metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[bis­­(3,5-di­carb­oxy­benzo­ato)cobalt(II)]-μ-4,4′-bi­pyridine]

aPharmaceutical College of Henan University, Kaifeng 475004, People's Republic of China, and bBasic Experiment Teaching Center, Henan University, Kaifeng 475004, People's Republic of China
*Correspondence e-mail: hdhqx@henu.edu.cn

(Received 7 October 2008; accepted 8 October 2008; online 15 October 2008)

In the title compound, [Co(C9H5O6)2(C10H8N2)]n, the asymmetric unit consists of one Co2+ ion with site symmetry 2, one mono-deprotonated 1,3,5-benzene­tricarboxylic acid anion and one-half of a 4,4′-bipyridine (4,4′-bipy) mol­ecule, in which two N and two C atoms have site symmetry 2. In the crystal structure, the Co2+ centre is coordinated by four O atoms from two bidentate carboxyl­ate groups of two anions and two N atoms of two 4,4′-bipy mol­ecules, resulting in infinite chains propagating in [010]. The cobalt coordination is distorted trans-CoO4N2 octa­hedral and inter­chain O—H⋯O hydrogen bonds complete the structure.

Related literature

For background, see: Feller et al. (2007[Feller, R. K., Forster, P. M., Wudl, F. & Cheetham, A. K. (2007). Inorg. Chem. 46, 8717-8721.]); Brown et al. (2008[Brown, K. A., Martin, D. P. & LaDuca, R. L. (2008). CrystEngComm, 10, 1305-1308.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(C9H5O6)2(C10H8N2)]

  • Mr = 633.37

  • Monoclinic, C 2/c

  • a = 10.6682 (7) Å

  • b = 11.0490 (7) Å

  • c = 22.6563 (14) Å

  • β = 101.401 (1)°

  • V = 2617.9 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.73 mm−1

  • T = 293 (2) K

  • 0.18 × 0.15 × 0.13 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2001[Sheldrick, G. M. (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.880, Tmax = 0.911

  • 7123 measured reflections

  • 2579 independent reflections

  • 2051 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.098

  • S = 1.02

  • 2579 reflections

  • 197 parameters

  • 7 restraints

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.73 e Å−3

Table 1
Selected bond lengths (Å)

Co1—N2i 1.982 (2)
Co1—N1 1.992 (2)
Co1—O1 2.0221 (14)
Co1—O2 2.4354 (13)
Symmetry code: (i) x, y+1, z.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O2ii 0.81 1.88 2.648 (2) 157
O5—H5⋯O6iii 0.78 1.88 2.651 (2) 170
Symmetry codes: (ii) [-x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z]; (iii) -x+2, -y+1, -z.

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

Recently, many efforts in coordination chemistry and crystal engineering have been devoted to the construction of metal-organic coordination polymers (MOCPs) employing both coordination bonds and/or hydrogen bonds, due to their appropriate strength and directionality (Feller et al. 2007). Dual-ligand or multidentate organic ligands are usually engaged in the construction of MOCPs, among which carboxylates and N,N-bidentate ligands are all the simplest connectors potentially able to bridge metal ions (Brown et al. 2008). Herein, we report the title compound (I) containing organic dual-ligands (Fig. 1).

The structure of (I) presents a one-dimensional infinite chain (Fig.2), in which the Co2+ centre (site symmetry 2) is coordinated by four O atoms from two bidentate carboxylate groups of two 1,3,5-benzenetricarboxylic acid anions, two N atoms of two 4,4'-bipyridine molecules. The Co2+ caion resides in a distorted octahedral configuration. In the equatorial plane, it is chelted by four carboxylate oxygen atoms (O1, O2 and their symmetry equivalents) from two 1,3,5-benzenetricarboxylic acid anions (Table 1), in which the Co—O distances are very different.

In addition, these one-dimensional chains are linked together by O—H···O hydrogen bonds between carboxylate groups generating a three-dimensional framework (Fig. 3 and Table 2).

Related literature top

For background, see: Feller et al. (2007); Brown et al. (2008).

Experimental top

Solid Co(CH3COO)2.4H2O (1 mmol, 0.245 g) was added to an aqueous solution (25 ml) of 1,3,5-benzenetricarboxylic acid (2 mmol, 0.420 g) and 4,4'-bipyridine (1 mmol, 0.156 g). The mixture was refluxed for two hours at 373 K. The solution was filtered, and the filtrate was kept at room temperature. After ten days, purple blocks of (I) were obtained.

Refinement top

The O-bound H atoms were located in difference Fourier maps and refined as riding in their as-found relative positions with Uiso(H) = 1.5Ueq(O). The C-bound H atoms were geometrically placed (C—H = 0.93Å) and refined as riding, Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. Asymmetric unit of (I), showing displacement ellipsoids at the 50% probability level for the non-hydrogen atoms.
[Figure 2] Fig. 2. One-dimensional chain structure of (I). H atoms are omitted for clarity. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 3] Fig. 3. Three-dimensional structure of (I) arising by means of hydrogen bonds. Displacement ellipsoids are drawn at the 50% probability level.
catena-Poly[[bis(3,5-dicarboxybenzoato)cobalt(II)]-µ-4,4'-bipyridine] top
Crystal data top
[Co(C9H5O6)2(C10H8N2)]F(000) = 1292
Mr = 633.37Dx = 1.607 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 1750 reflections
a = 10.6682 (7) Åθ = 2.7–25.9°
b = 11.0490 (7) ŵ = 0.73 mm1
c = 22.6563 (14) ÅT = 293 K
β = 101.401 (1)°Block, purple
V = 2617.9 (3) Å30.18 × 0.15 × 0.13 mm
Z = 4
Data collection top
Bruker SMART CCD
diffractometer
2579 independent reflections
Radiation source: fine-focus sealed tube2051 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
ω scansθmax = 26.0°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
h = 1313
Tmin = 0.880, Tmax = 0.911k = 1313
7123 measured reflectionsl = 2715
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: difmap and geom
wR(F2) = 0.098H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0508P)2 + 1.9201P]
where P = (Fo2 + 2Fc2)/3
2579 reflections(Δ/σ)max = 0.001
197 parametersΔρmax = 0.31 e Å3
7 restraintsΔρmin = 0.73 e Å3
Crystal data top
[Co(C9H5O6)2(C10H8N2)]V = 2617.9 (3) Å3
Mr = 633.37Z = 4
Monoclinic, C2/cMo Kα radiation
a = 10.6682 (7) ŵ = 0.73 mm1
b = 11.0490 (7) ÅT = 293 K
c = 22.6563 (14) Å0.18 × 0.15 × 0.13 mm
β = 101.401 (1)°
Data collection top
Bruker SMART CCD
diffractometer
2579 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
2051 reflections with I > 2σ(I)
Tmin = 0.880, Tmax = 0.911Rint = 0.031
7123 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0387 restraints
wR(F2) = 0.098H-atom parameters constrained
S = 1.02Δρmax = 0.31 e Å3
2579 reflectionsΔρmin = 0.73 e Å3
197 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.50000.64801 (3)0.25000.01788 (9)
O10.60733 (12)0.64666 (13)0.18575 (6)0.0280 (3)
O20.40351 (13)0.65638 (14)0.14327 (6)0.0347 (4)
O30.30786 (17)0.7752 (2)0.06851 (8)0.0661 (6)
H30.25230.78630.09820.099*
O40.39825 (18)0.6736 (2)0.13349 (8)0.0692 (6)
O50.85792 (15)0.55679 (17)0.04477 (7)0.0509 (5)
H50.92870.53900.04390.076*
O60.91135 (16)0.5199 (2)0.05406 (8)0.0591 (6)
N10.50000.4678 (2)0.25000.0232 (4)
N20.50000.1726 (2)0.25000.0274 (6)
C10.55508 (19)0.64578 (18)0.07857 (9)0.0281 (5)
C20.67509 (19)0.60572 (19)0.07160 (9)0.0298 (5)
H20.73600.58430.10530.036*
C30.70461 (19)0.5975 (2)0.01464 (10)0.0306 (5)
C40.6137 (2)0.6293 (2)0.03605 (10)0.0338 (5)
H40.63260.62220.07420.041*
C50.4946 (2)0.6717 (2)0.02928 (10)0.0329 (5)
C60.4664 (2)0.6797 (2)0.02785 (10)0.0327 (5)
H60.38670.70840.03220.039*
C70.51892 (19)0.65013 (18)0.13895 (9)0.0265 (5)
C80.8332 (2)0.5551 (2)0.00808 (10)0.0362 (6)
C90.3971 (2)0.7059 (2)0.08302 (10)0.0392 (6)
C100.4034 (2)0.40519 (19)0.21766 (10)0.0321 (5)
H100.33560.44770.19470.039*
C110.3993 (2)0.28136 (19)0.21669 (10)0.0330 (5)
H110.32950.24140.19380.040*
C120.50000.2156 (3)0.25000.0284 (7)
C130.50000.0812 (3)0.25000.0269 (7)
C140.38822 (19)0.01470 (19)0.23157 (10)0.0333 (5)
H140.31080.05470.21920.040*
C150.3916 (2)0.1093 (2)0.23148 (10)0.0328 (5)
H150.31580.15140.21810.039*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.02150 (17)0.01328 (16)0.01973 (17)0.0000.00619 (13)0.000
O10.0246 (6)0.0345 (8)0.0250 (7)0.0022 (6)0.0052 (5)0.0008 (6)
O20.0252 (7)0.0480 (9)0.0314 (8)0.0040 (7)0.0071 (6)0.0026 (7)
O30.0446 (10)0.1163 (17)0.0354 (10)0.0378 (11)0.0033 (8)0.0035 (10)
O40.0557 (11)0.1214 (18)0.0293 (10)0.0270 (12)0.0052 (8)0.0022 (10)
O50.0367 (8)0.0734 (12)0.0478 (10)0.0152 (8)0.0210 (7)0.0025 (9)
O60.0376 (9)0.0938 (15)0.0466 (10)0.0261 (9)0.0100 (8)0.0094 (10)
N10.0263 (7)0.0191 (7)0.0246 (7)0.0000.0062 (6)0.000
N20.0268 (12)0.0246 (13)0.0313 (13)0.0000.0072 (10)0.000
C10.0268 (10)0.0300 (10)0.0276 (10)0.0007 (9)0.0057 (8)0.0005 (9)
C20.0250 (10)0.0327 (11)0.0308 (11)0.0034 (9)0.0030 (9)0.0013 (9)
C30.0254 (10)0.0333 (11)0.0335 (11)0.0015 (9)0.0070 (9)0.0025 (9)
C40.0294 (10)0.0441 (13)0.0296 (11)0.0011 (10)0.0097 (9)0.0015 (10)
C50.0289 (11)0.0410 (13)0.0288 (11)0.0011 (9)0.0054 (9)0.0003 (9)
C60.0256 (10)0.0413 (12)0.0320 (12)0.0031 (9)0.0071 (9)0.0010 (10)
C70.0259 (10)0.0244 (10)0.0291 (10)0.0014 (8)0.0050 (8)0.0002 (9)
C80.0297 (11)0.0435 (13)0.0369 (13)0.0022 (10)0.0100 (10)0.0008 (10)
C90.0292 (11)0.0614 (15)0.0284 (12)0.0044 (11)0.0092 (9)0.0027 (11)
C100.0317 (11)0.0265 (11)0.0370 (12)0.0027 (9)0.0042 (9)0.0031 (9)
C110.0310 (11)0.0271 (11)0.0391 (12)0.0005 (9)0.0030 (9)0.0002 (9)
C120.0267 (14)0.0246 (15)0.0354 (16)0.0000.0096 (12)0.000
C130.0270 (14)0.0238 (15)0.0300 (16)0.0000.0057 (12)0.000
C140.0246 (10)0.0265 (11)0.0464 (13)0.0007 (9)0.0015 (10)0.0022 (10)
C150.0241 (10)0.0276 (11)0.0456 (13)0.0015 (9)0.0044 (10)0.0006 (10)
Geometric parameters (Å, º) top
Co1—N2i1.982 (2)C1—C71.494 (3)
Co1—N11.992 (2)C2—C31.390 (3)
Co1—O1ii2.0221 (14)C2—H20.9300
Co1—O12.0221 (14)C3—C41.393 (3)
Co1—O2ii2.4354 (13)C3—C81.485 (3)
Co1—O22.4354 (13)C4—C51.391 (3)
O1—C71.273 (2)C4—H40.9300
O2—C71.256 (2)C5—C61.389 (3)
O3—C91.314 (3)C5—C91.485 (3)
O3—H30.8127C6—H60.9300
O4—C91.200 (3)C10—C111.369 (3)
O5—C81.276 (3)C10—H100.9300
O5—H50.7761C11—C121.390 (3)
O6—C81.260 (3)C11—H110.9300
N1—C101.333 (2)C12—C11ii1.390 (3)
N1—C10ii1.333 (2)C12—C131.485 (4)
N2—C15ii1.346 (2)C13—C141.392 (2)
N2—C151.346 (2)C13—C14ii1.392 (2)
N2—Co1iii1.982 (2)C14—C151.371 (3)
C1—C61.388 (3)C14—H140.9300
C1—C21.393 (3)C15—H150.9300
N2i—Co1—N1180.0C1—C6—C5121.1 (2)
N2i—Co1—O1ii90.42 (4)C1—C6—H6119.5
N1—Co1—O1ii89.58 (4)C5—C6—H6119.5
N2i—Co1—O190.42 (4)O2—C7—O1120.87 (19)
N1—Co1—O189.58 (4)O2—C7—C1120.51 (18)
O1ii—Co1—O1179.16 (8)O1—C7—C1118.62 (17)
C7—O1—Co199.65 (12)O6—C8—O5123.7 (2)
C9—O3—H3109.1O6—C8—C3119.2 (2)
C8—O5—H5110.6O5—C8—C3117.11 (19)
C10—N1—C10ii117.5 (2)O4—C9—O3123.8 (2)
C10—N1—Co1121.23 (12)O4—C9—C5124.6 (2)
C10ii—N1—Co1121.23 (12)O3—C9—C5111.60 (19)
C15ii—N2—C15117.4 (2)N1—C10—C11123.1 (2)
C15ii—N2—Co1iii121.30 (12)N1—C10—H10118.5
C15—N2—Co1iii121.30 (12)C11—C10—H10118.5
C6—C1—C2118.9 (2)C10—C11—C12119.7 (2)
C6—C1—C7119.49 (18)C10—C11—H11120.2
C2—C1—C7121.58 (18)C12—C11—H11120.2
C3—C2—C1120.52 (19)C11ii—C12—C11116.9 (3)
C3—C2—H2119.7C11ii—C12—C13121.54 (13)
C1—C2—H2119.7C11—C12—C13121.54 (13)
C2—C3—C4120.00 (19)C14—C13—C14ii116.3 (3)
C2—C3—C8119.79 (18)C14—C13—C12121.83 (13)
C4—C3—C8120.2 (2)C14ii—C13—C12121.83 (13)
C5—C4—C3119.7 (2)C15—C14—C13120.4 (2)
C5—C4—H4120.1C15—C14—H14119.8
C3—C4—H4120.1C13—C14—H14119.8
C6—C5—C4119.72 (19)N2—C15—C14122.7 (2)
C6—C5—C9120.1 (2)N2—C15—H15118.7
C4—C5—C9120.2 (2)C14—C15—H15118.7
N2i—Co1—O1—C788.18 (11)C6—C1—C7—O1163.76 (19)
N1—Co1—O1—C791.82 (11)C2—C1—C7—O117.7 (3)
O1ii—Co1—O1—C791.82 (12)C2—C3—C8—O64.3 (3)
N2i—Co1—N1—C10141 (22)C4—C3—C8—O6175.8 (2)
O1ii—Co1—N1—C1083.93 (12)C2—C3—C8—O5175.6 (2)
O1—Co1—N1—C1096.07 (12)C4—C3—C8—O54.3 (3)
N2i—Co1—N1—C10ii39 (23)C6—C5—C9—O4159.5 (3)
O1ii—Co1—N1—C10ii96.07 (12)C4—C5—C9—O419.2 (4)
O1—Co1—N1—C10ii83.93 (12)C6—C5—C9—O319.8 (3)
C6—C1—C2—C31.3 (3)C4—C5—C9—O3161.5 (2)
C7—C1—C2—C3177.20 (19)C10ii—N1—C10—C110.39 (16)
C1—C2—C3—C40.1 (3)Co1—N1—C10—C11179.61 (16)
C1—C2—C3—C8179.8 (2)N1—C10—C11—C120.8 (3)
C2—C3—C4—C51.4 (3)C10—C11—C12—C11ii0.37 (15)
C8—C3—C4—C5178.4 (2)C10—C11—C12—C13179.63 (15)
C3—C4—C5—C61.3 (3)C11ii—C12—C13—C14161.59 (15)
C3—C4—C5—C9180.0 (2)C11—C12—C13—C1418.41 (15)
C2—C1—C6—C51.5 (3)C11ii—C12—C13—C14ii18.41 (15)
C7—C1—C6—C5177.08 (19)C11—C12—C13—C14ii161.59 (15)
C4—C5—C6—C10.2 (3)C14ii—C13—C14—C150.70 (16)
C9—C5—C6—C1178.6 (2)C12—C13—C14—C15179.30 (16)
Co1—O1—C7—O21.9 (2)C15ii—N2—C15—C140.74 (16)
Co1—O1—C7—C1177.68 (15)Co1iii—N2—C15—C14179.26 (16)
C6—C1—C7—O216.6 (3)C13—C14—C15—N21.5 (3)
C2—C1—C7—O2161.9 (2)
Symmetry codes: (i) x, y+1, z; (ii) x+1, y, z+1/2; (iii) x, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O2iv0.811.882.648 (2)157
O5—H5···O6v0.781.882.651 (2)170
Symmetry codes: (iv) x+1/2, y+3/2, z; (v) x+2, y+1, z.

Experimental details

Crystal data
Chemical formula[Co(C9H5O6)2(C10H8N2)]
Mr633.37
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)10.6682 (7), 11.0490 (7), 22.6563 (14)
β (°) 101.401 (1)
V3)2617.9 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.73
Crystal size (mm)0.18 × 0.15 × 0.13
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2001)
Tmin, Tmax0.880, 0.911
No. of measured, independent and
observed [I > 2σ(I)] reflections
7123, 2579, 2051
Rint0.031
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.098, 1.02
No. of reflections2579
No. of parameters197
No. of restraints7
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.73

Computer programs: SMART (Bruker, 2001), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2003).

Selected bond lengths (Å) top
Co1—N2i1.982 (2)Co1—O12.0221 (14)
Co1—N11.992 (2)Co1—O22.4354 (13)
Symmetry code: (i) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O2ii0.811.882.648 (2)157
O5—H5···O6iii0.781.882.651 (2)170
Symmetry codes: (ii) x+1/2, y+3/2, z; (iii) x+2, y+1, z.
 

Acknowledgements

This work was supported by the Basic Research Foundation for Natural Science of Henan University.

References

First citationBrown, K. A., Martin, D. P. & LaDuca, R. L. (2008). CrystEngComm, 10, 1305–1308.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2001). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFeller, R. K., Forster, P. M., Wudl, F. & Cheetham, A. K. (2007). Inorg. Chem. 46, 8717–8721.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds