metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

rac-(3-Hydr­­oxy-2-phenyl­propionato-κO)tri­phenyl­tin(IV)

aDepartment of Chemistry, Shahid Beheshti University, Tehran, Iran, bSchool of Chemistry, College of Science, Tehran University, Tehran, Iran, and cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 7 October 2008; accepted 8 October 2008; online 15 October 2008)

The SnIV atom in the monomeric title compound, [Sn(C6H5)3(C9H9O3)] exists in a distorted SnC3O tetra­hedral geometry. In the crystal structure, inversion dimers arise from pairs of O—H⋯O hydrogen bonds.

Related literature

For reviews of organotin carboxyl­ates, see: Tiekink (1991[Tiekink, E. R. T. (1991). Appl. Organomet. Chem. 5, 1-23.], 1994[Tiekink, E. R. T. (1994). Trends Organomet. Chem. 1, 71-116.]).

[Scheme 1]

Experimental

Crystal data
  • [Sn(C6H5)3(C9H9O3)]

  • Mr = 515.15

  • Triclinic, [P \overline 1]

  • a = 9.3880 (2) Å

  • b = 9.4899 (2) Å

  • c = 14.3399 (2) Å

  • α = 90.087 (1)°

  • β = 103.664 (1)°

  • γ = 112.758 (1)°

  • V = 1138.58 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.15 mm−1

  • T = 112 (2) K

  • 0.39 × 0.32 × 0.31 mm

Data collection
  • Bruker APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.663, Tmax = 0.717

  • 33531 measured reflections

  • 6612 independent reflections

  • 6339 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.019

  • wR(F2) = 0.054

  • S = 1.05

  • 6612 reflections

  • 281 parameters

  • H-atom parameters constrained

  • Δρmax = 0.64 e Å−3

  • Δρmin = −0.35 e Å−3

Table 1
Selected bond lengths (Å)

Sn1—O1 2.082 (1)
Sn1—C1 2.123 (1)
Sn1—C7 2.122 (1)
Sn1—C13 2.128 (1)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O2i 0.84 1.98 2.819 (2) 175
Symmetry code: (i) -x+1, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2008[Westrip, S. P. (2008). publCIF. In preparation.]).

Supporting information


Comment top

The monomeric structure found for triphenyltin 2-hydroxy-3-phenylpropionate (Scheme I, Fig. 1) conforms to expectations based on the presence of bulky substituents (Tiekink, 1991, 1994). In the arbitrarily chosen asymmetric unit, C20 has R configuration, but crystal symmetry generates a racemic mixture. Selected geometrical data are given in Tables 1 and 2.

Related literature top

For reviews of organotin carboxylates, see: Tiekink (1991, 1994).

Experimental top

Triphenyltin hydroxide (1.0 g, 2.7 mmol) and d,l-tropic acid (0.45 g, 2.7 mmol) were heated in toluene (100 ml) in a Dean–Stark water-separator until all the water had been removed. The solvent was removed under reduced pressure to leave a white solid. The solid was recrystallized from mixture of chloroform, hexane and toluene (2:1:1 v/v) to give colorless blocks of (I), m.p. 385–386 K.

IR (KBr, cm-1): 3449 (OH), 1627 (CO, asym), 1355 (CO, sym), 576, 601 (Sn—C). 1H NMR (CDCl3): 3.72–4.08 (m, 3H), 7.28–7.78 (20H, C6H5) p.p.m. 13C NMR (CDCl3): 53.90 (CH), 65.08 (CH2) 127.5–137.7 (C6H5) p.p.m. 119Sn NMR (CDCl3): -83.1 p.p.m. Mass spectrum (m/e): 515 (M–1) [Ph3SnO2CCH(CH2O)Ph]+, 439 (M–Ph) [Ph3SnO2CCH(CH2OH)]+.

Refinement top

The hydrogen atoms were placed in calculated positions (C—H = 0.95–1.00 Å, O—H = 0.84 Å) and refined as riding with Uiso(H) = 1.2Ueq(carrier).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing displacement ellipsoids at the 70% probability level; hydrogen atoms are shown as spheres of arbitrary radius.
rac-(3-Hydroxy-2-phenylpropionato-κO)triphenyltin(IV) top
Crystal data top
[Sn(C6H5)3(C9H9O3)]Z = 2
Mr = 515.15F(000) = 520
Triclinic, P1Dx = 1.503 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.3880 (2) ÅCell parameters from 9425 reflections
b = 9.4899 (2) Åθ = 2.3–32.6°
c = 14.3399 (2) ŵ = 1.15 mm1
α = 90.087 (1)°T = 112 K
β = 103.664 (1)°Block, colourless
γ = 112.758 (1)°0.39 × 0.32 × 0.31 mm
V = 1138.58 (4) Å3
Data collection top
Bruker APEXII
diffractometer
6612 independent reflections
Radiation source: medium-focus sealed tube6339 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
ϕ and ω scansθmax = 30.0°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1313
Tmin = 0.663, Tmax = 0.717k = 1313
33531 measured reflectionsl = 1920
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.019Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.054H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0304P)2 + 0.5255P]
where P = (Fo2 + 2Fc2)/3
6612 reflections(Δ/σ)max = 0.001
281 parametersΔρmax = 0.64 e Å3
0 restraintsΔρmin = 0.35 e Å3
Crystal data top
[Sn(C6H5)3(C9H9O3)]γ = 112.758 (1)°
Mr = 515.15V = 1138.58 (4) Å3
Triclinic, P1Z = 2
a = 9.3880 (2) ÅMo Kα radiation
b = 9.4899 (2) ŵ = 1.15 mm1
c = 14.3399 (2) ÅT = 112 K
α = 90.087 (1)°0.39 × 0.32 × 0.31 mm
β = 103.664 (1)°
Data collection top
Bruker APEXII
diffractometer
6612 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
6339 reflections with I > 2σ(I)
Tmin = 0.663, Tmax = 0.717Rint = 0.020
33531 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0190 restraints
wR(F2) = 0.054H-atom parameters constrained
S = 1.05Δρmax = 0.64 e Å3
6612 reflectionsΔρmin = 0.35 e Å3
281 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn10.588742 (10)0.636637 (10)0.826066 (6)0.02043 (3)
O10.74512 (13)0.76508 (12)0.74695 (7)0.0268 (2)
O20.52531 (13)0.67054 (13)0.62949 (8)0.0303 (2)
O30.71606 (16)0.55344 (13)0.51412 (10)0.0394 (3)
H30.64490.48260.47340.059*
C10.54423 (16)0.40565 (15)0.78448 (9)0.0222 (2)
C20.4203 (2)0.28743 (18)0.81068 (12)0.0330 (3)
H20.35150.31110.84110.040*
C30.3973 (3)0.1349 (2)0.79226 (15)0.0441 (4)
H3A0.31290.05490.81020.053*
C40.4965 (2)0.09935 (19)0.74803 (13)0.0400 (4)
H40.48120.00480.73650.048*
C50.6186 (2)0.21545 (19)0.72034 (12)0.0334 (3)
H50.68560.19080.68880.040*
C60.64278 (18)0.36822 (17)0.73878 (11)0.0274 (3)
H60.72690.44760.72010.033*
C70.38486 (17)0.68487 (16)0.82227 (12)0.0275 (3)
C80.25851 (18)0.64580 (18)0.73831 (13)0.0333 (3)
H80.26860.60720.68020.040*
C90.1186 (2)0.6635 (2)0.74001 (16)0.0425 (4)
H90.03350.63720.68310.051*
C100.1040 (2)0.7191 (2)0.82417 (19)0.0480 (5)
H100.00820.73050.82520.058*
C110.2273 (2)0.7587 (2)0.90783 (18)0.0458 (4)
H110.21600.79780.96550.055*
C120.3687 (2)0.74112 (19)0.90717 (14)0.0358 (3)
H120.45310.76750.96440.043*
C130.76077 (16)0.71155 (16)0.96187 (10)0.0231 (2)
C140.8361 (2)0.61586 (19)1.00105 (11)0.0323 (3)
H140.80350.51610.96960.039*
C150.9590 (2)0.6657 (2)1.08601 (13)0.0427 (4)
H151.01000.60011.11200.051*
C161.0063 (2)0.8105 (2)1.13220 (12)0.0407 (4)
H161.09110.84511.18940.049*
C170.9304 (2)0.9052 (2)1.09543 (12)0.0366 (3)
H170.96171.00381.12820.044*
C180.80848 (19)0.85653 (17)1.01073 (11)0.0296 (3)
H180.75710.92230.98580.036*
C190.67104 (17)0.73973 (16)0.65568 (10)0.0242 (2)
C200.77747 (17)0.80071 (16)0.58653 (10)0.0240 (2)
H200.88330.79690.61670.029*
C210.7052 (2)0.69608 (18)0.49250 (11)0.0310 (3)
H21A0.59220.68080.46640.037*
H21B0.76490.74150.44410.037*
C220.80597 (18)0.96785 (16)0.57297 (10)0.0248 (3)
C230.6983 (2)1.0097 (2)0.50719 (13)0.0394 (4)
H230.60100.93260.47030.047*
C240.7320 (3)1.1637 (2)0.49495 (15)0.0481 (5)
H240.65831.19080.44900.058*
C250.8706 (3)1.2768 (2)0.54866 (16)0.0439 (4)
H250.89321.38180.53990.053*
C260.9769 (2)1.2367 (2)0.61539 (17)0.0444 (4)
H261.07191.31460.65380.053*
C270.9458 (2)1.08338 (19)0.62678 (13)0.0348 (3)
H271.02121.05710.67190.042*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.01937 (5)0.01980 (5)0.02268 (5)0.00779 (3)0.00640 (3)0.00547 (3)
O10.0292 (5)0.0248 (5)0.0234 (4)0.0066 (4)0.0084 (4)0.0063 (4)
O20.0288 (5)0.0332 (5)0.0280 (5)0.0116 (4)0.0067 (4)0.0078 (4)
O30.0394 (6)0.0223 (5)0.0536 (7)0.0103 (5)0.0104 (6)0.0018 (5)
C10.0223 (6)0.0217 (6)0.0209 (5)0.0075 (5)0.0044 (4)0.0048 (4)
C20.0350 (8)0.0257 (7)0.0369 (8)0.0060 (6)0.0173 (6)0.0051 (6)
C30.0518 (11)0.0232 (7)0.0515 (10)0.0028 (7)0.0239 (9)0.0067 (7)
C40.0555 (11)0.0224 (7)0.0398 (8)0.0140 (7)0.0108 (8)0.0027 (6)
C50.0403 (8)0.0319 (7)0.0325 (7)0.0193 (7)0.0089 (6)0.0017 (6)
C60.0268 (6)0.0253 (6)0.0306 (7)0.0099 (5)0.0093 (5)0.0052 (5)
C70.0222 (6)0.0217 (6)0.0409 (8)0.0092 (5)0.0115 (6)0.0083 (5)
C80.0246 (7)0.0277 (7)0.0467 (9)0.0106 (6)0.0073 (6)0.0088 (6)
C90.0257 (7)0.0337 (8)0.0679 (12)0.0139 (6)0.0081 (8)0.0113 (8)
C100.0301 (8)0.0326 (8)0.0894 (16)0.0169 (7)0.0221 (9)0.0141 (9)
C110.0437 (10)0.0322 (8)0.0731 (13)0.0175 (7)0.0318 (10)0.0050 (8)
C120.0335 (8)0.0299 (7)0.0485 (9)0.0126 (6)0.0186 (7)0.0053 (7)
C130.0240 (6)0.0240 (6)0.0216 (5)0.0086 (5)0.0082 (5)0.0050 (5)
C140.0395 (8)0.0328 (7)0.0267 (7)0.0191 (7)0.0040 (6)0.0042 (6)
C150.0461 (10)0.0534 (11)0.0311 (8)0.0281 (9)0.0000 (7)0.0070 (7)
C160.0326 (8)0.0551 (11)0.0251 (7)0.0110 (8)0.0016 (6)0.0002 (7)
C170.0330 (8)0.0321 (8)0.0335 (8)0.0014 (6)0.0084 (6)0.0048 (6)
C180.0292 (7)0.0246 (6)0.0326 (7)0.0075 (5)0.0089 (6)0.0032 (5)
C190.0301 (6)0.0199 (6)0.0240 (6)0.0107 (5)0.0083 (5)0.0067 (5)
C200.0238 (6)0.0228 (6)0.0255 (6)0.0083 (5)0.0080 (5)0.0061 (5)
C210.0367 (8)0.0260 (7)0.0300 (7)0.0096 (6)0.0133 (6)0.0034 (5)
C220.0308 (7)0.0214 (6)0.0237 (6)0.0090 (5)0.0122 (5)0.0063 (5)
C230.0438 (9)0.0311 (8)0.0345 (8)0.0124 (7)0.0016 (7)0.0065 (6)
C240.0682 (13)0.0386 (9)0.0429 (10)0.0293 (9)0.0105 (9)0.0182 (8)
C250.0600 (11)0.0237 (7)0.0595 (11)0.0159 (8)0.0375 (10)0.0160 (7)
C260.0344 (8)0.0268 (8)0.0681 (13)0.0036 (6)0.0210 (8)0.0049 (8)
C270.0306 (7)0.0296 (7)0.0431 (9)0.0118 (6)0.0075 (6)0.0005 (6)
Geometric parameters (Å, º) top
Sn1—O12.082 (1)C12—H120.9500
Sn1—C12.123 (1)C13—C181.399 (2)
Sn1—C72.122 (1)C13—C141.397 (2)
Sn1—C132.128 (1)C14—C151.397 (2)
O1—C191.3016 (17)C14—H140.9500
O2—C191.2269 (18)C15—C161.383 (3)
O3—C211.4254 (19)C15—H150.9500
O3—H30.8400C16—C171.383 (3)
C1—C61.397 (2)C16—H160.9500
C1—C21.3970 (19)C17—C181.390 (2)
C2—C31.394 (2)C17—H170.9500
C2—H20.9500C18—H180.9500
C3—C41.380 (3)C19—C201.5294 (19)
C3—H3A0.9500C20—C221.5240 (19)
C4—C51.387 (3)C20—C211.519 (2)
C4—H40.9500C20—H201.0000
C5—C61.392 (2)C21—H21A0.9900
C5—H50.9500C21—H21B0.9900
C6—H60.9500C22—C231.389 (2)
C7—C121.392 (2)C22—C271.388 (2)
C7—C81.406 (2)C23—C241.392 (2)
C8—C91.393 (2)C23—H230.9500
C8—H80.9500C24—C251.372 (3)
C9—C101.373 (3)C24—H240.9500
C9—H90.9500C25—C261.378 (3)
C10—C111.388 (3)C25—H250.9500
C10—H100.9500C26—C271.387 (2)
C11—C121.402 (2)C26—H260.9500
C11—H110.9500C27—H270.9500
O1—Sn1—C1104.08 (5)C15—C14—H14119.7
O1—Sn1—C7117.51 (5)C13—C14—H14119.7
O1—Sn1—C1394.95 (5)C16—C15—C14119.92 (17)
C1—Sn1—C7116.29 (5)C16—C15—H15120.0
C1—Sn1—C13109.17 (5)C14—C15—H15120.0
C7—Sn1—C13112.54 (6)C15—C16—C17120.18 (16)
C19—O1—Sn1109.50 (9)C15—C16—H16119.9
C21—O3—H3109.5C17—C16—H16119.9
C6—C1—C2118.99 (13)C18—C17—C16120.14 (16)
C6—C1—Sn1122.04 (10)C18—C17—H17119.9
C2—C1—Sn1118.77 (11)C16—C17—H17119.9
C3—C2—C1120.14 (15)C17—C18—C13120.60 (15)
C3—C2—H2119.9C17—C18—H18119.7
C1—C2—H2119.9C13—C18—H18119.7
C4—C3—C2120.38 (16)O2—C19—O1120.51 (13)
C4—C3—H3A119.8O2—C19—C20123.92 (13)
C2—C3—H3A119.8O1—C19—C20115.57 (12)
C3—C4—C5120.09 (15)C22—C20—C21113.37 (12)
C3—C4—H4120.0C22—C20—C19110.50 (11)
C5—C4—H4120.0C21—C20—C19109.60 (12)
C6—C5—C4119.92 (15)C22—C20—H20107.7
C6—C5—H5120.0C21—C20—H20107.7
C4—C5—H5120.0C19—C20—H20107.7
C5—C6—C1120.48 (14)O3—C21—C20106.66 (13)
C5—C6—H6119.8O3—C21—H21A110.4
C1—C6—H6119.8C20—C21—H21A110.4
C12—C7—C8119.39 (15)O3—C21—H21B110.4
C12—C7—Sn1119.13 (12)C20—C21—H21B110.4
C8—C7—Sn1121.13 (12)H21A—C21—H21B108.6
C9—C8—C7120.32 (17)C23—C22—C27118.32 (14)
C9—C8—H8119.8C23—C22—C20122.50 (14)
C7—C8—H8119.8C27—C22—C20119.17 (14)
C10—C9—C8119.76 (18)C22—C23—C24120.45 (17)
C10—C9—H9120.1C22—C23—H23119.8
C8—C9—H9120.1C24—C23—H23119.8
C11—C10—C9120.90 (17)C25—C24—C23120.65 (18)
C11—C10—H10119.5C25—C24—H24119.7
C9—C10—H10119.5C23—C24—H24119.7
C10—C11—C12119.91 (19)C24—C25—C26119.37 (16)
C10—C11—H11120.0C24—C25—H25120.3
C12—C11—H11120.0C26—C25—H25120.3
C7—C12—C11119.71 (18)C25—C26—C27120.40 (18)
C7—C12—H12120.1C25—C26—H26119.8
C11—C12—H12120.1C27—C26—H26119.8
C18—C13—C14118.58 (14)C26—C27—C22120.79 (17)
C18—C13—Sn1122.64 (11)C26—C27—H27119.6
C14—C13—Sn1118.67 (11)C22—C27—H27119.6
C15—C14—C13120.55 (16)
C1—Sn1—O1—C1967.61 (10)C7—Sn1—C13—C1845.80 (13)
C7—Sn1—O1—C1962.58 (11)O1—Sn1—C13—C1499.31 (12)
C13—Sn1—O1—C19178.80 (10)C1—Sn1—C13—C147.46 (13)
O1—Sn1—C1—C617.13 (12)C7—Sn1—C13—C14138.15 (12)
C7—Sn1—C1—C6148.04 (11)C18—C13—C14—C151.5 (2)
C13—Sn1—C1—C683.32 (12)Sn1—C13—C14—C15174.73 (14)
O1—Sn1—C1—C2168.17 (11)C13—C14—C15—C160.3 (3)
C7—Sn1—C1—C237.26 (13)C14—C15—C16—C171.1 (3)
C13—Sn1—C1—C291.39 (12)C15—C16—C17—C181.4 (3)
C6—C1—C2—C30.7 (2)C16—C17—C18—C130.2 (2)
Sn1—C1—C2—C3174.13 (14)C14—C13—C18—C171.2 (2)
C1—C2—C3—C40.0 (3)Sn1—C13—C18—C17174.81 (12)
C2—C3—C4—C50.9 (3)Sn1—O1—C19—O211.24 (16)
C3—C4—C5—C61.1 (3)Sn1—O1—C19—C20168.49 (9)
C4—C5—C6—C10.4 (2)O2—C19—C20—C2293.95 (17)
C2—C1—C6—C50.5 (2)O1—C19—C20—C2286.33 (15)
Sn1—C1—C6—C5174.18 (11)O2—C19—C20—C2131.69 (19)
O1—Sn1—C7—C12116.37 (12)O1—C19—C20—C21148.03 (13)
C1—Sn1—C7—C12119.36 (12)C22—C20—C21—O3168.43 (12)
C13—Sn1—C7—C127.63 (14)C19—C20—C21—O367.59 (15)
O1—Sn1—C7—C870.48 (13)C21—C20—C22—C2339.8 (2)
C1—Sn1—C7—C853.78 (13)C19—C20—C22—C2383.70 (18)
C13—Sn1—C7—C8179.23 (11)C21—C20—C22—C27138.98 (15)
C12—C7—C8—C90.1 (2)C19—C20—C22—C2797.53 (16)
Sn1—C7—C8—C9173.25 (12)C27—C22—C23—C241.0 (3)
C7—C8—C9—C100.1 (3)C20—C22—C23—C24177.80 (17)
C8—C9—C10—C110.3 (3)C22—C23—C24—C251.1 (3)
C9—C10—C11—C120.5 (3)C23—C24—C25—C260.1 (3)
C8—C7—C12—C110.3 (2)C24—C25—C26—C271.4 (3)
Sn1—C7—C12—C11173.55 (13)C25—C26—C27—C221.5 (3)
C10—C11—C12—C70.5 (3)C23—C22—C27—C260.3 (3)
O1—Sn1—C13—C1876.74 (12)C20—C22—C27—C26179.09 (15)
C1—Sn1—C13—C18176.49 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O2i0.841.982.819 (2)175
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Sn(C6H5)3(C9H9O3)]
Mr515.15
Crystal system, space groupTriclinic, P1
Temperature (K)112
a, b, c (Å)9.3880 (2), 9.4899 (2), 14.3399 (2)
α, β, γ (°)90.087 (1), 103.664 (1), 112.758 (1)
V3)1138.58 (4)
Z2
Radiation typeMo Kα
µ (mm1)1.15
Crystal size (mm)0.39 × 0.32 × 0.31
Data collection
DiffractometerBruker APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.663, 0.717
No. of measured, independent and
observed [I > 2σ(I)] reflections
33531, 6612, 6339
Rint0.020
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.019, 0.054, 1.05
No. of reflections6612
No. of parameters281
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.64, 0.35

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2008).

Selected bond lengths (Å) top
Sn1—O12.082 (1)Sn1—C72.122 (1)
Sn1—C12.123 (1)Sn1—C132.128 (1)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O2i0.841.982.819 (2)175
Symmetry code: (i) x+1, y+1, z+1.
 

Acknowledgements

We thank the University of Canterbury, New Zealand, for the diffraction measurements, and the Vice-President's Office for Research Affairs of Shahid Beheshti University and the University of Malaya for supporting this work.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTiekink, E. R. T. (1991). Appl. Organomet. Chem. 5, 1–23.  CrossRef CAS Web of Science Google Scholar
First citationTiekink, E. R. T. (1994). Trends Organomet. Chem. 1, 71–116.  Google Scholar
First citationWestrip, S. P. (2008). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds