metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 11| November 2008| Pages m1463-m1464

catena-Poly[[[tetra­kis(μ-2-butenoato)dicopper(II)]-μ-2-butenoato-[di­aqua­(2-butenoato)holmium(III)]-di-μ-2-butenoato-[di­aqua­(2-butenoato)holmium(III)]-μ-2-butenoato] trihydrate]

aDepartamento de Química Inorgánica, Analítica y Química Física, INQUIMAE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón II, 1428 Buenos Aires, Argentina, bDepartamento de Física, Facultad de Ciencias Físicas y Matemáticas and CIMAT, Universidad de Chile, Santiago de Chile, Chile, and cDepartamento de Física, Centro Atómico Constituyentes, Comisión Nacional de Energía Atómica., Buenos Aires, Argentina
*Correspondence e-mail: baggio@cnea.gov.ar

(Received 14 October 2008; accepted 20 October 2008; online 25 October 2008)

The title compound {[Cu2Ho2(C4H5O2)10(H2O)4]·3H2O}n, is a one-dimensional 3d/4f organic–inorganic hybrid complex, the HoIII member of the isotypic lanthanoid series with Ln = GdIII, ErIII and YIII. The structure shows an alternation of Cu2 and Ho2 dinuclear units bridged by the ligands and hydrogen bonds only. The chains are composed of Cu2 classical dinuclear η1:η1:μ2 fourfold bridges [Cu⋯Cu = 2.6417 (9) Å] and of Ho2 units bridged by two η2:η1:μ2 carboxyl­ate units. This results in distorted square-based pyramidal CuO5 units and irregular HoO9 units. The alternating Cu2 and Ho2 units are bridged into linear arrays along the a axis by a set of one η2:η1:μ2 carboxyl­ate O atom and two hydrogen bonds with Cu⋯Ho separations of 4.4883 (10) and 4.5086 (10) Å. The distance between adjacent chains, as calculated by the closest and furthest distances between two chains, covers the range 10–14 Å. The H atoms of the water mol­ecules could not be located, but the O⋯O separations for these species suggest the presence of O—H⋯O hydrogen bonds.

Related literature

For related structures, see: Benelli & Gatteschi (2002[Benelli, C. & Gatteschi, D. (2002). Chem. Rev. 102, 2369-2387.]); Kutlu et al. (1997[Kutlu, I., Meyer, G., Oczko, G. & Legendziewicz, J. (1997). Eur. J. Solid State Inorg. Chem. 34, 231-238.]); Legendziewicz et al. (2000[Legendziewicz, J., Borzechowska, M. G., Oczko, G. & Meyer, G. (2000). New J. Chem. 24, 53-59.]). For the isotypic family, see: Calvo et al. (2008[Calvo, R., Rapp, R. E., Chagas, E., Sartoris, R., Baggio, R., Garland, M. & Perec, M. (2008). Inorg. Chem. doi: 10.1021/ic8014089.]). For related literature, see: van Niekerk & Schoening (1953[Niekerk, J. N. van & Schoening, F. R. L. (1953). Acta Cryst. 6, 227-232.]). For bond-length data, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu2Ho2(C4H5O2)10(H2O)4]·3H2O

  • Mr = 1433.85

  • Monoclinic, P 21 /c

  • a = 13.8856 (17) Å

  • b = 22.078 (3) Å

  • c = 19.846 (3) Å

  • β = 107.152 (2)°

  • V = 5813.5 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.49 mm−1

  • T = 291 (2) K

  • 0.24 × 0.10 × 0.08 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2002[Bruker (2002). SAINT-NT (including SADABS). Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.62, Tmax = 0.76

  • 34338 measured reflections

  • 12977 independent reflections

  • 9482 reflections with I > 2σ(I)

  • Rint = 0.043

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.085

  • S = 0.93

  • 12977 reflections

  • 653 parameters

  • 30 restraints

  • H-atom parameters constrained

  • Δρmax = 1.23 e Å−3

  • Δρmin = −1.02 e Å−3

Table 1
Selected bond lengths (Å)

Ho1—O17 2.322 (3)
Ho1—O1W 2.323 (3)
Ho1—O18 2.356 (3)
Ho1—O10 2.362 (4)
Ho1—O29 2.365 (3)
Ho1—O2W 2.386 (3)
Ho1—O20 2.418 (3)
Ho1—O19 2.619 (3)
Ho1—O28 2.789 (4)
Ho2—O28 2.316 (3)
Ho2—O4W 2.322 (3)
Ho2—O26 2.357 (3)
Ho2—O3W 2.368 (3)
Ho2—O25 2.382 (3)
Ho2—O27 2.392 (3)
Ho2—O15 2.443 (3)
Ho2—O16 2.635 (3)
Ho2—O17 2.642 (3)
Cu1—O12 1.939 (3)
Cu1—O13 1.949 (4)
Cu1—O14 1.961 (3)
Cu1—O11 1.978 (3)
Cu1—O16i 2.215 (3)
Cu2—O21 1.938 (4)
Cu2—O23 1.968 (3)
Cu2—O24 1.971 (3)
Cu2—O22 1.989 (3)
Cu2—O19 2.178 (3)
Symmetry code: (i) x-1, y, z.

Table 2
Short OW⋯O contacts (< 3.00 Å) attributable to hydrogen bonding

OW⋯O d (Å)   OW⋯O d (Å)
O1W⋯O18 2.948 (5)   O3W⋯O28 2.957 (5)
O1W⋯O19 2.815 (5)   O4W⋯O14i 2.645 (5)
O1W⋯O20 2.895 (5)   O4W⋯O15 2.853 (5)
O1W⋯O22 2.763 (5)   O4W⋯O16 2.839 (4)
O1W⋯O5W 2.632 (5)   O4W⋯O27 2.854 (5)
O2W⋯O19 2.900 (5)   O4W⋯O7Wii 2.703 (5)
O2W⋯O23 2.777 (5)   O5W⋯O27iii 2.848 (5)
O2W⋯O25 2.734 (5)   O5W⋯O6W 2.800 (5)
O2W⋯O28 2.905 (5)   O6W⋯O15iii 2.788 (5)
O3W⋯O10 2.675 (5)   O6W⋯O26iv 2.858 (5)
O3W⋯O11i 2.766 (5)   O6W⋯O7W 2.867 (5)
Symmetry codes: (i) x+1, y, z; (ii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iv) [-x+2, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: SMART-NT (Bruker, 2001[Bruker (2001). SMART-NT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-NT (Bruker, 2002[Bruker (2002). SAINT-NT (including SADABS). Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-NT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL and PLATON (Spek (2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

In the field of molecule-based magnetic materials of 3 d and 4f metals with multicarboxylate bridging ligands, a variety of two-dimensional and three-dimensional original structures with interesting magnetic and spectroscopic properties have been discovered (Benelli and Gatteschi, 2002). One-dimensional structures, however, have only been reported in few cases for Ln2Cu complexes with the trichloroacetate ligand (Kutlu et al.,1997; Legendziewicz et al., 2000)

Aliphatic monocarboxylic acids are expected to have limited bonding ability, since the carboxylate group cannot bridge adjacent large high-nuclear clusters. Monocarboxylates, however, may constitute a route toward one-dimensional 3 d-4f polymers, their main interest being the construction of single chain magnets. We recently used trans-2-butenoic acid in the synthesis and X-ray structure determination of three isostructural CuII—LnIII1-D polymers {[Cu2Ln2L10(H2O)4].3H2O}n(Ln = GdIII, ErIII, YIII; HL= trans-2-butenoicacid) (Calvo et al., 2008). The {[Cu2Ho2L10(H2O)4].3H2O}n species had also been synthesized, but no single crystals could be obtained at the time. We now wish to report the crystal data of the isostructural Cu2Ho2 complex obtained as well shaped needles. They consist of non-centrosymmetric polymeric chains built in the centrosymmetric P21/c group by two distinct blocks: one formed by two CuII ions bridged by four carboxylate bridges in the η1:η12 conformation and the other by two HoIII ions bridged by two carboxylate oxygen atoms in η2:η12 conformation (See Figure 1). Bonds between Cu and Ho metal centers consist of one covalent tridentate carboxylate oxygen atom and two intrachain H-bonds which enhance the stability of the chains.

Each CuII atom of the Cu2 dinuclear core provides the basal plane for a square pyramidal arrangement, the apical sites being provided by atoms O16 and O19 common to the Ho2 coordination polyhedra. The Cu2 block resembles the structure of dinuclear copper acetate monohydrate (Van Niekerk & Schoening, 1953), the main difference being the absence of an embedded inversion symmetry center relating the copper ions, present in the latter. The four independent carboxylato bridges in the Cu2 structure depart an average of 0.12 Å from a centrosymmetric disposition, as measured by the best fit of the dinuclear unit with its inverted image (XP in the SHELXTL package, Sheldrick, 2008). The four Cu—O—C—O—Cu loops are planar within 0.03 Å, and parallel or perpendicular to each other within a maximum deviation of ca 6°. The Cu···Cu distance within the dinuclear unit is 2.642 (1) Å compared with 2.616 (1) Å in the classical fourfold copper acetate monohydrate. In the Ho2 block, the metal centers are bridged by two oxygen atoms from two tridentate η2:η12 carboxylates at a Ho···Ho distance of 4.207 (1) Å.The coordination of each holmium (HoO9) is completed by two chelating carboxylates and two aqua O atoms. Departure from a centrosymmetric arrangement is more important in this block than in the copper one, the mean square deviation from the inverted image being here 0.27 Å. Within a chain, Figure 2, alternate dinuclear units of the same type are related by a unit cell a translation; all the space group symmetry elements are external to the chains and thus relate them into each other. As a consequence of this lack of internal symmetry, alternate Cu—Ho chemical bridges are slightly different: 4.496 and 4.517 Å, respectively. The axis-to-axis separations between a chain and the six neighbouring ones cover the range 10–14 Å. The alkene groups protrude outwards almost normal to the chain direction. Although hydrogen atoms of water molecules could not be found in the late difference Fourier maps, a number of short Ow···OCO2 and Ow···Ow distances, less than 3.00 Å (Table 2), suggests involvement in H-bonding interactions

Related literature top

For related structures, see: Benelli & Gatteschi (2002); Kutlu et al. (1997); Legendziewicz et al. (2000). For an isomorphic family, see: Calvo et al. (2008). For related literature, see: van Niekerk & Schoening (1953). For bond-length data, see: Allen (2002).

Experimental top

The title compound was prepared by the slow addition under constant stirring of Ho2(CO3)3(0.50 g,1 mmol) to an aqueous solution of copper acetate monohydrate (0.40 g, 2 mmol) and trans-2-butenoic acid (0.90 g, 10 mmol) at pH about5. The filtrate was stored in a stoppered flask for two months whereupon green needles of (I) were obtained (75% yield based on Cu). Anal Calcd(found) for C40H64O27Cu2Ho2: C, 33.80 (34.20), H, 4.50 (4.75), Cu, 8.95 (9.10)%.IR (KBr disk, cm-1): 3427(s, vbr, ν(OH)), 1659, 1603 and 1538(versus,ν(CO2)asym), 1449 and 1417(versus, ν(CO2)sym), 1297(m), 1256(m), 1105(w), 967(m),917(w), 857(w), 749(m), 699(w), 651(br, w), 521(w), 461(w), 420(w). The TGA showed that the water loss occurs in the range 80–112 °C (see refinement section for details); decomposition occurs in three overlapping steps, in the range 245–550°C.

Refinement top

Only seven water-molecule O atoms could be clearly found and refined: four of them bound to the metal centers and the remaining three as crystallization solvates. A PLATON check, however, detected voids capable to lodge further trapped solvent molecules and a SQUEEZE run gave a correction for some 44 delocalized electrons, roughly two and a half diffused water molecules. The final refinement was made against these corrected data.

On the other hand, a TGA run showed that the mass loss occurring in the range 353–385 K corresponded to about 8.5 water molecules per formula unit, leaving only one and a half molecules not accounted for. Even if not in strict accordance, both TGA and SQUEEZE thus coincide in the existence of a fraction of delocalized crystallization water, in the range 1.5–2.5 molecules per formula unit.

Hydrogen atoms attached to carbon were placed at calculated positions (C—H: 0.93–0.96 Å) and allowed to ride; methyl groups were allowed to rotate as well; displacement factors were taken as U(H)iso = x.Ueq(host), x: 1.2–1.5

The H atoms attached to water molecules could not be found in the difference Fourier and were accordingly disregarded from the final model. The final formula was stated in terms of the water molecules effectively refined.

Finally, some soft similarity restraints were introduced among similar bonds in the highly vibrating butenoate moieties, so as to assure meaningful C—C distances.

Computing details top

Data collection: SMART-NT (Bruker, 2001); cell refinement: SAINT-NT (Bruker, 2002); data reduction: SAINT-NT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek (2003).

Figures top
[Figure 1] Fig. 1. Molecular view of both dimers, with displacement ellipsoids at a 30% level. H atoms omitted, and carbon atoms not in the carboxylate groups drawn in empty ellipsoids and bonds, for clarity.
[Figure 2] Fig. 2. Schematic view of a chain running along [100]. Possible intrachain H-bonds drawn in broken lines. All H atoms and those carbon atoms not in the carboxylate groups, omitted for clarity. Symmetry codes: (i) 1 + x, y, z; (ii): -1 + x, y, z
catena-Poly[[[tetrakis(µ-2-butenoato)dicopper(II)]-µ-2-butenoato- [diaqua(2-butenoato)holmium(III)]-di-µ-2-butenoato- [diaqua(2-butenoato)holmium(III)]-µ-2-butenoato] trihydrate] top
Crystal data top
[Cu2Ho2(C4H5O2)10(H2O)4]·3H2OF(000) = 2792
Mr = 1433.85Dx = 1.638 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 7221 reflections
a = 13.8856 (17) Åθ = 2.1–26.8°
b = 22.078 (3) ŵ = 3.49 mm1
c = 19.846 (3) ÅT = 291 K
β = 107.152 (2)°Needles, green
V = 5813.5 (14) Å30.24 × 0.10 × 0.08 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
12977 independent reflections
Radiation source: fine-focus sealed tube9482 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.043
ϕ and ω scansθmax = 28.2°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; (Bruker, 2002)
h = 1813
Tmin = 0.62, Tmax = 0.76k = 2925
34338 measured reflectionsl = 1926
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.085H-atom parameters constrained
S = 0.93 w = 1/[σ2(Fo2) + (0.0296P)2]
where P = (Fo2 + 2Fc2)/3
12977 reflections(Δ/σ)max = 0.003
653 parametersΔρmax = 1.23 e Å3
30 restraintsΔρmin = 1.02 e Å3
Crystal data top
[Cu2Ho2(C4H5O2)10(H2O)4]·3H2OV = 5813.5 (14) Å3
Mr = 1433.85Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.8856 (17) ŵ = 3.49 mm1
b = 22.078 (3) ÅT = 291 K
c = 19.846 (3) Å0.24 × 0.10 × 0.08 mm
β = 107.152 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
12977 independent reflections
Absorption correction: multi-scan
(SADABS; (Bruker, 2002)
9482 reflections with I > 2σ(I)
Tmin = 0.62, Tmax = 0.76Rint = 0.043
34338 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04030 restraints
wR(F2) = 0.085H-atom parameters constrained
S = 0.93Δρmax = 1.23 e Å3
12977 reflectionsΔρmin = 1.02 e Å3
653 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ho10.843231 (18)0.783533 (10)0.670233 (12)0.03660 (7)
Ho21.024471 (17)0.664760 (10)0.594522 (11)0.03346 (7)
Cu10.36154 (5)0.68897 (3)0.65391 (3)0.03839 (15)
Cu20.51325 (5)0.74316 (3)0.62360 (3)0.04014 (15)
O110.3036 (3)0.77154 (15)0.64194 (18)0.0456 (9)
O210.4304 (3)0.81524 (15)0.61285 (19)0.0513 (10)
C110.3485 (4)0.8172 (2)0.6260 (3)0.0403 (12)
C210.2976 (5)0.8760 (2)0.6233 (3)0.0546 (15)
H210.23370.87680.62940.065*
C310.3377 (6)0.9269 (3)0.6128 (4)0.079 (2)
H310.40070.92540.60530.095*
C410.2900 (7)0.9879 (3)0.6120 (5)0.130 (4)
H4110.22430.98310.61800.195*
H4120.28401.00750.56780.195*
H4130.33121.01220.64970.195*
O120.4345 (3)0.70699 (16)0.75125 (18)0.0511 (10)
O220.5570 (3)0.75996 (17)0.72663 (18)0.0515 (10)
C120.5109 (4)0.7396 (2)0.7686 (3)0.0417 (12)
C220.5494 (4)0.7565 (3)0.8436 (3)0.0545 (15)
H220.54060.72870.87660.065*
C320.5943 (4)0.8065 (3)0.8670 (3)0.0617 (17)
H320.61020.83200.83460.074*
C420.6232 (5)0.8273 (3)0.9430 (3)0.082 (2)
H4210.62120.79340.97290.123*
H4220.57670.85770.94840.123*
H4230.69010.84380.95590.123*
O130.4443 (3)0.61669 (15)0.6601 (2)0.0546 (10)
O230.5778 (3)0.66311 (15)0.64296 (19)0.0499 (9)
C130.5324 (4)0.6173 (2)0.6572 (3)0.0441 (13)
C230.5903 (5)0.5598 (2)0.6700 (3)0.0575 (16)
H230.65810.56090.67230.069*
C330.5505 (5)0.5080 (3)0.6783 (3)0.075 (2)
H330.48300.50790.67700.090*
C430.6053 (6)0.4482 (3)0.6898 (4)0.109 (3)
H4310.58090.42350.64850.164*
H4320.59380.42800.72960.164*
H4330.67630.45510.69870.164*
O140.3123 (3)0.67875 (17)0.55130 (17)0.0509 (10)
O240.4430 (3)0.72049 (16)0.52530 (18)0.0514 (10)
C140.3585 (4)0.6959 (2)0.5083 (3)0.0445 (13)
C240.3035 (4)0.6850 (3)0.4335 (3)0.0565 (16)
H240.25030.65770.42370.068*
C340.3231 (5)0.7100 (3)0.3815 (3)0.0696 (19)
H340.37790.73620.39150.084*
C440.2657 (5)0.7010 (3)0.3048 (3)0.084 (2)
H4410.20930.67470.30110.126*
H4420.30920.68310.28070.126*
H4430.24190.73940.28390.126*
O150.9577 (3)0.57490 (15)0.52451 (18)0.0459 (9)
O250.8763 (3)0.61044 (15)0.59465 (19)0.0471 (9)
C150.8831 (4)0.5728 (2)0.5473 (3)0.0428 (13)
C250.8068 (5)0.5250 (3)0.5189 (3)0.0639 (17)
H250.82210.49480.49110.077*
C350.7229 (5)0.5231 (3)0.5303 (3)0.0727 (19)
H350.70990.55220.56040.087*
C450.6403 (5)0.4769 (3)0.4990 (4)0.110 (3)
H4510.66160.45040.46780.164*
H4520.57990.49760.47330.164*
H4530.62750.45360.53630.164*
O161.2173 (2)0.65248 (14)0.66304 (17)0.0389 (8)
O261.1059 (3)0.58251 (14)0.66393 (18)0.0442 (9)
C161.1965 (4)0.6008 (2)0.6824 (2)0.0364 (11)
C261.2771 (4)0.5619 (2)0.7272 (3)0.0472 (14)
H261.34250.57710.74140.057*
C361.2615 (4)0.5076 (2)0.7477 (3)0.0640 (18)
H361.19530.49380.73470.077*
C461.3410 (5)0.4654 (3)0.7906 (4)0.094 (3)
H4611.40610.48390.79950.141*
H4621.33960.42830.76500.141*
H4631.32810.45680.83460.141*
O170.8752 (3)0.74373 (14)0.57064 (16)0.0402 (8)
O270.9215 (3)0.70443 (15)0.48474 (17)0.0448 (9)
C170.8725 (4)0.7441 (2)0.5062 (3)0.0383 (12)
C270.8146 (4)0.7912 (2)0.4588 (3)0.0461 (14)
H270.77460.81720.47580.055*
C370.8169 (5)0.7980 (2)0.3939 (3)0.0523 (15)
H370.85620.77120.37720.063*
C470.7609 (6)0.8460 (3)0.3448 (3)0.083 (2)
H4710.71230.86450.36410.124*
H4720.72680.82810.30000.124*
H4730.80740.87610.33870.124*
O180.9594 (3)0.75324 (16)0.77741 (18)0.0502 (10)
O280.9992 (3)0.69894 (16)0.69837 (18)0.0505 (10)
C181.0119 (4)0.7120 (2)0.7621 (3)0.0416 (13)
C281.0866 (5)0.6785 (3)0.8176 (3)0.0681 (19)
H281.12440.64860.80420.082*
C381.1021 (6)0.6886 (4)0.8835 (4)0.104 (3)
H381.06250.71790.89620.125*
C481.1803 (8)0.6563 (4)0.9425 (4)0.187 (6)
H4811.22000.63000.92270.281*
H4821.14690.63270.96970.281*
H4831.22330.68560.97250.281*
O190.6491 (3)0.78103 (15)0.60660 (17)0.0426 (9)
O290.7445 (3)0.85441 (15)0.58965 (18)0.0480 (9)
C190.6600 (4)0.8298 (2)0.5752 (3)0.0394 (12)
C290.5717 (5)0.8531 (3)0.5191 (3)0.0660 (18)
H290.51090.83250.51100.079*
C390.5738 (6)0.8983 (3)0.4821 (4)0.109 (3)
H390.63490.91850.49030.130*
C490.4842 (7)0.9230 (4)0.4242 (5)0.185 (5)
H4910.50800.94510.39060.277*
H4920.44570.94960.44470.277*
H4930.44240.89010.40100.277*
O100.9850 (3)0.83683 (15)0.6588 (2)0.0540 (10)
O200.9038 (3)0.87976 (15)0.72448 (18)0.0488 (9)
C100.9735 (4)0.8813 (2)0.6968 (3)0.0444 (13)
C201.0431 (4)0.9329 (2)0.7057 (3)0.0562 (16)
H201.09670.92970.68670.067*
C301.0347 (5)0.9820 (3)0.7378 (3)0.0683 (18)
H300.98170.98380.75750.082*
C401.1009 (5)1.0372 (3)0.7473 (4)0.094 (3)
H4011.14871.03220.72130.141*
H4021.13621.04240.79640.141*
H4031.06001.07230.73030.141*
O1W0.7526 (3)0.80013 (15)0.74993 (17)0.0470 (9)
O2W0.7832 (3)0.68213 (14)0.66900 (18)0.0445 (9)
O3W1.0957 (2)0.76302 (14)0.60445 (18)0.0432 (9)
O4W1.1179 (3)0.65241 (16)0.51587 (17)0.0474 (9)
O5W0.8129 (3)0.86530 (16)0.86586 (17)0.0542 (10)
O6W0.9477 (3)0.96277 (14)0.88853 (18)0.0541 (10)
O7W1.0534 (3)0.85442 (18)0.87360 (18)0.0610 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ho10.03854 (14)0.04022 (14)0.03143 (13)0.00543 (11)0.01091 (10)0.00266 (10)
Ho20.03031 (13)0.03573 (13)0.03362 (13)0.00186 (10)0.00829 (9)0.00210 (10)
Cu10.0296 (3)0.0453 (4)0.0392 (4)0.0049 (3)0.0086 (3)0.0007 (3)
Cu20.0313 (4)0.0485 (4)0.0406 (4)0.0052 (3)0.0106 (3)0.0008 (3)
O110.041 (2)0.042 (2)0.055 (2)0.0044 (17)0.0167 (18)0.0005 (17)
O210.048 (2)0.045 (2)0.069 (3)0.0020 (19)0.028 (2)0.0026 (19)
C110.041 (3)0.042 (3)0.034 (3)0.001 (3)0.005 (2)0.002 (2)
C210.062 (4)0.046 (3)0.063 (4)0.001 (3)0.030 (3)0.003 (3)
C310.099 (6)0.048 (4)0.104 (6)0.004 (4)0.050 (5)0.003 (4)
C410.186 (10)0.043 (4)0.196 (10)0.028 (5)0.109 (8)0.028 (5)
O120.040 (2)0.071 (3)0.042 (2)0.011 (2)0.0111 (18)0.0002 (19)
O220.041 (2)0.071 (3)0.043 (2)0.014 (2)0.0136 (18)0.0120 (19)
C120.033 (3)0.048 (3)0.043 (3)0.005 (3)0.011 (2)0.001 (3)
C220.040 (3)0.077 (4)0.044 (3)0.003 (3)0.009 (3)0.004 (3)
C320.042 (4)0.083 (4)0.062 (4)0.006 (3)0.019 (3)0.017 (3)
C420.068 (5)0.113 (6)0.063 (4)0.013 (4)0.018 (4)0.030 (4)
O130.044 (2)0.044 (2)0.081 (3)0.0001 (19)0.027 (2)0.002 (2)
O230.039 (2)0.046 (2)0.064 (3)0.0019 (18)0.0141 (19)0.0024 (19)
C130.039 (3)0.050 (3)0.038 (3)0.002 (3)0.004 (2)0.002 (3)
C230.053 (4)0.051 (4)0.067 (4)0.011 (3)0.016 (3)0.003 (3)
C330.088 (6)0.052 (4)0.081 (5)0.008 (4)0.017 (4)0.005 (4)
C430.148 (9)0.056 (4)0.116 (7)0.026 (5)0.027 (6)0.012 (4)
O140.036 (2)0.081 (3)0.034 (2)0.016 (2)0.0072 (16)0.0097 (19)
O240.044 (2)0.069 (3)0.042 (2)0.016 (2)0.0150 (18)0.0040 (19)
C140.040 (3)0.051 (3)0.041 (3)0.001 (3)0.010 (3)0.004 (3)
C240.045 (4)0.079 (4)0.046 (4)0.011 (3)0.015 (3)0.003 (3)
C340.066 (5)0.089 (5)0.058 (4)0.008 (4)0.024 (4)0.003 (4)
C440.090 (6)0.123 (6)0.040 (4)0.007 (5)0.019 (4)0.002 (4)
O150.042 (2)0.043 (2)0.049 (2)0.0077 (18)0.0093 (18)0.0114 (17)
O250.040 (2)0.045 (2)0.060 (2)0.0052 (17)0.0204 (18)0.0024 (18)
C150.039 (3)0.039 (3)0.045 (3)0.003 (3)0.002 (3)0.005 (2)
C250.045 (4)0.060 (4)0.079 (5)0.004 (3)0.008 (3)0.011 (3)
C350.063 (5)0.073 (5)0.075 (5)0.012 (4)0.010 (4)0.006 (4)
C450.084 (6)0.090 (5)0.136 (7)0.046 (5)0.002 (5)0.020 (5)
O160.036 (2)0.0381 (19)0.042 (2)0.0043 (16)0.0115 (16)0.0031 (16)
O260.032 (2)0.041 (2)0.054 (2)0.0085 (16)0.0024 (17)0.0028 (17)
C160.038 (3)0.037 (3)0.033 (3)0.001 (2)0.009 (2)0.004 (2)
C260.035 (3)0.050 (3)0.049 (3)0.006 (3)0.001 (2)0.007 (3)
C360.051 (4)0.054 (4)0.070 (4)0.013 (3)0.010 (3)0.015 (3)
C460.088 (6)0.057 (4)0.105 (6)0.003 (4)0.021 (5)0.024 (4)
O170.049 (2)0.043 (2)0.0288 (18)0.0020 (17)0.0107 (16)0.0016 (15)
O270.044 (2)0.051 (2)0.038 (2)0.0139 (18)0.0082 (17)0.0007 (16)
C170.038 (3)0.039 (3)0.035 (3)0.004 (2)0.007 (2)0.001 (2)
C270.057 (4)0.045 (3)0.038 (3)0.014 (3)0.018 (3)0.004 (2)
C370.072 (4)0.043 (3)0.044 (3)0.007 (3)0.020 (3)0.003 (3)
C470.121 (7)0.067 (4)0.056 (4)0.017 (4)0.020 (4)0.019 (3)
O180.047 (2)0.059 (2)0.042 (2)0.006 (2)0.0083 (18)0.0040 (18)
O280.056 (3)0.061 (2)0.038 (2)0.012 (2)0.0182 (18)0.0082 (18)
C180.040 (3)0.051 (3)0.032 (3)0.013 (3)0.007 (2)0.002 (2)
C280.068 (5)0.074 (4)0.051 (4)0.017 (4)0.001 (3)0.005 (3)
C380.120 (8)0.117 (6)0.053 (5)0.005 (5)0.007 (5)0.024 (5)
C480.213 (13)0.177 (10)0.102 (7)0.000 (9)0.061 (7)0.078 (7)
O190.039 (2)0.048 (2)0.042 (2)0.0068 (17)0.0119 (16)0.0040 (17)
O290.046 (2)0.047 (2)0.055 (2)0.0074 (18)0.0206 (19)0.0058 (18)
C190.042 (3)0.043 (3)0.036 (3)0.002 (3)0.016 (2)0.001 (2)
C290.054 (4)0.086 (5)0.056 (4)0.011 (4)0.015 (3)0.025 (3)
C390.071 (6)0.119 (7)0.118 (7)0.004 (5)0.001 (5)0.065 (6)
C490.118 (9)0.217 (11)0.181 (10)0.038 (8)0.016 (7)0.143 (9)
O100.057 (3)0.045 (2)0.069 (3)0.0125 (19)0.032 (2)0.0162 (19)
O200.050 (2)0.049 (2)0.053 (2)0.0096 (19)0.0251 (19)0.0109 (18)
C100.046 (3)0.044 (3)0.044 (3)0.000 (3)0.014 (3)0.004 (3)
C200.060 (4)0.046 (3)0.072 (4)0.015 (3)0.034 (3)0.014 (3)
C300.068 (5)0.063 (4)0.083 (5)0.017 (4)0.036 (4)0.021 (4)
C400.103 (6)0.060 (4)0.137 (7)0.037 (4)0.061 (5)0.041 (4)
O1W0.044 (2)0.060 (2)0.040 (2)0.0070 (18)0.0162 (17)0.0091 (17)
O2W0.036 (2)0.044 (2)0.056 (2)0.0000 (17)0.0175 (17)0.0007 (17)
O3W0.038 (2)0.0354 (18)0.058 (2)0.0041 (16)0.0184 (18)0.0023 (17)
O4W0.033 (2)0.074 (3)0.037 (2)0.0042 (18)0.0130 (16)0.0078 (18)
O5W0.058 (3)0.060 (2)0.040 (2)0.013 (2)0.0087 (18)0.0083 (18)
O6W0.069 (3)0.038 (2)0.053 (2)0.0057 (19)0.014 (2)0.0005 (17)
O7W0.054 (3)0.085 (3)0.041 (2)0.012 (2)0.0101 (19)0.002 (2)
Geometric parameters (Å, º) top
Ho1—O172.322 (3)C34—C441.507 (7)
Ho1—O1W2.323 (3)C34—H340.9300
Ho1—O182.356 (3)C44—H4410.9600
Ho1—O102.362 (4)C44—H4420.9600
Ho1—O292.365 (3)C44—H4430.9600
Ho1—O2W2.386 (3)O15—C151.247 (6)
Ho1—O202.418 (3)O25—C151.279 (6)
Ho1—O192.619 (3)C15—C251.484 (7)
Ho1—C102.765 (5)C25—C351.251 (7)
Ho1—O282.789 (4)C25—H250.9300
Ho2—O282.316 (3)C35—C451.523 (7)
Ho2—O4W2.322 (3)C35—H350.9300
Ho2—O262.357 (3)C45—H4510.9600
Ho2—O3W2.368 (3)C45—H4520.9600
Ho2—O252.382 (3)C45—H4530.9600
Ho2—O272.392 (3)O16—C161.265 (5)
Ho2—O152.443 (3)O16—Cu1ii2.215 (3)
Ho2—O162.635 (3)O26—C161.267 (5)
Ho2—O172.642 (3)C16—C261.481 (6)
Ho2—C172.901 (5)C26—C361.305 (6)
Cu1—O121.939 (3)C26—H260.9300
Cu1—O131.949 (4)C36—C461.503 (7)
Cu1—O141.961 (3)C36—H360.9300
Cu1—O111.978 (3)C46—H4610.9600
Cu1—O16i2.215 (3)C46—H4620.9600
Cu1—Cu22.6417 (9)C46—H4630.9600
Cu2—O211.938 (4)O17—C171.268 (5)
Cu2—O231.968 (3)O27—C171.259 (5)
Cu2—O241.971 (3)C17—C271.471 (6)
Cu2—O221.989 (3)C27—C371.306 (6)
Cu2—O192.178 (3)C27—H270.9300
O11—C111.272 (6)C37—C471.493 (6)
O21—C111.241 (6)C37—H370.9300
C11—C211.472 (6)C47—H4710.9600
C21—C311.297 (7)C47—H4720.9600
C21—H210.9300C47—H4730.9600
C31—C411.499 (7)O18—C181.258 (6)
C31—H310.9300O28—C181.258 (5)
C41—H4110.9600C18—C281.471 (7)
C41—H4120.9600C28—C381.282 (7)
C41—H4130.9600C28—H280.9300
O12—C121.244 (6)C38—C481.520 (8)
O22—C121.273 (6)C38—H380.9300
C12—C221.472 (6)C48—H4810.9600
C22—C321.286 (7)C48—H4820.9600
C22—H220.9300C48—H4830.9600
C32—C421.513 (7)O19—C191.274 (5)
C32—H320.9300O29—C191.247 (6)
C42—H4210.9600C19—C291.484 (7)
C42—H4220.9600C29—C391.244 (7)
C42—H4230.9600C29—H290.9300
O13—C131.241 (6)C39—C491.524 (8)
O23—C131.268 (6)C39—H390.9300
C13—C231.483 (6)C49—H4910.9600
C23—C331.302 (7)C49—H4920.9600
C23—H230.9300C49—H4930.9600
C33—C431.507 (7)O10—C101.276 (5)
C33—H330.9300O20—C101.247 (6)
C43—H4310.9600C10—C201.471 (6)
C43—H4320.9600C20—C301.280 (6)
C43—H4330.9600C20—H200.9300
O14—C141.268 (6)C30—C401.504 (7)
O24—C141.246 (6)C30—H300.9300
C14—C241.474 (6)C40—H4010.9600
C24—C341.269 (7)C40—H4020.9600
C24—H240.9300C40—H4030.9600
O17—Ho1—O1W156.53 (12)H421—C42—H423109.5
O17—Ho1—O18114.16 (12)H422—C42—H423109.5
O1W—Ho1—O1878.12 (13)C13—O13—Cu1124.0 (4)
O17—Ho1—O1074.47 (12)C13—O23—Cu2122.2 (3)
O1W—Ho1—O10128.45 (12)O13—C13—O23125.5 (5)
O18—Ho1—O1081.98 (13)O13—C13—C23118.4 (5)
O17—Ho1—O2983.87 (12)O23—C13—C23116.2 (5)
O1W—Ho1—O2991.91 (12)C33—C23—C13123.0 (6)
O18—Ho1—O29154.75 (12)C33—C23—H23118.5
O10—Ho1—O2986.49 (13)C13—C23—H23118.5
O17—Ho1—O2W77.88 (11)C23—C33—C43125.1 (7)
O1W—Ho1—O2W84.11 (12)C23—C33—H33117.5
O18—Ho1—O2W83.50 (12)C43—C33—H33117.5
O10—Ho1—O2W139.90 (12)C33—C43—H431109.5
O29—Ho1—O2W118.86 (12)C33—C43—H432109.5
O17—Ho1—O20125.65 (12)H431—C43—H432109.5
O1W—Ho1—O2075.24 (12)C33—C43—H433109.5
O18—Ho1—O2077.99 (13)H431—C43—H433109.5
O10—Ho1—O2054.19 (12)H432—C43—H433109.5
O29—Ho1—O2077.04 (12)C14—O14—Cu1125.1 (3)
O2W—Ho1—O20154.61 (12)C14—O24—Cu2122.1 (3)
O17—Ho1—O1990.55 (11)O24—C14—O14124.8 (5)
O1W—Ho1—O1969.15 (11)O24—C14—C24120.7 (5)
O18—Ho1—O19139.70 (12)O14—C14—C24114.5 (5)
O10—Ho1—O19137.13 (12)C34—C24—C14125.3 (6)
O29—Ho1—O1951.59 (11)C34—C24—H24117.4
O2W—Ho1—O1970.65 (11)C14—C24—H24117.4
O20—Ho1—O19113.99 (12)C24—C34—C44126.0 (6)
O17—Ho1—C10100.30 (14)C24—C34—H34117.0
O1W—Ho1—C10101.70 (14)C44—C34—H34117.0
O18—Ho1—C1079.30 (14)C34—C44—H441109.5
O10—Ho1—C1027.41 (13)C34—C44—H442109.5
O29—Ho1—C1080.15 (14)H441—C44—H442109.5
O2W—Ho1—C10160.21 (14)C34—C44—H443109.5
O20—Ho1—C1026.79 (13)H441—C44—H443109.5
O19—Ho1—C10129.13 (13)H442—C44—H443109.5
O17—Ho1—O2865.47 (11)C15—O15—Ho292.3 (3)
O1W—Ho1—O28120.94 (11)C15—O25—Ho294.3 (3)
O18—Ho1—O2849.06 (11)O15—C15—O25119.4 (5)
O10—Ho1—O2874.49 (12)O15—C15—C25117.7 (5)
O29—Ho1—O28147.11 (11)O25—C15—C25122.8 (5)
O2W—Ho1—O2867.79 (11)C35—C25—C15123.7 (6)
O20—Ho1—O28110.60 (12)C35—C25—H25118.2
O19—Ho1—O28135.29 (10)C15—C25—H25118.2
C10—Ho1—O2893.36 (14)C25—C35—C45125.3 (7)
O28—Ho2—O4W153.86 (12)C25—C35—H35117.4
O28—Ho2—O2684.46 (12)C45—C35—H35117.4
O4W—Ho2—O2692.03 (12)C35—C45—H451109.5
O28—Ho2—O3W78.27 (12)C35—C45—H452109.5
O4W—Ho2—O3W82.01 (12)H451—C45—H452109.5
O26—Ho2—O3W122.71 (11)C35—C45—H453109.5
O28—Ho2—O2578.79 (12)H451—C45—H453109.5
O4W—Ho2—O25126.57 (12)H452—C45—H453109.5
O26—Ho2—O2582.95 (12)C16—O16—Cu1ii130.2 (3)
O3W—Ho2—O25143.21 (12)C16—O16—Ho287.8 (3)
O28—Ho2—O27118.99 (12)Cu1ii—O16—Ho2136.55 (14)
O4W—Ho2—O2774.51 (12)C16—O26—Ho2100.8 (3)
O26—Ho2—O27150.39 (11)O16—C16—O26119.7 (4)
O3W—Ho2—O2782.13 (12)O16—C16—C26120.3 (5)
O25—Ho2—O2784.32 (12)O26—C16—C26120.0 (4)
O28—Ho2—O15129.71 (12)C36—C26—C16123.6 (5)
O4W—Ho2—O1573.50 (12)C36—C26—H26118.2
O26—Ho2—O1575.11 (11)C16—C26—H26118.2
O3W—Ho2—O15150.52 (12)C26—C36—C46125.8 (6)
O25—Ho2—O1553.73 (12)C26—C36—H36117.1
O27—Ho2—O1575.79 (12)C46—C36—H36117.1
O28—Ho2—O1688.38 (12)C36—C46—H461109.5
O4W—Ho2—O1669.54 (11)C36—C46—H462109.5
O26—Ho2—O1651.66 (10)H461—C46—H462109.5
O3W—Ho2—O1673.46 (11)C36—C46—H463109.5
O25—Ho2—O16133.95 (11)H461—C46—H463109.5
O27—Ho2—O16138.68 (11)H462—C46—H463109.5
O15—Ho2—O16111.57 (11)C17—O17—Ho1154.1 (3)
O28—Ho2—O1768.17 (12)C17—O17—Ho288.5 (3)
O4W—Ho2—O17121.43 (11)Ho1—O17—Ho2115.70 (12)
O26—Ho2—O17146.01 (11)C17—O27—Ho2100.6 (3)
O3W—Ho2—O1772.35 (11)O27—C17—O17118.6 (4)
O25—Ho2—O1772.57 (11)O27—C17—C27121.5 (4)
O27—Ho2—O1750.84 (10)O17—C17—C27119.9 (5)
O15—Ho2—O17106.72 (11)O27—C17—Ho254.1 (2)
O16—Ho2—O17141.66 (10)O17—C17—Ho265.6 (3)
O28—Ho2—C1793.83 (14)C27—C17—Ho2167.4 (4)
O4W—Ho2—C1796.66 (13)C37—C27—C17123.0 (5)
O26—Ho2—C17163.08 (13)C37—C27—H27118.5
O3W—Ho2—C1773.06 (12)C17—C27—H27118.5
O25—Ho2—C1780.22 (13)C27—C37—C47124.5 (6)
O27—Ho2—C1725.24 (11)C27—C37—H37117.7
O15—Ho2—C1793.46 (13)C47—C37—H37117.7
O16—Ho2—C17145.23 (12)C37—C47—H471109.5
O17—Ho2—C1725.92 (11)C37—C47—H472109.5
O12—Cu1—O1388.88 (16)H471—C47—H472109.5
O12—Cu1—O14167.90 (15)C37—C47—H473109.5
O13—Cu1—O1489.40 (16)H471—C47—H473109.5
O12—Cu1—O1190.28 (15)H472—C47—H473109.5
O13—Cu1—O11166.73 (15)C18—O18—Ho1106.2 (3)
O14—Cu1—O1188.65 (15)C18—O28—Ho2163.0 (4)
O12—Cu1—O16i102.25 (14)C18—O28—Ho185.3 (3)
O13—Cu1—O16i103.16 (14)Ho2—O28—Ho1110.63 (13)
O14—Cu1—O16i89.80 (14)O18—C18—O28119.3 (5)
O11—Cu1—O16i89.96 (13)O18—C18—C28121.0 (5)
O12—Cu1—Cu285.23 (11)O28—C18—C28119.7 (5)
O13—Cu1—Cu283.69 (11)C38—C28—C18123.1 (7)
O14—Cu1—Cu282.68 (11)C38—C28—H28118.5
O11—Cu1—Cu283.04 (11)C18—C28—H28118.5
O16i—Cu1—Cu2169.82 (9)C28—C38—C48124.9 (9)
O21—Cu2—O23168.65 (16)C28—C38—H38117.6
O21—Cu2—O2489.72 (16)C48—C38—H38117.6
O23—Cu2—O2491.67 (15)C38—C48—H481109.5
O21—Cu2—O2287.21 (16)C38—C48—H482109.5
O23—Cu2—O2289.05 (15)H481—C48—H482109.5
O24—Cu2—O22167.66 (15)C38—C48—H483109.5
O21—Cu2—O19100.40 (14)H481—C48—H483109.5
O23—Cu2—O1990.55 (14)H482—C48—H483109.5
O24—Cu2—O1998.19 (14)C19—O19—Cu2129.3 (3)
O22—Cu2—O1994.12 (14)C19—O19—Ho187.9 (3)
O21—Cu2—Cu184.83 (11)Cu2—O19—Ho1138.47 (15)
O23—Cu2—Cu184.07 (11)C19—O29—Ho1100.7 (3)
O24—Cu2—Cu185.14 (11)O29—C19—O19119.7 (5)
O22—Cu2—Cu182.68 (11)O29—C19—C29122.2 (5)
O19—Cu2—Cu1173.77 (9)O19—C19—C29117.9 (5)
C11—O11—Cu1123.2 (3)C39—C29—C19124.3 (7)
C11—O21—Cu2123.8 (3)C39—C29—H29117.9
O21—C11—O11124.9 (5)C19—C29—H29117.9
O21—C11—C21118.8 (5)C29—C39—C49125.2 (8)
O11—C11—C21116.3 (5)C29—C39—H39117.4
C31—C21—C11123.1 (6)C49—C39—H39117.4
C31—C21—H21118.4C39—C49—H491109.5
C11—C21—H21118.4C39—C49—H492109.5
C21—C31—C41124.8 (7)H491—C49—H492109.5
C21—C31—H31117.6C39—C49—H493109.5
C41—C31—H31117.6H491—C49—H493109.5
C31—C41—H411109.5H492—C49—H493109.5
C31—C41—H412109.5C10—O10—Ho194.2 (3)
H411—C41—H412109.5C10—O20—Ho192.3 (3)
C31—C41—H413109.5O20—C10—O10119.3 (5)
H411—C41—H413109.5O20—C10—C20122.4 (5)
H412—C41—H413109.5O10—C10—C20118.3 (5)
C12—O12—Cu1123.2 (3)O20—C10—Ho160.9 (3)
C12—O22—Cu2123.2 (3)O10—C10—Ho158.4 (3)
O12—C12—O22125.1 (5)C20—C10—Ho1175.9 (4)
O12—C12—C22116.9 (5)C30—C20—C10124.3 (6)
O22—C12—C22118.0 (5)C30—C20—H20117.9
C32—C22—C12125.1 (6)C10—C20—H20117.9
C32—C22—H22117.4C20—C30—C40127.3 (6)
C12—C22—H22117.4C20—C30—H30116.3
C22—C32—C42125.4 (6)C40—C30—H30116.3
C22—C32—H32117.3C30—C40—H401109.5
C42—C32—H32117.3C30—C40—H402109.5
C32—C42—H421109.5H401—C40—H402109.5
C32—C42—H422109.5C30—C40—H403109.5
H421—C42—H422109.5H401—C40—H403109.5
C32—C42—H423109.5H402—C40—H403109.5
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Cu2Ho2(C4H5O2)10(H2O)4]·3H2O
Mr1433.85
Crystal system, space groupMonoclinic, P21/c
Temperature (K)291
a, b, c (Å)13.8856 (17), 22.078 (3), 19.846 (3)
β (°) 107.152 (2)
V3)5813.5 (14)
Z4
Radiation typeMo Kα
µ (mm1)3.49
Crystal size (mm)0.24 × 0.10 × 0.08
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; (Bruker, 2002)
Tmin, Tmax0.62, 0.76
No. of measured, independent and
observed [I > 2σ(I)] reflections
34338, 12977, 9482
Rint0.043
(sin θ/λ)max1)0.665
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.085, 0.93
No. of reflections12977
No. of parameters653
No. of restraints30
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.23, 1.02

Computer programs: SMART-NT (Bruker, 2001), SAINT-NT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and PLATON (Spek (2003).

Selected bond lengths (Å) top
Ho1—O172.322 (3)Ho2—O272.392 (3)
Ho1—O1W2.323 (3)Ho2—O152.443 (3)
Ho1—O182.356 (3)Ho2—O162.635 (3)
Ho1—O102.362 (4)Ho2—O172.642 (3)
Ho1—O292.365 (3)Ho2—C172.901 (5)
Ho1—O2W2.386 (3)Cu1—O121.939 (3)
Ho1—O202.418 (3)Cu1—O131.949 (4)
Ho1—O192.619 (3)Cu1—O141.961 (3)
Ho1—C102.765 (5)Cu1—O111.978 (3)
Ho1—O282.789 (4)Cu1—O16i2.215 (3)
Ho2—O282.316 (3)Cu2—O211.938 (4)
Ho2—O4W2.322 (3)Cu2—O231.968 (3)
Ho2—O262.357 (3)Cu2—O241.971 (3)
Ho2—O3W2.368 (3)Cu2—O221.989 (3)
Ho2—O252.382 (3)Cu2—O192.178 (3)
Symmetry code: (i) x1, y, z.
Short OW···O contacts (< 3.00 Å) attributable to hydrogen bonding top
OW···Od (Å)OW···Od (Å)
O1W···O182.948 (5)O3W···O282.957 (5)
O1W···O192.815 (5)O4W···O14i2.645 (5)
O1W···O202.895 (5)O4W···O152.853 (5)
O1W···O222.763 (5)O4W···O162.839 (4)
O1W···O5W2.632 (5)O4W···O272.854 (5)
O2W···O192.900 (5)O4W···O7Wii2.703 (5)
O2W···O232.777 (5)O5W···O27iii2.848 (5)
O2W···O252.734 (5)O5W···O6W2.800 (5)
O2W···O282.905 (5)O6W···O15iii2.788 (5)
O3W···O102.675 (5)O6W···O26iv2.858 (5)
O3W···O11i2.766 (5)O6W···O7W2.867 (5)
Symmetry codes: (i) x+1, y, z; (ii) x, -y+3/2, z-1/2; (iii) x, -y+3/2, z+1/2; (iv) -x+2, y+1/2, -z+3/2.
 

Acknowledgements

This work was supported by PIP 5274 and PICT 25409 in Argentina and FONDECYT 1070298 in Chile. MP is a member of CONICET.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBenelli, C. & Gatteschi, D. (2002). Chem. Rev. 102, 2369–2387.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2001). SMART-NT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2002). SAINT-NT (including SADABS). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCalvo, R., Rapp, R. E., Chagas, E., Sartoris, R., Baggio, R., Garland, M. & Perec, M. (2008). Inorg. Chem. doi: 10.1021/ic8014089.  Google Scholar
First citationKutlu, I., Meyer, G., Oczko, G. & Legendziewicz, J. (1997). Eur. J. Solid State Inorg. Chem. 34, 231–238.  CAS Google Scholar
First citationLegendziewicz, J., Borzechowska, M. G., Oczko, G. & Meyer, G. (2000). New J. Chem. 24, 53–59.  Web of Science CrossRef CAS Google Scholar
First citationNiekerk, J. N. van & Schoening, F. R. L. (1953). Acta Cryst. 6, 227–232.  CSD CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 11| November 2008| Pages m1463-m1464
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds