organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3,5-Di­fluoro­phenyl phenyl sulfone

aDepartment of Chemistry, Wright State University, 3640 Colonel Glenn Hwy., Dayton, Ohio 45435, USA
*Correspondence e-mail: david.grossie@wright.edu

(Received 10 October 2008; accepted 20 October 2008; online 25 October 2008)

In the title compound, C12H8F2O2S, which is a precursor of functionalised poly(aryl­ene ether sulfone) polymers, the dihedral angle between the aromatic ring planes is 84.43 (8)°. In the crystal structure, aromatic ππ stacking [centroid–centroid separations = 3.808 (3) and 3.867 (3) Å] helps to establish the packing. A short C—H⋯F contact also occurs.

Related literature

For general background, see: Attwood et al. (1977[Attwood, T. E., Barr, D. A., Feasey, G. G., Leslie, V. J., Newton, A. B. & Rose, J. B. (1977). Polymer 18, 354-358.]); Salamon (1999[Salamon, J. C. (1999). Editor. Concise Polymeric Materials Encyclopedia. Boca Raton: CRC Press LLC.]); Johnson et al. (1967[Johnson, R. N., Farnham, A. G., Clendinning, R., Hale, W. F. & Merriam, C. N. (1967). J. Polym. Sci. Part. A Polym. Chem. 5, 2375-2398.]); Kaiti et al. (2006[Kaiti, S., Himmelberg, P., Williams, J., Abdellatif, M. & Fossum, E. (2006). Macromolecules, 39, 7909-7914.]).

[Scheme 1]

Experimental

Crystal data
  • C12H8F2O2S

  • Mr = 254.24

  • Monoclinic, P 21 /c

  • a = 10.328 (6) Å

  • b = 14.256 (9) Å

  • c = 7.641 (4) Å

  • β = 108.17 (4)°

  • V = 1068.9 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.32 mm−1

  • T = 173 (2) K

  • 0.31 × 0.23 × 0.07 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2003[Bruker (2003). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.892, Tmax = 0.977

  • 9888 measured reflections

  • 2841 independent reflections

  • 2312 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.138

  • S = 1.07

  • 2841 reflections

  • 154 parameters

  • H-atom parameters constrained

  • Δρmax = 1.03 e Å−3

  • Δρmin = −0.37 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯F5i 0.95 2.44 3.337 (3) 157
Symmetry code: (i) [-x+2, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: SMART (Bruker, 2003[Bruker (2003). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2003[Bruker (2003). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]) and OSCAIL (McArdle, 1995[McArdle, P. (1995). J. Appl. Cryst. 28, 65.]); software used to prepare material for publication: enCIFer (Allen et al. 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]) and publCIF (Westrip, 2008[Westrip, S. P. (2008). publCIF. In preparation.]).

Supporting information


Comment top

Poly(arylene ether sulfone)s, PAESs, are a class of tough, amorphous polymers that possess excellent thermo and oxidative stability as well as low dielectric constants (Salamon, 1999). Several of these systems have found commercial applications that require hydrolytic and thermal stability. Classically, PAESs are synthesized through nucleophilic aromatic substitution (NAS) reactions of 4-chloro (or fluoro-) phenyl sulfone (I) with various bisphenolates, a well known A~2~ + B~2~ polycondensation, to afford linear PAESs (Attwood et al., 1977, Johnson et al., 1967). In order to tailor the chemical and physical properties of PAESs, it is often desirable to introduce functional groups along or pendant to the backbone. To that end, a geometric isomer of (I), the title compound, (II), has been prepared and successfully polymerized, under NAS conditions, to generate PAESs carrying a pendant phenyl sulfonyl group (Kaiti et al., 2006). The pendant phenyl sulfonyl group provides a unique platform from which to access PAESs bearing a wide variety of functional groups. We now describe the crystal structure of (II) (Fig. 1).

The bond lengths within (I) are all within their expeted ranges of values. Bond angles within the molecule were also mostly observed as expected. The O1—S1—O2 angle is 120.39 (10)° and angles near 108° are seen for Ox—S1—Cy (with x = 1 or 2 and y = 1 or 7). The angle between C1—S1—C7 is 102.68 (10)°, which is smaller than would have been expected, based on prediction or comparison with similar structures in CSD.

Four molecules are present within the unit cell, in two columns in which the fluorine substituted rings are stacked in the c direction with a centroid-centroid separation of 3.867 (3)Å. Neighboring columns are interconnected via π-π interactions between the unsubstituted phenyl rings that lie parallel to each other, separated by 3.808 (3)Å. A short C—H···F contact (Table 1) interconnects the columns within the crystal.

Related literature top

For related literature, see: Attwood et al. (1977); Salamon (1999); Johnson et al. (1967); Kaiti et al. (2006). It would be much more useful to readers if the "Related literature" section had some kind of simple sub-division, so that, instead of just "For related literature, see···" it said, for example, "For general background, see···. For related structures, see···.? etc. Please revise this section as indicated.

Experimental top

In a 250-ml round bottomed flask equipped with a stir bar, addition funnel, condenser, and gas inlet were placed 2.105 g (86.6 mmol) of Mg turnings and enough THF to cover the metal. A solution of 15.94 g (82.5 mmol) of 1-bromo-3,5-difluorobenzene and 50 ml of THF was added slowly to the stirred Mg at room temperature; upon complete addition, the reaction mixture was stirred and allowed to react for 4 h. The resulting solution of 3,5-difluorophenylmagnesium bromide was transferred to an addition funnel and added dropwise to a mixture of 16.01 g (90.8 mmol) of benzenesulfonyl chloride in 60 ml of THF at 273 K. The reaction mixture was stirred overnight. The reaction mixture was then diluted in 500 ml of ether and washed in a separatory funnel with dilute HCl, distilled water, 5% NaHCO3, and again with distilled H2O. The ether layer was dried over MgSO4, filtered, and then evaporated to dryness to afford a yellow solid which was recrystallized, first from ethanol/water and then from hexanes to yield colourless blocks of (I).

Computing details top

Data collection: SMART (Bruker, 2003); cell refinement: SAINT-Plus (Bruker, 2003); data reduction: SAINT-Plus (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006) and OSCAIL (McArdle, 1995); software used to prepare material for publication: enCIFer (Allen et al. 2004) and publCIF (Westrip, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing 50% displacement ellipsoids for the non-hydrogen atoms.
3,5-Difluorophenyl phenyl sulfone top
Crystal data top
C12H8F2O2SF(000) = 520
Mr = 254.24Dx = 1.580 Mg m3
Monoclinic, P21/cMelting point: 373 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71069 Å
a = 10.328 (6) ÅCell parameters from 2499 reflections
b = 14.256 (9) Åθ = 2.5–29.0°
c = 7.641 (4) ŵ = 0.32 mm1
β = 108.17 (4)°T = 173 K
V = 1068.9 (11) Å3Block, colourless
Z = 40.31 × 0.23 × 0.07 mm
Data collection top
Bruker SMART APEXII CCD
diffractometer
2841 independent reflections
Radiation source: fine-focus sealed tube2312 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
ω scansθmax = 29.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
h = 1414
Tmin = 0.892, Tmax = 0.977k = 1919
9888 measured reflectionsl = 1010
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.138H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0653P)2 + 0.8586P]
where P = (Fo2 + 2Fc2)/3
2841 reflections(Δ/σ)max = 0.001
154 parametersΔρmax = 1.03 e Å3
0 restraintsΔρmin = 0.37 e Å3
Crystal data top
C12H8F2O2SV = 1068.9 (11) Å3
Mr = 254.24Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.328 (6) ŵ = 0.32 mm1
b = 14.256 (9) ÅT = 173 K
c = 7.641 (4) Å0.31 × 0.23 × 0.07 mm
β = 108.17 (4)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
2841 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
2312 reflections with I > 2σ(I)
Tmin = 0.892, Tmax = 0.977Rint = 0.036
9888 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.138H-atom parameters constrained
S = 1.07Δρmax = 1.03 e Å3
2841 reflectionsΔρmin = 0.37 e Å3
154 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane)

0.6216 (0.0092) x - 0.3744 (0.0129) y + 7.1009 (0.0056) z = 6.1246 (0.0124)

* -0.0042 (0.0015) C1 * 0.0030 (0.0015) C2 * 0.0017 (0.0017) C3 * -0.0051 (0.0016) C4 * 0.0041 (0.0015) C5 * 0.0006 (0.0015) C6 - 0.1026 (0.0029) S1

Rms deviation of fitted atoms = 0.0035

7.3721 (0.0082) x + 9.8314 (0.0114) y - 2.5872 (0.0066) z = 9.1191 (0.0077)

Angle to previous plane (with approximate e.s.d.) = 84.43 (0.08)

* -0.0002 (0.0014) C7 * -0.0020 (0.0015) C8 * 0.0008 (0.0016) C9 * 0.0026 (0.0016) C10 * -0.0048 (0.0015) C11 * 0.0036 (0.0015) C12 0.1082 (0.0028) S1

Rms deviation of fitted atoms = 0.0028

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.75260 (5)0.58823 (4)0.81320 (7)0.02008 (16)
F31.22708 (15)0.66341 (11)0.7875 (2)0.0422 (4)
F50.94947 (16)0.91584 (10)0.8343 (2)0.0382 (4)
O10.67321 (17)0.62902 (12)0.9183 (2)0.0278 (4)
O20.81161 (17)0.49637 (11)0.8585 (2)0.0283 (4)
C10.8867 (2)0.66759 (14)0.8195 (3)0.0186 (4)
C21.0092 (2)0.63183 (15)0.8079 (3)0.0231 (4)
H21.02440.56630.80390.028*
C31.1074 (2)0.69651 (16)0.8025 (3)0.0251 (5)
C41.0896 (2)0.79234 (15)0.8082 (3)0.0243 (4)
H41.15880.83510.80290.029*
C50.9666 (2)0.82280 (15)0.8219 (3)0.0229 (4)
C60.8626 (2)0.76354 (15)0.8274 (3)0.0213 (4)
H60.77860.78690.83610.026*
C70.6541 (2)0.58940 (14)0.5789 (3)0.0180 (4)
C80.6894 (2)0.53032 (15)0.4556 (3)0.0231 (4)
H80.76200.48670.49790.028*
C90.6162 (3)0.53652 (16)0.2697 (3)0.0282 (5)
H90.63890.49690.18360.034*
C100.5105 (2)0.60012 (17)0.2093 (3)0.0291 (5)
H100.46130.60410.08170.035*
C110.4758 (2)0.65775 (17)0.3324 (3)0.0269 (5)
H110.40220.70050.28950.032*
C120.5479 (2)0.65361 (15)0.5189 (3)0.0227 (4)
H120.52520.69390.60410.027*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0243 (3)0.0206 (3)0.0158 (3)0.00311 (19)0.0069 (2)0.00231 (19)
F30.0273 (8)0.0336 (8)0.0690 (12)0.0042 (6)0.0201 (8)0.0013 (8)
F50.0413 (9)0.0185 (7)0.0601 (11)0.0006 (6)0.0236 (8)0.0012 (6)
O10.0335 (9)0.0347 (9)0.0195 (8)0.0071 (7)0.0144 (7)0.0025 (7)
O20.0316 (8)0.0224 (8)0.0273 (8)0.0026 (7)0.0041 (7)0.0089 (6)
C10.0217 (10)0.0199 (9)0.0141 (9)0.0014 (8)0.0054 (8)0.0014 (7)
C20.0240 (10)0.0188 (10)0.0255 (11)0.0013 (8)0.0063 (9)0.0018 (8)
C30.0188 (10)0.0264 (11)0.0300 (12)0.0022 (8)0.0073 (9)0.0004 (9)
C40.0249 (10)0.0223 (10)0.0266 (11)0.0053 (8)0.0092 (9)0.0017 (9)
C50.0294 (11)0.0166 (9)0.0225 (11)0.0011 (8)0.0077 (9)0.0019 (8)
C60.0247 (10)0.0207 (10)0.0194 (10)0.0000 (8)0.0081 (8)0.0008 (8)
C70.0192 (9)0.0188 (9)0.0171 (9)0.0038 (7)0.0072 (8)0.0007 (7)
C80.0285 (11)0.0197 (10)0.0231 (11)0.0009 (8)0.0111 (9)0.0005 (8)
C90.0392 (13)0.0261 (11)0.0220 (11)0.0087 (9)0.0135 (10)0.0059 (9)
C100.0302 (12)0.0358 (13)0.0179 (10)0.0131 (10)0.0024 (9)0.0017 (9)
C110.0208 (10)0.0313 (12)0.0279 (12)0.0029 (9)0.0066 (9)0.0080 (9)
C120.0228 (10)0.0241 (10)0.0237 (11)0.0010 (8)0.0110 (8)0.0017 (8)
Geometric parameters (Å, º) top
S1—O11.4375 (18)C5—C61.378 (3)
S1—O21.4403 (18)C6—H60.9500
S1—C71.762 (2)C7—C121.392 (3)
S1—C11.777 (2)C7—C81.394 (3)
F3—C31.361 (3)C8—C91.388 (3)
F5—C51.346 (3)C8—H80.9500
C1—C21.392 (3)C9—C101.383 (4)
C1—C61.395 (3)C9—H90.9500
C2—C31.381 (3)C10—C111.378 (4)
C2—H20.9500C10—H100.9500
C3—C41.381 (3)C11—C121.388 (3)
C4—C51.377 (3)C11—H110.9500
C4—H40.9500C12—H120.9500
O1—S1—O2120.39 (10)C5—C6—C1116.6 (2)
O1—S1—C7108.34 (11)C5—C6—H6121.7
O2—S1—C7108.65 (10)C1—C6—H6121.7
O1—S1—C1107.63 (10)C12—C7—C8121.3 (2)
O2—S1—C1107.72 (11)C12—C7—S1119.13 (16)
C7—S1—C1102.68 (10)C8—C7—S1119.42 (17)
C2—C1—C6122.68 (19)C9—C8—C7118.7 (2)
C2—C1—S1118.76 (16)C9—C8—H8120.7
C6—C1—S1118.50 (16)C7—C8—H8120.7
C3—C2—C1116.6 (2)C10—C9—C8120.3 (2)
C3—C2—H2121.7C10—C9—H9119.9
C1—C2—H2121.7C8—C9—H9119.9
F3—C3—C4118.6 (2)C11—C10—C9120.6 (2)
F3—C3—C2117.8 (2)C11—C10—H10119.7
C4—C3—C2123.6 (2)C9—C10—H10119.7
C5—C4—C3116.7 (2)C10—C11—C12120.4 (2)
C5—C4—H4121.7C10—C11—H11119.8
C3—C4—H4121.7C12—C11—H11119.8
F5—C5—C4117.46 (19)C11—C12—C7118.8 (2)
F5—C5—C6118.8 (2)C11—C12—H12120.6
C4—C5—C6123.8 (2)C7—C12—H12120.6
O1—S1—C1—C2150.34 (17)C2—C1—C6—C50.4 (3)
O2—S1—C1—C219.1 (2)S1—C1—C6—C5176.56 (16)
C7—S1—C1—C295.46 (18)O1—S1—C7—C1222.96 (19)
O1—S1—C1—C632.6 (2)O2—S1—C7—C12155.37 (16)
O2—S1—C1—C6163.77 (16)C1—S1—C7—C1290.72 (18)
C7—S1—C1—C681.64 (18)O1—S1—C7—C8161.09 (16)
C6—C1—C2—C30.6 (3)O2—S1—C7—C828.68 (19)
S1—C1—C2—C3176.34 (17)C1—S1—C7—C885.23 (18)
C1—C2—C3—F3178.7 (2)C12—C7—C8—C90.0 (3)
C1—C2—C3—C40.1 (3)S1—C7—C8—C9175.82 (16)
F3—C3—C4—C5179.5 (2)C7—C8—C9—C100.1 (3)
C2—C3—C4—C50.7 (4)C8—C9—C10—C110.3 (3)
C3—C4—C5—F5177.6 (2)C9—C10—C11—C120.9 (3)
C3—C4—C5—C60.9 (3)C10—C11—C12—C70.9 (3)
F5—C5—C6—C1178.16 (19)C8—C7—C12—C110.5 (3)
C4—C5—C6—C10.4 (3)S1—C7—C12—C11176.35 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···F5i0.952.443.337 (3)157
Symmetry code: (i) x+2, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC12H8F2O2S
Mr254.24
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)10.328 (6), 14.256 (9), 7.641 (4)
β (°) 108.17 (4)
V3)1068.9 (11)
Z4
Radiation typeMo Kα
µ (mm1)0.32
Crystal size (mm)0.31 × 0.23 × 0.07
Data collection
DiffractometerBruker SMART APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2003)
Tmin, Tmax0.892, 0.977
No. of measured, independent and
observed [I > 2σ(I)] reflections
9888, 2841, 2312
Rint0.036
(sin θ/λ)max1)0.682
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.138, 1.07
No. of reflections2841
No. of parameters154
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.03, 0.37

Computer programs: SMART (Bruker, 2003), SAINT-Plus (Bruker, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2006) and OSCAIL (McArdle, 1995), enCIFer (Allen et al. 2004) and publCIF (Westrip, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···F5i0.952.443.337 (3)157
Symmetry code: (i) x+2, y1/2, z+3/2.
 

Acknowledgements

The authors acknowledge the diffractometer time granted by A. Hunter, Youngstown State University.

References

First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAttwood, T. E., Barr, D. A., Feasey, G. G., Leslie, V. J., Newton, A. B. & Rose, J. B. (1977). Polymer 18, 354–358.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2003). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationJohnson, R. N., Farnham, A. G., Clendinning, R., Hale, W. F. & Merriam, C. N. (1967). J. Polym. Sci. Part. A Polym. Chem. 5, 2375–2398.  CrossRef CAS Web of Science Google Scholar
First citationKaiti, S., Himmelberg, P., Williams, J., Abdellatif, M. & Fossum, E. (2006). Macromolecules, 39, 7909–7914.  Web of Science CrossRef CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMcArdle, P. (1995). J. Appl. Cryst. 28, 65.  CrossRef IUCr Journals Google Scholar
First citationSalamon, J. C. (1999). Editor. Concise Polymeric Materials Encyclopedia. Boca Raton: CRC Press LLC.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2008). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds