organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Amino­pyridinium 4-methyl­benzoate dihydrate

aBasic Experiment Teaching Center, Henan University, Kaifeng 475004, People's Republic of China
*Correspondence e-mail: lijie_78@126.com

(Received 28 September 2008; accepted 30 September 2008; online 4 October 2008)

The crystal structure of the title salt, C5H7N2+·C8H7O2·2H2O, contains a three-dimensional supra­molecular framework constructed through N—H⋯O and O—H⋯O hydrogen bonds.

Related literature

For a related structure, see: Wang & Wei (2005[Wang, Z.-L. & Wei, L.-H. (2005). Acta Cryst. E61, o3129-o3130.]).

[Scheme 1]

Experimental

Crystal data
  • C5H7N2+·C8H7O2·2H2O

  • Mr = 266.29

  • Monoclinic, C c

  • a = 12.2059 (14) Å

  • b = 13.1531 (16) Å

  • c = 8.9937 (11) Å

  • β = 96.617 (2)°

  • V = 1434.3 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 296 (2) K

  • 0.23 × 0.18 × 0.16 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2001[Sheldrick, G. M. (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.979, Tmax = 0.985

  • 4203 measured reflections

  • 1567 independent reflections

  • 1406 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.089

  • S = 1.04

  • 1567 reflections

  • 175 parameters

  • 8 restraints

  • H-atom parameters constrained

  • Δρmax = 0.12 e Å−3

  • Δρmin = −0.12 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2C⋯O1Wi 0.86 2.06 2.906 (2) 169
N1—H1A⋯O1 0.86 1.82 2.676 (2) 173
N2—H2B⋯O2 0.86 1.98 2.826 (3) 168
O1W—H1AW⋯O2W 0.84 1.88 2.705 (2) 168
O1W—H1BW⋯O2 0.83 1.92 2.739 (2) 169
O2W—H2AW⋯O1Wii 0.83 1.93 2.758 (2) 172
O2W—H2BW⋯O1iii 0.83 1.93 2.732 (2) 160
Symmetry codes: (i) [x, -y, z-{\script{1\over 2}}]; (ii) [x, -y, z+{\script{1\over 2}}]; (iii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2001[Bruker (2001). SAINT-Plus and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SAINT-Plus and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

Currently, many groups are investigating supramolecular structures of cocrystals containing organic acids and organic bases resulting from hydrogen bonding (Wang & Wei, 2005). The asymmetric unit of the title compound, (I), is composed of 4-methylbenzoate anion, one 2-amino pyridinium cation and two water molecules in general positions (Fig. 1). The carboxyl group of 4-methylbenzoic acid is deprotonated. In the crystal, 2-amino pyridinium and 4-methylbenzoic acid anion together with water molecules are linked into a three-dimensional supramolecular framework by multiple N—H···O and O—H···O hydrogen bonds (Fig. 2 and Table 1).

Related literature top

For a related structure, see: Wang & Wei (2005).

Experimental top

4-Methylbenzoic acid (1 mmol, 0.135 g) and 2-aminopyridine (1 mmol, 0.094 g) were dissolved in 20 ml of distilled water. The solution was stirred for about 20 min at 353 K, avoiding evaporation of 2-aminopyridine. Colourless blocks of (I) were obtained from the filtrate after seven days.

Refinement top

Anomalous dispersion was negligible and Friedel pairs were merged before refinement.

The H atoms were geometrically placed with C—H = 0.93–0.96 Å, N—H = 0.86 Å and O—H = 0.83 Å, and were refined as riding with Uiso(H)=1.2Ueq(N and Cmethylidyne) and Uiso(H)=1.5Ueq(O or Cmethyl).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with displacement ellipsoids for the non-hydrogen atoms drawn at the 50% probability level.
[Figure 2] Fig. 2. Three-dimensional structure of (I), with H bonds indicated by dashed lines. For clarity, H atoms not involved in hydrogen bonds are omitted.
2-Aminopyridinium 4-methylbenzoate dihydrate top
Crystal data top
C5H7N2+·C8H7O2·2H2OF(000) = 568
Mr = 266.29Dx = 1.233 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
Hall symbol: C -2ycCell parameters from 1977 reflections
a = 12.2059 (14) Åθ = 2.3–26.6°
b = 13.1531 (16) ŵ = 0.09 mm1
c = 8.9937 (11) ÅT = 296 K
β = 96.617 (2)°Block, colorless
V = 1434.3 (3) Å30.23 × 0.18 × 0.16 mm
Z = 4
Data collection top
Bruker SMART CCD
diffractometer
1567 independent reflections
Radiation source: fine-focus sealed tube1406 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
ω scansθmax = 27.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
h = 615
Tmin = 0.979, Tmax = 0.985k = 1616
4203 measured reflectionsl = 1111
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.032H-atom parameters constrained
wR(F2) = 0.089 w = 1/[σ2(Fo2) + (0.0525P)2 + 0.1161P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
1567 reflectionsΔρmax = 0.12 e Å3
175 parametersΔρmin = 0.12 e Å3
8 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.019 (2)
Crystal data top
C5H7N2+·C8H7O2·2H2OV = 1434.3 (3) Å3
Mr = 266.29Z = 4
Monoclinic, CcMo Kα radiation
a = 12.2059 (14) ŵ = 0.09 mm1
b = 13.1531 (16) ÅT = 296 K
c = 8.9937 (11) Å0.23 × 0.18 × 0.16 mm
β = 96.617 (2)°
Data collection top
Bruker SMART CCD
diffractometer
1567 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
1406 reflections with I > 2σ(I)
Tmin = 0.979, Tmax = 0.985Rint = 0.019
4203 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0328 restraints
wR(F2) = 0.089H-atom parameters constrained
S = 1.04Δρmax = 0.12 e Å3
1567 reflectionsΔρmin = 0.12 e Å3
175 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)

are estimated using the full covariance matrix. The cell e.s.d.'s are taken

into account individually in the estimation of e.s.d.'s in distances, angles

and torsion angles; correlations between e.s.d.'s in cell parameters are only

used when they are defined by crystal symmetry. An approximate (isotropic)

treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and

goodness of fit S are based on F2, conventional R-factors R are based

on F, with F set to zero for negative F2. The threshold expression of

F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is

not relevant to the choice of reflections for refinement. R-factors based

on F2 are statistically about twice as large as those based on F, and R-

factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.48260 (16)0.20609 (14)0.6527 (2)0.0505 (4)
C20.43746 (18)0.28865 (16)0.7214 (2)0.0563 (5)
H2A0.43590.35220.67580.068*
C30.39515 (17)0.27745 (17)0.8558 (2)0.0606 (5)
H3A0.36620.33380.90000.073*
C40.39467 (17)0.18356 (19)0.9270 (2)0.0607 (5)
C50.4400 (2)0.10125 (18)0.8588 (3)0.0682 (6)
H5A0.44130.03770.90440.082*
C60.4834 (2)0.11256 (16)0.7238 (2)0.0625 (6)
H6A0.51350.05650.68030.075*
C70.3478 (3)0.1719 (2)1.0746 (4)0.0832 (7)
H7A0.35410.10231.10650.125*
H7B0.27150.19161.06260.125*
H7C0.38810.21451.14850.125*
C80.52854 (18)0.21761 (16)0.5061 (2)0.0559 (5)
C90.64742 (16)0.25294 (16)0.1096 (2)0.0540 (5)
C100.6947 (2)0.2780 (2)0.0219 (3)0.0662 (6)
H10A0.72790.22790.07410.079*
C110.6915 (2)0.3748 (2)0.0715 (3)0.0766 (7)
H11A0.72480.39120.15630.092*
C120.6383 (3)0.4515 (2)0.0034 (3)0.0775 (7)
H12A0.63460.51800.03210.093*
C130.5934 (2)0.42557 (17)0.1272 (3)0.0679 (6)
H13A0.55750.47470.17800.082*
N10.59936 (16)0.32882 (13)0.17948 (19)0.0572 (4)
H1A0.57130.31520.26070.069*
N20.64687 (16)0.16065 (14)0.1677 (2)0.0616 (4)
H2B0.61640.15020.24790.074*
H2C0.67700.11100.12520.074*
O10.51630 (17)0.30246 (12)0.4395 (2)0.0748 (5)
O20.57598 (17)0.14398 (13)0.4549 (2)0.0774 (5)
O1W0.74860 (13)0.02177 (11)0.56348 (16)0.0631 (4)
H1AW0.77670.04310.64710.076*
H1BW0.70220.06490.52960.076*
O2W0.85359 (18)0.06355 (15)0.8382 (2)0.0886 (6)
H2AW0.82750.03400.90810.133*
H2BW0.89060.11140.87910.133*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0524 (10)0.0485 (10)0.0491 (10)0.0065 (8)0.0009 (8)0.0026 (8)
C20.0571 (11)0.0491 (10)0.0612 (12)0.0059 (8)0.0005 (9)0.0031 (9)
C30.0565 (11)0.0624 (12)0.0624 (13)0.0081 (9)0.0050 (10)0.0100 (10)
C40.0511 (11)0.0738 (14)0.0569 (13)0.0057 (10)0.0045 (9)0.0047 (10)
C50.0847 (16)0.0545 (11)0.0661 (13)0.0024 (11)0.0115 (11)0.0063 (10)
C60.0797 (15)0.0484 (10)0.0595 (12)0.0090 (10)0.0086 (11)0.0039 (9)
C70.0784 (16)0.104 (2)0.0709 (15)0.0051 (15)0.0234 (13)0.0001 (14)
C80.0607 (11)0.0550 (11)0.0516 (10)0.0136 (9)0.0042 (9)0.0013 (8)
C90.0496 (10)0.0573 (11)0.0529 (11)0.0052 (9)0.0032 (9)0.0067 (9)
C100.0607 (13)0.0826 (16)0.0561 (12)0.0112 (11)0.0105 (10)0.0046 (11)
C110.0808 (17)0.0914 (18)0.0589 (13)0.0001 (13)0.0133 (12)0.0119 (13)
C120.101 (2)0.0654 (14)0.0632 (14)0.0019 (13)0.0014 (12)0.0081 (11)
C130.0905 (16)0.0550 (12)0.0565 (12)0.0086 (11)0.0007 (11)0.0039 (10)
N10.0655 (10)0.0568 (9)0.0492 (9)0.0060 (8)0.0060 (7)0.0021 (7)
N20.0652 (10)0.0570 (10)0.0627 (10)0.0110 (8)0.0080 (8)0.0044 (8)
O10.0988 (12)0.0615 (9)0.0686 (10)0.0280 (9)0.0295 (9)0.0155 (8)
O20.1095 (13)0.0620 (9)0.0638 (9)0.0332 (9)0.0228 (8)0.0046 (7)
O1W0.0750 (9)0.0564 (8)0.0593 (8)0.0100 (7)0.0137 (7)0.0006 (7)
O2W0.1081 (15)0.0954 (13)0.0626 (9)0.0426 (12)0.0114 (10)0.0026 (9)
Geometric parameters (Å, º) top
C1—C61.386 (3)C9—N11.349 (3)
C1—C21.394 (3)C9—C101.414 (3)
C1—C81.499 (3)C10—C111.347 (4)
C2—C31.375 (3)C10—H10A0.9300
C2—H2A0.9300C11—C121.412 (4)
C3—C41.391 (3)C11—H11A0.9300
C3—H3A0.9300C12—C131.341 (4)
C4—C51.390 (4)C12—H12A0.9300
C4—C71.513 (4)C13—N11.356 (3)
C5—C61.388 (4)C13—H13A0.9300
C5—H5A0.9300N1—H1A0.8600
C6—H6A0.9300N2—H2B0.8600
C7—H7A0.9600N2—H2C0.8600
C7—H7B0.9600O1W—H1AW0.8386
C7—H7C0.9600O1W—H1BW0.8339
C8—O21.244 (3)O2W—H2AW0.8328
C8—O11.267 (3)O2W—H2BW0.8345
C9—N21.322 (3)
C6—C1—C2118.00 (19)O2—C8—C1118.96 (18)
C6—C1—C8120.78 (17)O1—C8—C1117.98 (18)
C2—C1—C8121.22 (17)N2—C9—N1118.26 (19)
C3—C2—C1120.9 (2)N2—C9—C10124.5 (2)
C3—C2—H2A119.5N1—C9—C10117.3 (2)
C1—C2—H2A119.5C11—C10—C9119.9 (2)
C2—C3—C4121.4 (2)C11—C10—H10A120.0
C2—C3—H3A119.3C9—C10—H10A120.0
C4—C3—H3A119.3C10—C11—C12121.0 (2)
C5—C4—C3117.7 (2)C10—C11—H11A119.5
C5—C4—C7121.2 (2)C12—C11—H11A119.5
C3—C4—C7121.0 (2)C13—C12—C11117.9 (2)
C6—C5—C4120.9 (2)C13—C12—H12A121.0
C6—C5—H5A119.5C11—C12—H12A121.0
C4—C5—H5A119.5C12—C13—N1121.1 (2)
C1—C6—C5121.0 (2)C12—C13—H13A119.4
C1—C6—H6A119.5N1—C13—H13A119.4
C5—C6—H6A119.5C9—N1—C13122.8 (2)
C4—C7—H7A109.5C9—N1—H1A118.6
C4—C7—H7B109.5C13—N1—H1A118.6
H7A—C7—H7B109.5C9—N2—H2B120.0
C4—C7—H7C109.5C9—N2—H2C120.0
H7A—C7—H7C109.5H2B—N2—H2C120.0
H7B—C7—H7C109.5H1AW—O1W—H1BW106.9
O2—C8—O1123.1 (2)H2AW—O2W—H2BW104.7
C6—C1—C2—C30.1 (3)C2—C1—C8—O2174.2 (2)
C8—C1—C2—C3179.8 (2)C6—C1—C8—O1173.5 (2)
C1—C2—C3—C40.7 (3)C2—C1—C8—O16.2 (3)
C2—C3—C4—C50.9 (3)N2—C9—C10—C11179.6 (2)
C2—C3—C4—C7179.9 (2)N1—C9—C10—C110.7 (3)
C3—C4—C5—C60.5 (3)C9—C10—C11—C122.1 (4)
C7—C4—C5—C6179.6 (2)C10—C11—C12—C131.5 (4)
C2—C1—C6—C50.4 (3)C11—C12—C13—N10.4 (4)
C8—C1—C6—C5179.3 (2)N2—C9—N1—C13178.5 (2)
C4—C5—C6—C10.2 (4)C10—C9—N1—C131.2 (3)
C6—C1—C8—O26.0 (3)C12—C13—N1—C91.8 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2C···O1Wi0.862.062.906 (2)169
N1—H1A···O10.861.822.676 (2)173
N2—H2B···O20.861.982.826 (3)168
O1W—H1AW···O2W0.841.882.705 (2)168
O1W—H1BW···O20.831.922.739 (2)169
O2W—H2AW···O1Wii0.831.932.758 (2)172
O2W—H2BW···O1iii0.831.932.732 (2)160
Symmetry codes: (i) x, y, z1/2; (ii) x, y, z+1/2; (iii) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC5H7N2+·C8H7O2·2H2O
Mr266.29
Crystal system, space groupMonoclinic, Cc
Temperature (K)296
a, b, c (Å)12.2059 (14), 13.1531 (16), 8.9937 (11)
β (°) 96.617 (2)
V3)1434.3 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.23 × 0.18 × 0.16
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2001)
Tmin, Tmax0.979, 0.985
No. of measured, independent and
observed [I > 2σ(I)] reflections
4203, 1567, 1406
Rint0.019
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.089, 1.04
No. of reflections1567
No. of parameters175
No. of restraints8
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.12, 0.12

Computer programs: SMART (Bruker, 2001), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2C···O1Wi0.862.062.906 (2)169
N1—H1A···O10.861.822.676 (2)173
N2—H2B···O20.861.982.826 (3)168
O1W—H1AW···O2W0.841.882.705 (2)168
O1W—H1BW···O20.831.922.739 (2)169
O2W—H2AW···O1Wii0.831.932.758 (2)172
O2W—H2BW···O1iii0.831.932.732 (2)160
Symmetry codes: (i) x, y, z1/2; (ii) x, y, z+1/2; (iii) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

This work was supported by the Basic Research Foundation for Natural Science of Henan University.

References

First citationBruker (2001). SAINT-Plus and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, Z.-L. & Wei, L.-H. (2005). Acta Cryst. E61, o3129–o3130.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds