organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,2-Bis(p-tolyl­sulfon­yl)hydrazine

aDepartment of Basic Medicine, Weifang Medical University, Weifang 261053, People's Republic of China, bDepartment of Chemistry and Chemical Engineering, Weifang University, Weifang 261061, People's Republic of China, and cCollege of Information and Control Engineering, Weifang University, Weifang 261061, People's Republic of China
*Correspondence e-mail: taixishi@lzu.edu.cn

(Received 20 October 2008; accepted 21 October 2008; online 25 October 2008)

In the title compound, C14H16N2O4S2, the dihedral angle between the aromatic ring planes is 76.8 (3)° and the S—N—N—S torsion angle is 122.5 (3)°. In the crystal structure, mol­ecules form a chain structure by way of N—H⋯O hydrogen bonds.

Related literature

For background on aroylhydrazines, see: Bu et al. (2001[Bu, X. H., Gao, Y. X., Chen, W. & Zhang, R. H. (2001). J. Rare Earth, 19, 70-75.]); Ranford et al. (1998[Ranford, J. D., Vittal, J. J. & Wang, Y. M. (1998). Inorg. Chem. 37, 1226-1231.]), Agarwal & Sharma (1993[Agarwal, R. K. & Sharma, S. (1993). Pol. J. Chem. 67, 581-586.]).

[Scheme 1]

Experimental

Crystal data
  • C14H16N2O4S2

  • Mr = 340.41

  • Monoclinic, P 21 /c

  • a = 15.7318 (16) Å

  • b = 10.7016 (12) Å

  • c = 9.4943 (9) Å

  • β = 90.102 (2)°

  • V = 1598.4 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.35 mm−1

  • T = 298 (2) K

  • 0.33 × 0.11 × 0.04 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.893, Tmax = 0.986

  • 7984 measured reflections

  • 2808 independent reflections

  • 1132 reflections with I > 2σ(I)

  • Rint = 0.108

Refinement
  • R[F2 > 2σ(F2)] = 0.065

  • wR(F2) = 0.080

  • S = 0.97

  • 2808 reflections

  • 199 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O3i 0.90 2.10 2.935 (5) 155
N2—H2A⋯O1i 0.90 2.01 2.857 (5) 157
Symmetry code: (i) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Aroylhydrazines have drawn much attention in recent years due to their wide biological and pharmacological activities, such as antitumor (Ranford et al., 1998), antidiabetic (Bu et al., 2001) antitubercular (Agarwal & Sharma, 1993) activities. As part of our studies in this area, we now report the synthesis and crystal structure of the title compound, (I).

In (I), the dihedral angle between the two phenyl rings of (C1—C6 and C8—C13) is 76.8 (3)°. The S=O bond distances are characteristic of double bonds. The N1—N2 single bond of 1.407 (4) is in agreement with that of other acylhydrazone compounds in which the acylhydrazone takes a ketonic form.

In the crystal, N—H···O hydrogen bonds (Table 1) help to establish the packing.

Related literature top

For background on aroylhydrazines, see: Bu et al. (2001); Ranford et al. (1998), Agarwal & Sharma (1993).

Experimental top

5 mmol of 4-toluene sulfonyl chloride (5 mmol) was added to a solution of hydrazine (2.5 mmol) in 10 ml of ethanol at room temperature. The mixture was continuously stirred for 2 h at temperature, the solid product was collected by filtration and dried in vacuo (yield 58%). Clear blocks of (I) were obtained by evaporation from a methanol/water solution after 10 days.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing 30% displacement ellipsoids (arbitrary spheres for the H atoms).
1,2-Bis(p-tolylsulfonyl)hydrazine top
Crystal data top
C14H16N2O4S2F(000) = 712
Mr = 340.41Dx = 1.415 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 586 reflections
a = 15.7318 (16) Åθ = 2.3–25.0°
b = 10.7016 (12) ŵ = 0.35 mm1
c = 9.4943 (9) ÅT = 298 K
β = 90.102 (2)°Flake, colourless
V = 1598.4 (3) Å30.33 × 0.11 × 0.04 mm
Z = 4
Data collection top
Bruker SMART CCD
diffractometer
2808 independent reflections
Radiation source: fine-focus sealed tube1132 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.108
ω scansθmax = 25.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1812
Tmin = 0.893, Tmax = 0.986k = 1212
7984 measured reflectionsl = 1111
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.065Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.080H-atom parameters constrained
S = 0.97 w = 1/[σ2(Fo2) + (0.0003P)2]
where P = (Fo2 + 2Fc2)/3
2808 reflections(Δ/σ)max < 0.001
199 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C14H16N2O4S2V = 1598.4 (3) Å3
Mr = 340.41Z = 4
Monoclinic, P21/cMo Kα radiation
a = 15.7318 (16) ŵ = 0.35 mm1
b = 10.7016 (12) ÅT = 298 K
c = 9.4943 (9) Å0.33 × 0.11 × 0.04 mm
β = 90.102 (2)°
Data collection top
Bruker SMART CCD
diffractometer
2808 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
1132 reflections with I > 2σ(I)
Tmin = 0.893, Tmax = 0.986Rint = 0.108
7984 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0650 restraints
wR(F2) = 0.080H-atom parameters constrained
S = 0.97Δρmax = 0.23 e Å3
2808 reflectionsΔρmin = 0.27 e Å3
199 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.82111 (9)0.60680 (14)0.00482 (14)0.0542 (4)
S20.70156 (9)0.91574 (15)0.01299 (15)0.0588 (4)
N10.7517 (2)0.7008 (4)0.0725 (4)0.0513 (12)
H10.74840.67940.16400.062*
N20.7743 (2)0.8278 (4)0.0630 (4)0.0535 (12)
H2A0.78230.85710.15080.064*
O10.82411 (18)0.6447 (3)0.1491 (3)0.0628 (10)
O20.7938 (2)0.4847 (3)0.0334 (4)0.0682 (11)
O30.6846 (2)0.8623 (3)0.1482 (3)0.0701 (11)
O40.7356 (2)1.0395 (3)0.0015 (4)0.0771 (13)
C10.9213 (3)0.6382 (5)0.0667 (5)0.0446 (14)
C20.9673 (4)0.7381 (5)0.0188 (6)0.0602 (17)
H20.94580.78920.05200.072*
C31.0465 (4)0.7620 (5)0.0775 (6)0.0634 (17)
H31.07720.83100.04670.076*
C41.0807 (3)0.6865 (5)0.1799 (6)0.0534 (16)
C51.0339 (4)0.5857 (5)0.2236 (5)0.0579 (15)
H51.05670.53270.29150.069*
C60.9547 (3)0.5604 (5)0.1703 (6)0.0538 (15)
H60.92380.49230.20300.065*
C71.1679 (3)0.7141 (5)0.2376 (6)0.080 (2)
H7A1.18620.64610.29620.121*
H7B1.16610.78950.29240.121*
H7C1.20710.72450.16110.121*
C80.6086 (3)0.9042 (5)0.0880 (5)0.0472 (14)
C90.6008 (4)0.9722 (5)0.2078 (6)0.087 (2)
H90.64481.02400.23740.104*
C100.5265 (4)0.9636 (6)0.2860 (6)0.095 (2)
H100.52141.01150.36730.115*
C110.4622 (4)0.8893 (6)0.2488 (6)0.0659 (18)
C120.4712 (4)0.8228 (5)0.1302 (7)0.087 (2)
H120.42740.76980.10250.104*
C130.5441 (4)0.8306 (5)0.0467 (6)0.083 (2)
H130.54800.78510.03650.100*
C140.3808 (3)0.8797 (5)0.3358 (6)0.091 (2)
H14A0.38520.93270.41700.136*
H14B0.37270.79470.36540.136*
H14C0.33320.90550.27940.136*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0498 (10)0.0731 (11)0.0398 (9)0.0048 (9)0.0043 (7)0.0049 (8)
S20.0622 (11)0.0726 (11)0.0417 (10)0.0093 (10)0.0038 (8)0.0035 (9)
N10.052 (3)0.068 (3)0.034 (3)0.010 (3)0.004 (2)0.002 (2)
N20.054 (3)0.068 (3)0.038 (3)0.010 (3)0.001 (2)0.003 (3)
O10.058 (2)0.099 (3)0.031 (2)0.011 (2)0.0041 (17)0.007 (2)
O20.066 (3)0.056 (2)0.083 (3)0.009 (2)0.003 (2)0.001 (2)
O30.073 (3)0.104 (3)0.033 (2)0.021 (2)0.0053 (19)0.004 (2)
O40.087 (3)0.062 (2)0.082 (3)0.014 (2)0.012 (2)0.010 (2)
C10.038 (3)0.051 (4)0.045 (4)0.006 (3)0.006 (3)0.005 (3)
C20.048 (4)0.071 (4)0.061 (4)0.005 (4)0.004 (3)0.022 (3)
C30.048 (4)0.076 (5)0.066 (5)0.007 (4)0.011 (3)0.008 (4)
C40.051 (4)0.058 (4)0.051 (4)0.007 (4)0.003 (3)0.013 (3)
C50.067 (4)0.058 (4)0.049 (4)0.014 (4)0.012 (3)0.002 (3)
C60.058 (4)0.056 (4)0.047 (4)0.004 (3)0.009 (3)0.001 (3)
C70.052 (4)0.096 (5)0.093 (6)0.005 (4)0.012 (4)0.017 (4)
C80.049 (4)0.055 (4)0.038 (3)0.006 (3)0.002 (3)0.003 (3)
C90.081 (5)0.112 (5)0.067 (5)0.030 (4)0.015 (4)0.043 (4)
C100.094 (6)0.124 (6)0.069 (5)0.008 (5)0.034 (4)0.042 (4)
C110.057 (4)0.082 (5)0.058 (4)0.020 (4)0.005 (4)0.010 (4)
C120.057 (5)0.112 (5)0.092 (6)0.024 (4)0.007 (4)0.029 (5)
C130.071 (5)0.103 (5)0.075 (5)0.003 (4)0.001 (4)0.031 (4)
C140.068 (4)0.132 (5)0.072 (5)0.026 (4)0.017 (3)0.020 (4)
Geometric parameters (Å, º) top
S1—O21.423 (3)C5—H50.9300
S1—O11.429 (3)C6—H60.9300
S1—N11.657 (3)C7—H7A0.9600
S1—C11.748 (5)C7—H7B0.9600
S2—O31.430 (3)C7—H7C0.9600
S2—O41.433 (3)C8—C131.343 (6)
S2—N21.648 (4)C8—C91.356 (6)
S2—C81.754 (4)C9—C101.389 (6)
N1—N21.407 (4)C9—H90.9300
N1—H10.9001C10—C111.333 (7)
N2—H2A0.8998C10—H100.9300
C1—C21.369 (6)C11—C121.340 (7)
C1—C61.391 (6)C11—C141.529 (6)
C2—C31.387 (7)C12—C131.398 (6)
C2—H20.9300C12—H120.9300
C3—C41.373 (7)C13—H130.9300
C3—H30.9300C14—H14A0.9600
C4—C51.370 (6)C14—H14B0.9600
C4—C71.507 (6)C14—H14C0.9600
C5—C61.371 (6)
O2—S1—O1121.0 (2)C5—C6—C1119.0 (5)
O2—S1—N1104.1 (2)C5—C6—H6120.5
O1—S1—N1106.0 (2)C1—C6—H6120.5
O2—S1—C1110.5 (3)C4—C7—H7A109.5
O1—S1—C1106.6 (2)C4—C7—H7B109.5
N1—S1—C1107.8 (2)H7A—C7—H7B109.5
O3—S2—O4120.5 (2)C4—C7—H7C109.5
O3—S2—N2107.0 (2)H7A—C7—H7C109.5
O4—S2—N2103.6 (2)H7B—C7—H7C109.5
O3—S2—C8107.9 (2)C13—C8—C9119.3 (5)
O4—S2—C8109.6 (2)C13—C8—S2120.8 (4)
N2—S2—C8107.4 (2)C9—C8—S2119.8 (5)
N2—N1—S1113.0 (3)C8—C9—C10119.4 (6)
N2—N1—H1108.8C8—C9—H9120.3
S1—N1—H1108.2C10—C9—H9120.3
N1—N2—S2113.8 (3)C11—C10—C9122.5 (6)
N1—N2—H2A108.2C11—C10—H10118.8
S2—N2—H2A107.5C9—C10—H10118.8
C2—C1—C6120.2 (5)C10—C11—C12117.3 (6)
C2—C1—S1119.9 (5)C10—C11—C14122.2 (6)
C6—C1—S1119.9 (4)C12—C11—C14120.5 (7)
C1—C2—C3119.1 (5)C11—C12—C13122.2 (6)
C1—C2—H2120.5C11—C12—H12118.9
C3—C2—H2120.5C13—C12—H12118.9
C4—C3—C2121.7 (5)C8—C13—C12119.3 (6)
C4—C3—H3119.1C8—C13—H13120.3
C2—C3—H3119.1C12—C13—H13120.3
C5—C4—C3117.9 (6)C11—C14—H14A109.5
C5—C4—C7122.2 (6)C11—C14—H14B109.5
C3—C4—C7119.8 (6)H14A—C14—H14B109.5
C4—C5—C6122.1 (5)C11—C14—H14C109.5
C4—C5—H5119.0H14A—C14—H14C109.5
C6—C5—H5119.0H14B—C14—H14C109.5
O2—S1—N1—N2172.0 (3)C4—C5—C6—C11.3 (8)
O1—S1—N1—N259.3 (4)C2—C1—C6—C50.2 (7)
C1—S1—N1—N254.6 (4)S1—C1—C6—C5179.1 (4)
S1—N1—N2—S2122.5 (3)O3—S2—C8—C1313.6 (5)
O3—S2—N2—N155.6 (3)O4—S2—C8—C13146.6 (4)
O4—S2—N2—N1176.0 (3)N2—S2—C8—C13101.5 (5)
C8—S2—N2—N160.1 (4)O3—S2—C8—C9165.1 (4)
O2—S1—C1—C2165.9 (4)O4—S2—C8—C932.1 (5)
O1—S1—C1—C232.5 (4)N2—S2—C8—C979.8 (5)
N1—S1—C1—C280.9 (4)C13—C8—C9—C100.4 (9)
O2—S1—C1—C613.1 (4)S2—C8—C9—C10179.1 (5)
O1—S1—C1—C6146.4 (4)C8—C9—C10—C111.0 (10)
N1—S1—C1—C6100.2 (4)C9—C10—C11—C120.9 (10)
C6—C1—C2—C31.5 (8)C9—C10—C11—C14179.6 (6)
S1—C1—C2—C3179.6 (4)C10—C11—C12—C130.5 (10)
C1—C2—C3—C41.5 (9)C14—C11—C12—C13179.0 (5)
C2—C3—C4—C50.2 (8)C9—C8—C13—C121.7 (8)
C2—C3—C4—C7178.3 (5)S2—C8—C13—C12179.5 (4)
C3—C4—C5—C61.2 (8)C11—C12—C13—C81.9 (9)
C7—C4—C5—C6179.7 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O3i0.902.102.935 (5)155
N2—H2A···O1i0.902.012.857 (5)157
Symmetry code: (i) x, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC14H16N2O4S2
Mr340.41
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)15.7318 (16), 10.7016 (12), 9.4943 (9)
β (°) 90.102 (2)
V3)1598.4 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.35
Crystal size (mm)0.33 × 0.11 × 0.04
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.893, 0.986
No. of measured, independent and
observed [I > 2σ(I)] reflections
7984, 2808, 1132
Rint0.108
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.065, 0.080, 0.97
No. of reflections2808
No. of parameters199
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.27

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O3i0.902.102.935 (5)155
N2—H2A···O1i0.902.012.857 (5)157
Symmetry code: (i) x, y+3/2, z+1/2.
 

Acknowledgements

The authors thank the National Natural Science Foundation of China (20671073), Shandong Province Scientific and Technological Brainstorm Project (2008 GG10002022), the National Natural Science Foundation of Shandong (Y2007B60) and the Science and Technology Foundation of Weifang for research grants.

References

First citationAgarwal, R. K. & Sharma, S. (1993). Pol. J. Chem. 67, 581–586.  CAS Google Scholar
First citationBruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBu, X. H., Gao, Y. X., Chen, W. & Zhang, R. H. (2001). J. Rare Earth, 19, 70–75.  Google Scholar
First citationRanford, J. D., Vittal, J. J. & Wang, Y. M. (1998). Inorg. Chem. 37, 1226–1231.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds