3174.38 (6)C4—C3—H3A120.2
O3—Co1—N192.41 (7)C2—C3—H3A120.2
N3—Co1—N189.63 (6)C3—C4—C5118.6 (2)
O3—Co1—N589.11 (7)C3—C4—H4120.7
N3—Co1—N589.35 (6)C5—C4—H4120.7
N1—Co1—N5174.48 (6)N1—C5—N2120.50 (17)
O3—Co1—O283.24 (5)N1—C5—C4122.78 (19)
N3—Co1—O291.44 (5)N2—C5—C4116.69 (18)
N1—Co1—O292.79 (6)N6—C6—N3125.42 (17)
N5—Co1—O292.66 (6)N6—C6—N2114.11 (16)
O3—Co1—O191.31 (6)N3—C6—N2120.46 (16)
N3—Co1—O194.07 (6)N6—C7—C8122.84 (19)
N1—Co1—O185.23 (6)N6—C7—H7118.6
N5—Co1—O189.44 (6)C8—C7—H7118.6
O2—Co1—O1174.13 (5)C7—C8—C9117.28 (18)
C5—N1—C1117.16 (17)C7—C8—H8121.4
C5—N1—Co1121.31 (12)C9—C8—H8121.4
C1—N1—Co1119.33 (14)N3—C9—N4120.86 (16)
C6—N2—C5130.39 (16)N3—C9—C8123.00 (17)
C6—N2—H2114.8N4—C9—C8116.13 (16)
C5—N2—H2114.8N5—C10—N4120.42 (17)
C6—N3—C9115.20 (15)N5—C10—C11122.6 (2)
C6—N3—Co1123.13 (11)N4—C10—C11117.0 (2)
C9—N3—Co1120.93 (11)C12—C11—C10118.2 (3)
C9—N4—C10131.96 (16)C12—C11—H11120.9
C9—N4—H4A114.0C10—C11—H11120.9
C10—N4—H4A114.0C13—C12—C11119.5 (2)
C10—N5—C14117.34 (18)C13—C12—H12120.3
C10—N5—Co1121.56 (13)C11—C12—H12120.3
C14—N5—Co1120.41 (15)C14—C13—C12118.4 (3)
C6—N6—C7116.15 (17)C14—C13—H13120.8
Co1—O1—H1C117 (2)C12—C13—H13120.8
Co1—O1—H1D118 (2)N5—C14—C13123.9 (2)
H1C—O1—H1D109.1 (16)N5—C14—H14118.1
Co1—O2—H2C114.8 (18)C13—C14—H14118.1
Co1—O2—H2D124.7 (19)C15i—C15—C16124.5 (2)
H2C—O2—H2D106.8 (15)C15i—C15—H15117.8
Co1—O3—H3D121.7 (17)C16—C15—H15117.8
Co1—O3—H3C129.8 (17)O4—C16—O5125.24 (18)
H3D—O3—H3C108.4 (15)O4—C16—C15117.70 (16)
N1—C1—C2123.4 (2)O5—C16—C15117.05 (16)
N1—C1—H1A118.3C17ii—C17—C18124.2 (2)
C2—C1—H1A118.3C17ii—C17—H17117.9
C1—C2—C3118.3 (2)C18—C17—H17117.9
C1—C2—H2A120.8O7—C18—O6123.72 (17)
C3—C2—H2A120.8O7—C18—C17119.26 (16)
C4—C3—C2119.5 (2)O6—C18—C17117.01 (16)
O3—Co1—N1—C5151.20 (15)C3—C4—C5—N2174.2 (2)
N3—Co1—N1—C534.03 (15)C7—N6—C6—N31.9 (3)
O2—Co1—N1—C5125.45 (15)C7—N6—C6—N2179.18 (18)
O1—Co1—N1—C560.08 (15)C9—N3—C6—N60.5 (3)
O3—Co1—N1—C111.43 (17)Co1—N3—C6—N6169.80 (15)
N3—Co1—N1—C1163.33 (17)C9—N3—C6—N2178.32 (16)
O2—Co1—N1—C171.91 (17)Co1—N3—C6—N211.4 (2)
O1—Co1—N1—C1102.55 (17)C5—N2—C6—N6144.6 (2)
N1—Co1—N3—C615.88 (14)C5—N2—C6—N336.5 (3)
N5—Co1—N3—C6158.70 (14)C6—N6—C7—C81.9 (3)
O2—Co1—N3—C6108.66 (14)N6—C7—C8—C90.5 (3)
O1—Co1—N3—C669.31 (14)C6—N3—C9—N4178.14 (16)
N1—Co1—N3—C9153.86 (14)Co1—N3—C9—N411.3 (2)
N5—Co1—N3—C931.56 (14)C6—N3—C9—C83.1 (3)
O2—Co1—N3—C961.08 (14)Co1—N3—C9—C8167.37 (15)
O1—Co1—N3—C9120.95 (13)C10—N4—C9—N326.2 (3)
O3—Co1—N5—C10141.78 (15)C10—N4—C9—C8155.0 (2)
N3—Co1—N5—C1032.82 (15)C7—C8—C9—N33.2 (3)
O2—Co1—N5—C1058.59 (15)C7—C8—C9—N4178.03 (18)
O1—Co1—N5—C10126.90 (15)C14—N5—C10—N4176.3 (2)
O3—Co1—N5—C1428.44 (17)Co1—N5—C10—N413.2 (2)
N3—Co1—N5—C14156.96 (17)C14—N5—C10—C114.0 (3)
O2—Co1—N5—C14111.63 (17)Co1—N5—C10—C11166.54 (18)
O1—Co1—N5—C1462.88 (17)C9—N4—C10—N525.1 (3)
C5—N1—C1—C23.8 (4)C9—N4—C10—C11155.2 (2)
Co1—N1—C1—C2159.5 (2)N5—C10—C11—C121.5 (4)
N1—C1—C2—C30.4 (5)N4—C10—C11—C12178.8 (2)
C1—C2—C3—C42.7 (5)C10—C11—C12—C131.8 (5)
C2—C3—C4—C50.7 (4)C11—C12—C13—C142.5 (5)
C1—N1—C5—N2171.9 (2)C10—N5—C14—C133.3 (4)
Co1—N1—C5—N225.1 (2)Co1—N5—C14—C13167.3 (2)
C1—N1—C5—C46.0 (3)C12—C13—C14—N50.1 (5)
Co1—N1—C5—C4157.03 (17)C15i—C15—C16—O4155.6 (2)
C6—N2—C5—N115.7 (3)C15i—C15—C16—O525.1 (4)
C6—N2—C5—C4162.4 (2)C17ii—C17—C18—O711.0 (3)
C3—C4—C5—N13.8 (4)C17ii—C17—C18—O6167.7 (2)
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2D···O4iii0.84 (1)1.94 (1)2.7396 (19)159 (2)
O2—H2C···O6iv0.84 (1)1.90 (1)2.7374 (18)176 (3)
O3—H3C···O7iv0.84 (1)1.86 (1)2.6929 (18)172 (3)
O3—H3D···O5i0.83 (1)1.73 (1)2.559 (2)171 (2)
O1—H1D···O6v0.83 (1)1.93 (1)2.7374 (19)165 (3)
O1—H1C···O4i0.83 (1)2.00 (1)2.8143 (19)166 (2)
N4—H4A···O5vi0.861.932.782 (2)169
N2—H2···O7vii0.862.283.002 (2)141
Symmetry codes: (i) x+1, y+1, z; (iii) x+3/2, y1/2, z+1/2; (iv) x+1/2, y+1/2, z1/2; (v) x, y, z1; (vi) x+1/2, y+1/2, z+1/2; (vii) x+1, y, z1.

Experimental details

Crystal data
Chemical formula[Co(C14H12N6)(H2O)3]C4H2O4
Mr491.33
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)9.3239 (3), 17.1115 (6), 13.1395 (5)
β (°) 96.224 (1)
V3)2084.00 (13)
Z4
Radiation typeMo Kα
µ (mm1)0.88
Crystal size (mm)0.29 × 0.25 × 0.18
Data collection
DiffractometerBruker APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.785, 0.858
No. of measured, independent and
observed [I > 2σ(I)] reflections
10365, 3746, 3363
Rint0.014
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.078, 0.86
No. of reflections3746
No. of parameters307
No. of restraints9
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.28, 0.33

Computer programs: SMART (Bruker, 1999), SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Co1—O12.0989 (13)Co1—N12.0790 (15)
Co1—O22.0905 (13)Co1—N32.0624 (14)
Co1—O32.0396 (13)Co1—N52.0803 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2D···O4i0.836 (10)1.943 (14)2.7396 (19)159 (2)
O2—H2C···O6ii0.841 (10)1.898 (10)2.7374 (18)176 (3)
O3—H3C···O7ii0.840 (9)1.858 (11)2.6929 (18)172 (3)
O3—H3D···O5iii0.832 (10)1.734 (11)2.559 (2)171 (2)
O1—H1D···O6iv0.829 (10)1.930 (13)2.7374 (19)165 (3)
O1—H1C···O4iii0.832 (10)2.001 (13)2.8143 (19)166 (2)
N4—H4A···O5v0.861.932.782 (2)169
N2—H2···O7vi0.862.283.002 (2)141
Symmetry codes: (i) x+3/2, y1/2, z+1/2; (ii) x+1/2, y+1/2, z1/2; (iii) x+1, y+1, z; (iv) x, y, z1; (v) x+1/2, y+1/2, z+1/2; (vi) x+1, y, z1.
 

Acknowledgements

The authors are grateful to the Natural Science Foundation of Zhejiang Province (grant No. Y407081) for financial support.

References

First citationBruker (1999). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFang, X.-N., Li, X.-F. & Zeng, X.-R. (2005). Acta Cryst. E61, m1123–m1125.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPeng, S.-M., Wang, C.-C., Jang, Y.-L., Chen, Y.-H., Li, F.-Y., Mou, C.-Y. & Leung, M.-K. (2000). J. Magn. Mater. 209, 80–83.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheu, J. T., Liu, T. W. & Peng, S. M. (1996). Chem. Commun. pp. 315–316.  CSD CrossRef Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds