organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-[(E)-4-Quinolylmethyl­­idene­amino]­phenol

aDepartment of Physics, Faculty of Arts and Sciences, Erciyes University, 38039 Kayseri, Turkey, bChemistry Department, Yıldız Technical University, Davutpasa Campus, Esenler 34220, Istanbul, Turkey, and cChemistry Department, Loughborough University, Loughborough, Leicestershire LE11 3TU, England
*Correspondence e-mail: akkurt@erciyes.edu.tr

(Received 25 September 2008; accepted 17 October 2008; online 22 October 2008)

In the title compound, C16H12N2O, the dihedral angle between the two aromatic ring systems is 68.54 (5)°. The mol­ecular packing is stabilized by intra- and inter­molecular O—H⋯N and intra­molecular C—H⋯N hydrogen-bond inter­actions.

Related literature

For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For general background, see: Gao et al. (2005[Gao, J., Ross Woolley, F. & Zingaro, R. A. (2005). J. Med. Chem. 48, 7192-7197.]); Hagen et al. (1983[Hagen, V., Dove, B., Morgenstern, E., Labes, D., Göres, E., Tomaschewski, G., Geisler, G. & Franke, C. (1983). Pharmazie, 38, 437-439.]); Lozytska et al. (2004[Lozytska, R., Kryzhanovsky, D., Mazepa, A., Gorodniuk, V., Kuz'min, V., Lozitsky, V., Fedchuck, A., Rybalko, S., Diadium, S. & Vanden Eynde, J. J. (2004). Arkivoc, xix, 118R.]); Sessler et al. (2004[Sessler, J. L., Katayev, E., Pantos, G. D. & Ustynyuk, Yu. A. (2004). J. Chem. Soc. Chem. Commun. pp. 1276-1277.]); Kuz'min et al. (2000[Kuz'min, V. E., Lozitsky, V. P., Kamalov, G. L., Lozitskaya, R. N., Zheltvay, A. I., Fedtchouk, A. S. & Kryzhanovsky, D. N. (2000). Acta Biochim. Pol. 47, 867-875.]). For related structures, see: Räisänen, Elo et al. (2007[Räisänen, M. T., Elo, P., Kettunen, M., Klinga, M., Leskelä, M. & Repo, T. (2007). Synth. Commun. 37, 1765-1777.]); Räisänen Leskelä & Repo (2007[Räisänen, M. T., Leskelä, M. & Repo, T. (2007). Acta Cryst. E63, o1816-o1817.]). For experimental procedures, see: Gümüş (2002[Gümüş, M. K. (2002). MSc thesis, Yıldız Technical University, Istanbul, Turkey.]).

[Scheme 1]

Experimental

Crystal data
  • C16H12N2O

  • Mr = 248.28

  • Monoclinic, P 21 /n

  • a = 6.7174 (6) Å

  • b = 23.931 (2) Å

  • c = 7.7495 (6) Å

  • β = 105.521 (1)°

  • V = 1200.33 (17) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 150 (2) K

  • 0.25 × 0.20 × 0.10 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.978, Tmax = 0.991

  • 12294 measured reflections

  • 2991 independent reflections

  • 2338 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.105

  • S = 1.05

  • 2991 reflections

  • 220 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.95 (2) 2.34 (2) 2.7766 (16) 107.5 (15)
O1—H1⋯N2i 0.95 (2) 1.91 (2) 2.8085 (16) 156.4 (19)
C13—H13⋯N1 0.975 (15) 2.356 (14) 2.9776 (17) 121.0 (11)
Symmetry code: (i) -x+2, -y, -z+2.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

2- and 4-(N-arylimino)quinolines have been investigated to their clinical efficacy for use as an analgetic drug (Hagen et al., 1983). A number of azomethines and their complexes possess high biological activity, including antineoplastic (Kuz'min et al., 2000; Gao et al., 2005) and antiviral (Lozytska et al., 2004). It has been recently shown that the macrocyclic Schiff bases can selectively bind different anions acting as artificial anionic receptors (Sessler et al., 2004).

In the title compound, (I), (Fig. 1), all bond lengths and angles are within normal ranges (Räisänen, Elo et al., 2007; Räisänen Leskelä, & Repo 2007; Allen et al., 1987). The molecule has a non-planar conformation. The dihedral angle between its two aromatic ring systems (C1–C6) and (N2/C8—C16) is 68.54 (5)°. The C6—N1—C7—C8 torsion angle is -179.98 (13)° and the N1—C6—C1—O1 angle deviates from zero only by -7.27 (18)°.

The molecular packing of the compound is stabilized by O—H···N and C—H···N hydrogen bonds (Table 1, Fig. 2).

Related literature top

For bond-length data, see: Allen et al. (1987). For general background, see: Gao et al. (2005); Hagen et al. (1983); Lozytska et al. (2004); Sessler et al. (2004); Kuz'min et al. (2000). For related structures, see: Räisänen, Elo et al. (2007); Räisänen Leskelä & Repo (2007). For experimental procedures, see: Gümüş (2002).

Experimental top

Quinoline-4-carboxaldehyde (1.0 mmol) was dissolved in hot absolute ethanol (5 ml) and an equimolar amount of 2-aminophenol dissolved in hot absolute ethanol (10 ml) was added. The mixture was refluxed at reaction temperature for 2 h. The progress of the reaction was monitored by TLC using n-hexane/ethylacetate (1:1 v/v) as eluent. Upon completion of the reaction, the crude product which precipitated on cooling was collected by filtration. Further purification was accomplished by recrystallization from ethanol to yield yellow blocks of (I). [yield 80%, m.p. 475–476 K]. UV (CHCl3): λmax248, 343, 377 nm. IR (KBr): 3029, 2851, 1625, 1574 and1472, 1293–1165, 830 and 757 cm-1. 1H NMR (CDCl3, 200 MHz): δ(p.p.m.) 6.95–9.08 (m, ArH and CH, 11H), 9.41(s, OH, 1H). MS: m/z 249 (M+1), 248 (M+), 247 (M-1), 128 (M-120), 120 (M-128). Analysis calculated for C16H12N2O: C 77.40, H 4.87, N 11.28%; found: C 77.62, H 4.96, N 11.12% (Gümüş, 2002).

Refinement top

The H atoms were found from a difference map and refined freely.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. View of (I): displacement ellipsoids for non-H atoms are drawn at the 50% probability level.
[Figure 2] Fig. 2. The hydrogen bonding interactions of (I) viewed down the a axis. For clarity, H atoms not involved in hydrogen bonding have been omitted.
2-[(E)-4-Quinolylmethylideneamino]phenol top
Crystal data top
C16H12N2OF(000) = 520
Mr = 248.28Dx = 1.374 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2762 reflections
a = 6.7174 (6) Åθ = 2.9–26.4°
b = 23.931 (2) ŵ = 0.09 mm1
c = 7.7495 (6) ÅT = 150 K
β = 105.521 (1)°Block, yellow
V = 1200.33 (17) Å30.25 × 0.20 × 0.10 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
2991 independent reflections
Radiation source: sealed tube2338 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
ϕ and ω scansθmax = 28.4°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 88
Tmin = 0.978, Tmax = 0.991k = 3131
12294 measured reflectionsl = 1010
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: difmap and geom
wR(F2) = 0.105H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0424P)2 + 0.3303P]
where P = (Fo2 + 2Fc2)/3
2991 reflections(Δ/σ)max < 0.001
220 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C16H12N2OV = 1200.33 (17) Å3
Mr = 248.28Z = 4
Monoclinic, P21/nMo Kα radiation
a = 6.7174 (6) ŵ = 0.09 mm1
b = 23.931 (2) ÅT = 150 K
c = 7.7495 (6) Å0.25 × 0.20 × 0.10 mm
β = 105.521 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
2991 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
2338 reflections with I > 2σ(I)
Tmin = 0.978, Tmax = 0.991Rint = 0.037
12294 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.105H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.25 e Å3
2991 reflectionsΔρmin = 0.24 e Å3
220 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O11.06305 (16)0.13183 (4)0.54890 (14)0.0340 (3)
N10.76446 (16)0.10349 (4)0.72156 (14)0.0243 (3)
N20.80975 (16)0.03956 (5)1.22446 (15)0.0258 (3)
C10.8930 (2)0.16414 (5)0.52971 (17)0.0264 (4)
C20.8697 (3)0.20982 (6)0.41486 (19)0.0340 (4)
C30.6997 (3)0.24448 (6)0.3910 (2)0.0372 (5)
C40.5529 (3)0.23493 (6)0.4839 (2)0.0370 (5)
C50.5745 (2)0.18955 (6)0.59862 (19)0.0313 (4)
C60.7433 (2)0.15362 (5)0.62205 (17)0.0242 (4)
C70.72483 (19)0.10243 (5)0.87303 (17)0.0235 (3)
C80.74355 (18)0.05168 (5)0.98390 (16)0.0215 (3)
C90.78135 (19)0.05904 (6)1.16557 (17)0.0236 (3)
C100.81518 (19)0.01260 (6)1.28017 (17)0.0260 (4)
C110.76319 (18)0.04841 (5)1.04285 (17)0.0233 (3)
C120.72937 (18)0.00427 (5)0.91566 (16)0.0212 (3)
C130.67854 (19)0.01837 (6)0.73121 (17)0.0240 (4)
C140.6654 (2)0.07303 (6)0.67751 (18)0.0278 (4)
C150.7014 (2)0.11657 (6)0.8042 (2)0.0308 (4)
C160.7487 (2)0.10454 (5)0.98290 (19)0.0282 (4)
H11.068 (3)0.1013 (9)0.628 (3)0.072 (6)*
H20.976 (3)0.2161 (7)0.350 (2)0.044 (5)*
H30.686 (3)0.2753 (7)0.307 (2)0.046 (5)*
H40.433 (3)0.2587 (7)0.469 (2)0.042 (5)*
H50.468 (2)0.1808 (6)0.657 (2)0.033 (4)*
H70.689 (2)0.1376 (6)0.929 (2)0.031 (4)*
H90.788 (2)0.0966 (6)1.214 (2)0.031 (4)*
H100.844 (2)0.0186 (6)1.409 (2)0.024 (4)*
H130.653 (2)0.0114 (6)0.642 (2)0.025 (4)*
H140.632 (2)0.0822 (6)0.550 (2)0.032 (4)*
H150.693 (2)0.1566 (7)0.765 (2)0.035 (4)*
H160.772 (2)0.1340 (7)1.074 (2)0.033 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0385 (6)0.0322 (5)0.0359 (6)0.0058 (4)0.0181 (4)0.0097 (4)
N10.0246 (5)0.0223 (5)0.0254 (6)0.0006 (4)0.0055 (4)0.0023 (4)
N20.0220 (5)0.0295 (6)0.0259 (6)0.0025 (4)0.0062 (4)0.0040 (5)
C10.0343 (7)0.0221 (6)0.0214 (6)0.0012 (5)0.0049 (5)0.0020 (5)
C20.0475 (9)0.0274 (7)0.0272 (7)0.0040 (6)0.0100 (6)0.0022 (6)
C30.0549 (10)0.0214 (7)0.0308 (8)0.0020 (6)0.0037 (7)0.0037 (6)
C40.0436 (9)0.0238 (7)0.0383 (8)0.0074 (6)0.0018 (7)0.0010 (6)
C50.0335 (7)0.0257 (7)0.0328 (7)0.0021 (6)0.0057 (6)0.0002 (6)
C60.0303 (7)0.0185 (6)0.0217 (6)0.0016 (5)0.0036 (5)0.0009 (5)
C70.0226 (6)0.0221 (6)0.0249 (6)0.0003 (5)0.0050 (5)0.0017 (5)
C80.0168 (6)0.0238 (6)0.0238 (6)0.0003 (5)0.0052 (4)0.0004 (5)
C90.0211 (6)0.0251 (6)0.0248 (6)0.0007 (5)0.0064 (5)0.0023 (5)
C100.0227 (6)0.0345 (7)0.0210 (6)0.0009 (5)0.0060 (5)0.0005 (5)
C110.0173 (6)0.0259 (6)0.0269 (6)0.0004 (5)0.0062 (5)0.0017 (5)
C120.0166 (6)0.0234 (6)0.0241 (6)0.0000 (4)0.0064 (4)0.0004 (5)
C130.0212 (6)0.0266 (7)0.0247 (6)0.0006 (5)0.0070 (5)0.0001 (5)
C140.0249 (6)0.0297 (7)0.0285 (7)0.0002 (5)0.0068 (5)0.0056 (5)
C150.0282 (7)0.0240 (7)0.0388 (8)0.0006 (5)0.0064 (6)0.0036 (6)
C160.0257 (7)0.0224 (6)0.0358 (7)0.0012 (5)0.0071 (5)0.0036 (6)
Geometric parameters (Å, º) top
O1—C11.3542 (17)C11—C121.4210 (17)
O1—H10.95 (2)C12—C131.4186 (18)
N1—C61.4126 (16)C13—C141.368 (2)
N1—C71.2715 (17)C14—C151.408 (2)
N2—C111.3740 (17)C15—C161.366 (2)
N2—C101.3181 (19)C2—H20.989 (19)
C1—C21.3918 (19)C3—H30.972 (16)
C1—C61.4042 (19)C4—H40.967 (19)
C2—C31.383 (3)C5—H50.966 (14)
C3—C41.387 (3)C7—H71.005 (15)
C4—C51.386 (2)C9—H90.971 (15)
C5—C61.3957 (19)C10—H100.975 (15)
C7—C81.4735 (17)C13—H130.975 (15)
C8—C91.3734 (18)C14—H140.978 (15)
C8—C121.4334 (17)C15—H151.002 (17)
C9—C101.403 (2)C16—H160.980 (16)
C11—C161.4161 (17)
C1—O1—H1113.2 (13)C13—C14—C15120.70 (13)
C6—N1—C7120.37 (11)C14—C15—C16120.07 (13)
C10—N2—C11117.40 (11)C11—C16—C15120.62 (12)
O1—C1—C2117.77 (13)C1—C2—H2118.1 (10)
C2—C1—C6119.56 (13)C3—C2—H2121.6 (10)
O1—C1—C6122.67 (11)C2—C3—H3118.1 (12)
C1—C2—C3120.27 (16)C4—C3—H3121.3 (12)
C2—C3—C4120.54 (14)C3—C4—H4121.7 (10)
C3—C4—C5119.68 (16)C5—C4—H4118.6 (10)
C4—C5—C6120.53 (14)C4—C5—H5120.4 (9)
N1—C6—C1116.70 (11)C6—C5—H5118.9 (9)
C1—C6—C5119.40 (12)N1—C7—H7121.0 (8)
N1—C6—C5123.63 (12)C8—C7—H7115.6 (8)
N1—C7—C8123.26 (11)C8—C9—H9119.5 (9)
C7—C8—C12124.61 (11)C10—C9—H9120.4 (9)
C9—C8—C12118.28 (11)N2—C10—H10117.1 (9)
C7—C8—C9117.10 (11)C9—C10—H10119.1 (9)
C8—C9—C10120.11 (13)C12—C13—H13119.3 (9)
N2—C10—C9123.87 (12)C14—C13—H13119.9 (9)
N2—C11—C16117.33 (11)C13—C14—H14120.0 (9)
C12—C11—C16119.56 (12)C15—C14—H14119.3 (9)
N2—C11—C12123.11 (11)C14—C15—H15120.7 (9)
C8—C12—C13124.63 (11)C16—C15—H15119.2 (9)
C11—C12—C13118.22 (11)C11—C16—H16117.5 (9)
C8—C12—C11117.13 (11)C15—C16—H16121.8 (9)
C12—C13—C14120.82 (12)
C7—N1—C6—C1141.39 (13)C7—C8—C9—C10175.57 (12)
C7—N1—C6—C544.64 (19)C12—C8—C9—C103.15 (19)
C6—N1—C7—C8179.98 (13)C7—C8—C12—C11176.39 (12)
C11—N2—C10—C91.61 (19)C7—C8—C12—C135.5 (2)
C10—N2—C11—C122.52 (19)C9—C8—C12—C112.23 (18)
C10—N2—C11—C16177.36 (12)C9—C8—C12—C13175.91 (13)
O1—C1—C2—C3179.58 (13)C8—C9—C10—N21.3 (2)
C6—C1—C2—C30.4 (2)N2—C11—C12—C80.62 (19)
O1—C1—C6—N17.27 (18)N2—C11—C12—C13178.87 (12)
O1—C1—C6—C5178.49 (12)C16—C11—C12—C8179.26 (12)
C2—C1—C6—N1173.54 (12)C16—C11—C12—C131.00 (18)
C2—C1—C6—C50.70 (19)N2—C11—C16—C15179.50 (13)
C1—C2—C3—C41.4 (2)C12—C11—C16—C150.4 (2)
C2—C3—C4—C51.4 (2)C8—C12—C13—C14179.03 (13)
C3—C4—C5—C60.4 (2)C11—C12—C13—C140.92 (19)
C4—C5—C6—N1173.12 (13)C12—C13—C14—C150.2 (2)
C4—C5—C6—C10.7 (2)C13—C14—C15—C160.4 (2)
N1—C7—C8—C9153.65 (13)C14—C15—C16—C110.3 (2)
N1—C7—C8—C1225.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.95 (2)2.34 (2)2.7766 (16)107.5 (15)
O1—H1···N2i0.95 (2)1.91 (2)2.8085 (16)156.4 (19)
C13—H13···N10.975 (15)2.356 (14)2.9776 (17)121.0 (11)
Symmetry code: (i) x+2, y, z+2.

Experimental details

Crystal data
Chemical formulaC16H12N2O
Mr248.28
Crystal system, space groupMonoclinic, P21/n
Temperature (K)150
a, b, c (Å)6.7174 (6), 23.931 (2), 7.7495 (6)
β (°) 105.521 (1)
V3)1200.33 (17)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.25 × 0.20 × 0.10
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.978, 0.991
No. of measured, independent and
observed [I > 2σ(I)] reflections
12294, 2991, 2338
Rint0.037
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.105, 1.05
No. of reflections2991
No. of parameters220
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.25, 0.24

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.95 (2)2.34 (2)2.7766 (16)107.5 (15)
O1—H1···N2i0.95 (2)1.91 (2)2.8085 (16)156.4 (19)
C13—H13···N10.975 (15)2.356 (14)2.9776 (17)121.0 (11)
Symmetry code: (i) x+2, y, z+2.
 

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGao, J., Ross Woolley, F. & Zingaro, R. A. (2005). J. Med. Chem. 48, 7192–7197.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGümüş, M. K. (2002). MSc thesis, Yıldız Technical University, Istanbul, Turkey.  Google Scholar
First citationHagen, V., Dove, B., Morgenstern, E., Labes, D., Göres, E., Tomaschewski, G., Geisler, G. & Franke, C. (1983). Pharmazie, 38, 437–439.  CAS PubMed Web of Science Google Scholar
First citationKuz'min, V. E., Lozitsky, V. P., Kamalov, G. L., Lozitskaya, R. N., Zheltvay, A. I., Fedtchouk, A. S. & Kryzhanovsky, D. N. (2000). Acta Biochim. Pol. 47, 867–875.  Web of Science PubMed CAS Google Scholar
First citationLozytska, R., Kryzhanovsky, D., Mazepa, A., Gorodniuk, V., Kuz'min, V., Lozitsky, V., Fedchuck, A., Rybalko, S., Diadium, S. & Vanden Eynde, J. J. (2004). Arkivoc, xix, 118R.  CrossRef Google Scholar
First citationRäisänen, M. T., Elo, P., Kettunen, M., Klinga, M., Leskelä, M. & Repo, T. (2007). Synth. Commun. 37, 1765–1777.  Google Scholar
First citationRäisänen, M. T., Leskelä, M. & Repo, T. (2007). Acta Cryst. E63, o1816–o1817.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSessler, J. L., Katayev, E., Pantos, G. D. & Ustynyuk, Yu. A. (2004). J. Chem. Soc. Chem. Commun. pp. 1276–1277.  CrossRef Google Scholar
First citationSheldrick, G. M. (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds